Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: A comparative study

Abstract

This work deals with a comparison of different numerical schemes for the simulation of contaminant transport in heterogeneous porous media.

The numerical methods under consideration are Galerkin finite element (GFE), finite volume (FV), and mixed hybrid finite element (MHFE). Concerning the GFE we use linear and quadratic finite elements with and without upwind stabilization. Besides the classical MHFE a new and an upwind scheme are tested. We consider higher order finite volume schemes as well as two time discretization methods: backward Euler (BE) and the second order backward differentiation formula BDF (2).

It is well known that numerical (or artificial) diffusion may cause large errors. Moreover, when the Péclet number is large, a numerical code without some stabilizing techniques produces oscillating solutions.

Upwind schemes increase the stability but show more numerical diffusion. In this paper we quantify the numerical diffusion for the different discretization schemes and its dependency on the Péclet number.

We consider an academic example and a realistic simulation of solute transport in heterogeneous aquifer. In the latter case, the stochastic estimates used as reference were obtained with global random walk (GRW) simulations, free of numerical diffusion.

The results presented can be used by researchers to test their numerical schemes and stabilization techniques for simulation of contaminant transport in groundwater.

Authors

F.A. Radu

N. Suciu
Tiberiu Popoviciu Institute of Numerical Analysis

J. Hoffmann

A. Vogel

O. Kolditz

C.-H. Park

S. Attinger

Keywords

Solute transport; Heterogeneous soils; Galerkin finite elements; Mixed finite elements; Finite volumes; Numerical diffusion

Cite this paper as:

F.A. Radu, N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C.-H. Park, S. Attinger, Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: A comparative study. Advances in Water Resources. 34 (2011) 47–61.
doi: 10.1016/j.advwatres.2010.09.012

References

see the expansion block below.

PDF

not available yet.

About this paper

Journal

Advances in Water Resources

Publisher Name

Elsevier

Print ISSN

0309-1708

Online ISSN

Not available yet.

Google Scholar Profile

[1] W. Jäger, J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes,  ESAIM-MATH MODEL NUM, Jan 1995, vol. 29, issue 5, 605-627
CrossRef (DOI)

[2] Randolph E. Bank, Donald J. Rose, Some Error Estimates for the Box Method, Jun 1999, SIAM J NUMER ANAL,
CrossRef (DOI) ?

[3] Chang Hyun Park, Sung Jin Lee, Suture Fixation Technique for a Single-piece Foldable Closed-loop Intraocular Lens, Jan 2009, Kor J Ophthalmol

[4] N. Suciu, C. Vamoş, J. Eberhard, Evaluation of the first-order approximations for transport in heterogeneous media, Nov 2006, WATER RESOUR RES
CrossRef (DOI)

[5] Bernard Laval, Ben R. Hodges, Jörg  Imberger, Reducing Numerical Diffusion Effects with Pycnocline Filter, Mar 2003, J HYDRAUL ENG-ASCE

[6] M. DENTZ, H. KINZELBACH, W. KINZELBACH, Temporal behavior of a solute cloud in a chemically heterogenous porous medium, May 1999, J Fluid Mech., vol.386, pp.77-104
CrossRef (DOI)

[7] N. Suciu, C. Vamoş, H. Vereecken, K. Sabelfeld, P. Knabner, Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media,
Aug 2008, WATER RESOUR RES, vol. 44, issue 8
CrossRef (DOI)

[8] N. Suciu, C. Vamos, Evaluation of overshooting errors in particle methods for diffusion by biased global random walk, Jan 2006

[9] Chan-Hee Park, Christof Beyer, Sebastian Bauer, Olaf Kolditz, A study of preferential flow in heterogeneous media using random walk particle tracking,  Sep 2008, GEOSCI J, vol. 12, issue 3, pp. 285-297
CrossRef (DOI)

[10] P. Bastian, K. Birken, K. Johannsen, S. Lang, C. Wieners, UG-A Flexible Software Toolbox for Solving Partial Differential Equations, Jul 1997, Comput Visual Sci., vol. 1, issue 1, pp.27-40
CrossRef (DOI)

[11] Florin A. Radu, Iuliu Sorin Pop, Peter Knabner, Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards’ Equation, Jan 2004, SIAM J NUMER ANAL, vol. 42, issue 3, pp. 1452-1478
CrossRef (DOI)

[12] Brezzi FF, M Fortin, Mixed and Hybrid Finite Element Method, Jan 1991
??

[13] N. Suciu, Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields, May 2010,  Physical Review E, vol. 81, issue 5
CrossRef (DOI)

[14] N Suciu, C Vamoş, F A Radu, H Vereecken, P Knabner, Persistent memory of diffusing particles, Dec 2009, Physical Review E, vol. 80, issue 6.
CrossRef (DOI)

[15] Iuliu Sorin Pop, Florin Radu, Peter Knabner, Mixed finite elements for the Richards’ equation: Linearization procedure, Jul 2004, J COMPUT APPL MATH., Journal of Computational and Applied Mathematics, vol. 168 issue 1-2  pp. 365-373
CrossRef (DOI)

[16] Gary Cohen, Patrick Joly, Jean E. Roberts, Nathalie Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, Jan 2001, SIAM J NUMER ANAL., SIAM Journal on Numerical Analysis vol. 38 issue 6, pp. 2047-2078
CrossRef (DOI)

[17] Peter K. Kitanidis, Prediction by the method of moments of transport in a heterogeneous formation, Sep 1988, J HYDROL, Journal of Hydrology vol. 102, issue 1-4, pp.453-473
CrossRef (DOI)

[18] Alberto Bellin, Paolo Salandin, Andrea Rinaldo, Simulation of Dispersion in Heterogeneous Porous Formations: Statistics, First-Order Theories, Convergence of Computations, Sep 1992, WATER RESOUR RES., Water Resources Research vol. 28, issue 9, pp.2211-2227
CrossRef (DOI)

[19] Stefano Micheletti, R. Sacco, F. Saleri, On Some Mixed Finite Element Methods with Numerical Integration, Jun 2001, SIAM J SCI COMPUT, SIAM Journal on Scientific Computing. Vol. 23. Issue 1, pp. 245-270
CrossRef (DOI)

[20] M. Alexander, ES&T Research Needs, Aug 2003, ENVIRON SCI TECHNOL, Environmental Science & Technology, vol. 25, issue 12, pp. 1972-1973
CrossRef (DOI)

[21] Sebastian Bauer, Christof Beyer, Olaf Kolditz, Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers,
Jan 2006, WATER RESOUR RES., Water Resources Research vo. 42, issue 1
CrossRef (DOI)

[22] Todd Arbogast, Mandri Obeyesekere, Mary F. Wheeler, Numerical Methods for the Simulation of Flow in Root-Soil Systems, Dec 1993, SIAM J NUMER ANAL., SIAM Journal on Numerical Analysis vol. 30, issue 6, pp. 1677-1702
CrossRef (DOI)

[23] Florin A. Radu, Iuliu Sorin Pop, Sabine Attinger, Analysis of an Euler Implicit-Mixed Finite Element Scheme for Reactive Solute Transport in Porous Media,
Jan 2009, Numer Meth Part Differ Equat., Numerical Methods for Partial Differential Equations
CrossRef (DOI)

[24] N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, H. Vereecken, Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Apr 2006, WATER RESOUR RES., Water Resources Research vol. 42, issue 4.
CrossRef (DOI)

[25] Florin A. Radu, Iuliu Sorin Pop, Peter Knabner, Newton—Type Methods for the Mixed Finite Element Discretization of Some Degenerate Parabolic Equations, Dec 2005, Numerical Mathematics and Advanced Applications, pp. 1192-1200
CrossRef (DOI)

[26] Lantz, Quantitative Evaluation of Numerical Diffusion (Truncation Error),
Apr 2013, Soc Petrol Eng J

[27] Markus Bause, Peter Knabner, Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping, Sep 2004, Comput Visual Sci., Computing and Visualization in Science, vol.  7,issue 2, pp. 61-78
CrossRef (DOI)

[28] C. Wieners, Distributed  Point Objects. A New Concept for Parallel Finite Elements, Jan 2005, Lecture Notes in Computational Science and Engineering, pp.175-182
CrossRef (DOI)

[29] F. A. Radu, M. Bause, A. Prechtel, S. Attinger, A Mixed Hybrid Finite Element Discretization Scheme for Reactive Transport in Porous Media, Jan 2008, Numerical Mathematics and Advanced Applications, pp. 513-520
CrossRef (DOI)

[30] Joachim Hoffmann, Serge Kräutle, Peter Knabner, A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem, Jun 2010, COMPUTAT GEOSCI

[31] Sabine Attinger, Jens Eberhard, Nicolas Neuss, Filtering procedures for flow in heterogeneous porous media: Numerical results,
Oct 2002, Comput Visual Sci., Computing and Visualization in Science, vol. 5 issue 2, pp. 67-72
CrossRef (DOI)

[32] Andreas Vogel, Jinchao Xu, Gabriel Wittum, A generalization of the vertex-centered finite volume scheme to arbitrary high order, Jun 2010, Comput Visual Sci., Computing and Visualization in Science, vol. 13,issue 5, pp. 221- 228
CrossRef (DOI)

[33] Todd H. Wiedemeier, Hanadi S. Rifai, Charles J. Newell, John T. Wilson, Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface, Jan 1999

[34] M. Bause, Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity, Feb 2008, ADV WATER RESOUR., Advances in Water Resources, vol. 31, issue 2, pp. 370-382
CrossRef (DOI)

[35] M. Bause, P. Knabner, Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods, Jun 2004, ADV WATER RESOUR., Advances in Water Resource, vol. 27, issue 6, pp. 565-581
CrossRef (DOI)

[36] Călin Vamoş, Nicolae Suciu, Harry Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, Apr 2003, J COMPUT PHYS., Journal of Computational Physics, vol. 186 issue 2, pp. 527-544
CrossRef (DOI)

[37] Konstantin Lipnikov, Daniil Svyatskiy, Yuri V. Vassilevski,  A monotone finite volume method for advection-diffusion equations on unstructured polygon meshes, Jun 2010, J COMPUT PHYS

[38] K. Lipnikov, M. Shashkov, D. Svyatskiy, Yu. Vassilevski,  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, Nov 2007, J COMPUT PHYS., Journal of Computational Physics, vol. 227, issue 1,  pp. 492-512
CrossRef (DOI)

[39] Johannes Korsawe, Gerhard Starke, Wenqing Wang, Olaf Kolditz, Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches,
Feb 2006, COMPUT METHOD APPL M.,  Computer Methods in Applied Mechanics and Engineering, vol. 195, issue 9-12, pp. 1096-1115
CrossRef (DOI)

[40] Florin A. Radu, Iuliu Sorin Pop, Newton method for reactive solute transport with equilibrium sorption in porous media, Aug 2010, J COMPUT APPL MATH., Journal of Computational and Applied Mathematics, vol. 34, issue 7, pp.  2118-2127
CrossRef (DOI)

[41] F. Liebau, The Finite Volume Element Method with Quadratic Basis Functions., Dec 1996, COMPUTING., Computing, vol. 57, issue 4, pp. 281-299
CrossRef (DOI)

[42] Peter Knabner, Lutz Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Jan 2003,  in Texts in Applied Mathematics
CrossRef (DOI)

[43] K.K. Sabel’fel’d,  Monte Carlo methods in boundary value problem, Dec 2007 in Monte Carlo Methods for Applied Scientists,pp. 133-159
CrossRef (DOI)

[44] Yung-Chia Chiu, Ne-Zheng Sun, Tracy Nishikawa, William W.-G. Yeh, Development of an objective-oriented groundwater model for conjunctive-use planning of surface water and groundwater, Dec 2009, WATER RESOUR RES

[45] Alexander Prechtel, Sandro Bitterlich, Florin Radu, Peter Knabner, Natural Attenuation: hohe Anforderungen an die Modellsimulation: Teilprojekt 6 des BayFoNA: Modellierung, Sep 2006, GRUNDWASSER

[46] Florin A. Radu, Iuliu Sorin Pop, Peter Knabner, Newton-Type Methods for the Mixed Finite Element Discretization of Some Degenerate Parabolic Equations, Dec 2005, Numerical Mathematics and Advanced Applications, pp.1192-1200
CrossRef (DOI)

[47] Yung-Chia Chiu, Ne-Zheng Sun, Tracy Nishikawa, William W.-G. Yeh, Development of an objective-oriented groundwater model for conjunctive-use planning of surface water and groundwater, Dec 2009, WATER RESOUR RES

[48] Iuliu Sorin Pop, Florin Radu, Peter Knabner, Mixed finite elements for the Richards’ equation: Linearization procedure, Jul 2004, J COMPUT APPL MATH., Journal of Computational and Applied Mathematics, vol. 168, issue 1-2, pp. 365-373
CrossRef (DOI)

[49] Gary Cohen, Patrick Joly, Jean E. Roberts, Nathalie Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, Jan 2001, SIAM J NUMER ANAL., SIAM Journal on Numerical Analysis vol. 38, issue 6, pp. 2047-2078
CrossRef (DOI)

[50] Mario Ohlberger, Christian Rohde, Adaptive Finite Volume Approximations for Weakly Coupled Convection Dominated Parabolic Systems, May 2001, IMA J NUMER ANAL

[51] Bauer S, Beyer C, Kolditz  O., Assesing measurement uncertainty of first-order 2 AN (Math Model Numer Anal) 1995;29: 605–27.

[52] Wieners C. Distributed point objects. A new concept for parallel finite elements. In: Kornhuber R, Hoppe R, Priaux J, Pironneau O, Widlund O, Xu J, editors. Domain decomposition methods in science and engineering. Lecture notes in computational science and engineering. Springer; 2005. p. 175–83.

[53] Vogel A. Ein Finite-Volumen-Verfahren höherer Ordnung mit Anwendung in der Biophysik (German). Master thesis. University of Heidelberg, 2008.

available soon

2011

Related Posts