1. Gheorghiu, C.-I., Accurate Spectral Collocation Computation of High Order Eigenvalues for Singular Schrödinger Equations. Computation 2021, 9, 2. [CrossRef]
2. Shizgal, B., Spectral Methods in Chemistry and Physics. Application to Kinetic Theory and Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]
3. Zettl, A., Sturm–Liouville Theory; A. M. S. Providence: Providence, RI, USA, 2005
4. Frank, W.M. Land, J.D., Spector, R.M. Singular Potentials. Rev. Mod. Phys. 1971, 43, 36–98. [CrossRef]
5. Berry, M.V., Lewis, S.V., On the Weierstrass-Mandelbrot Fractal Function. Proc. R. Soc. Lond. A 1980. [CrossRef]
6. Gheorghiu, C.-I., Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond; Springer: Berlin/Heidelberg, Germany, 2014.
7. Weideman, J.A.C., Reddy, S.C. A MATLAB Differentiation Matrix Suite. ACM Trans. Math. Softw. 2000, 26, 465–519. [CrossRef]
8. Schonfelder, J.L., Chebyshev Expansions for the Error and Related Functions. Math. Comput. 1978, 32, 1232–1240. [CrossRef]
9. Roy, A.K., The generalized pseudospectral approach to the bound states of the Hulthén and the Yukawa potentials. Pramana J. Phys. 2005, 65, 1–15. [CrossRef]
10. Driscoll, T.A., Bornemann, F., Trefethen, L.N. The CHEBOP System for Automatic Solution of Differential Equations. BIT 2008, 48, 701–723. [CrossRef]
11. Driscoll, T.A., Hale, N., Trefethen, L.N., Chebfun Guide; Pafnuty Publications: Oxford, UK, 2014
12. Trefethen, L.N., Birkisson, A., Driscoll, T.A. Exploring ODEs; SIAM: Philadelphia, PA, USA, 2018
13. Brown, B.M., McCormack, D.K.R., Evans, W.D., Plum, M., On the spectrum of second-order differential operators with complex coefficients. Proc. R. Soc. A 1999, 455, 1235–1257. [CrossRef]
14. Brown, B.M., Langer, M., Marletta, M., Tretter, C., Wagenhofer, M., Eigenvalue bounds for the singular Sturm–Liouville problem with a complex potential. J. Phys. A: Math. Gen. 2003, 36, 3773–3787. [CrossRef]
15. Magherini, C., A corrected spectral method for Sturm–Liouville problems with unbounded potential at one endpoint. J. Comput. Appl. Math. 2020, 364. [CrossRef]
16. Boyd, J.P., A Chebyshev polynomial method for computing analytic solutions to eigenvalue problems with application to the anharmonic oscillator. J. Math. Phys. 1978, 19, 1445–1456. [CrossRef]
17. Pryce, J.D., A Test Package for Sturm–Liouville Solvers. ACM T. Math. Softw. 1999, 25, 21–57. [CrossRef]
18. Hoepffner, J., Implementation of Boundary Conditions. Available online: http://www.lmm.jussieu.fr/hoepffner/boundarycondition. pdf (accessed on 25 August 2012).
19. Boyd, J.P., Traps and Snares in Eigenvalue Calculations with Application to Pseudospectral Computations of Ocean Tides in a Basin Bounded by Meridians. J. Comput. Phys. 1996, 126, 11–20. [CrossRef]
20. Everitt, W.N., Gunson, J., Zettl, A., Some comments on Sturm–Liouville eigenvalue problems with interior singularities. J. Appl.Math. Phys. ZAMP 1987, 38, 813–838. [CrossRef]
21. Volkmer, H.W., Eigenvalue problems for Bessel’s equation and zero-pairs of Bessel functions. Stud. Sci. Math. Hung. 1999, 35, 261–280.
22. Bender, C., Orszag, S., Advanced Mathematical Methods for Scientists and Engineers; McGraw-Hill:, New York, NY, USA, 1978
23. Trefethen, L.N., Analyticity at Eigenvalue Near-Crossings. Available online: https://www.chebfun.org/examples/linalg/ CrossingsAnalyticity.html (accessed on 20 January 2020).
24. Teytel, M., How Rare Are Multiple Eigenvalues? Comm. Pure Appl. Math. 1999, 52, 917–934. [CrossRef]
25. Birkhoff, G., Lynch, R.E., Numerical Solutions of Elliptic Problems; Society for Industrial and Applied Mathematics: University City, PA, USA, 2014; pp. 38–40. [CrossRef]
26. Ixaru, L., New numerical method for the eigenvalue problem of the 2D Schrödinger equation. Comput. Phys. Commun. 2010, 181, 1738–1742.[CrossRef]