Aitken-Steffensen-type methods for nonsmooth functions (III)

Abstract

We provide sufficient conditions for the convergence of the Steffensen method for solving the scalar equation \(f(x)=0\), without assuming differentiability of \(f\) at other points than the solution \(x^\ast\). We analyze the cases when the Steffensen method generates two sequences which approximate bilaterally the solution.

Author

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)

Keywords

nonlinear equations in R; Aitken-Steffensen method; monotone iterations; bilateral approximations.

PDF

PDF-LaTeX file (on the journal website).

Cite this paper as:

I. Păvăloiu, Aitken-Steffensen-type methods for nonsmooth functions (III), Rev. Anal. Numér. Théor. Approx., 32 (2003) no. 1, pp. 73-77.

About this paper

Print ISSN

1222-9024

Online ISSN

2457-8126

References

[1] Balazs, M., A bilateral approximating method for finding the real roots of real equations, Rev. Anal. Numer. Theor.  Approx., 21 no. 2, pp. 111–117, 1992.
[2] Casulli, V. and Trigiante, D. The convergence order for iterative multipoint procedures, Calcolo, 13, no. 1, pp. 25–44, 1977.
[3] Cobzas, S., Mathematical Analysis , Presa Universitara Clujeana, Cluj-Napoca, 1997 (in Romanian).
[4] Ostrowski, A. M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960.
[5] Pavaloiu, I., On the monotonicity of the sequences of approximations obtained by Steffensens’s method, Mathematica (Cluj),35(58), no. 1, pp. 71–76, 1993.
[6] Pavaloiu, I., Bilateral approximations for the solutions of scalar equations, Rev. Anal.Numer. Theor. Approx., 23, no. 1, pp. 95–100, 1994.
[7] Pavaloiu, I., Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo,  32, nos. 1-2, pp. 69–82, 1995.
[8] Pavaloiu, I., Aitken-Steffensen-type methods for nonsmooth functions (I), Rev. Anal. Numer. Theor. Approx., 31, no. 1, pp. 111–116, 2002.
[9] Pavaloiu, I., Aitken–Steffensen type methods for nonsmooth functions (II) , Rev. Anal. Numer. Theor. Approx., 31, no. 2, pp. 203–206, 2002.
[10] Traub, F. J., Iterative Methods for the Solution of Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

Paper (preprint) in HTML form

jnaat,+Journal+manager,+2003-1-Pavaloiu

AITKEN-STEFFENSEN TYPE METHODS FOR NONSMOOTH FUNCTIONS (III)*

ION PĂVĂLOIU ^(†){ }^{\dagger}

Abstract

We provide sufficient conditions for the convergence of the Steffensen method for solving the scalar equation f ( x ) = 0 f ( x ) = 0 f(x)=0f(x)=0f(x)=0, without assuming differentiability of f f fff at other points than the solution x x x^(**)x^{*}x. We analyze the cases when the Steffensen method generates two sequences which approximate bilaterally the solution.

MSC 2000. 65H05.
Keywords. Aitken-Steffensen iterations.

1. INTRODUCTION

In this paper we consider the Steffensen method for approximating the solutions of the equations of the form
(1) f ( x ) = 0 (1) f ( x ) = 0 {:(1)f(x)=0:}\begin{equation*} f(x)=0 \tag{1} \end{equation*}(1)f(x)=0
with f : [ a , b ] R , a , b R , a < b f : [ a , b ] R , a , b R , a < b f:[a,b]rarrR,a,b inR,a < bf:[a, b] \rightarrow \mathbb{R}, a, b \in \mathbb{R}, a<bf:[a,b]R,a,bR,a<b. Let g : [ a , b ] R g : [ a , b ] R g:[a,b]rarrRg:[a, b] \rightarrow \mathbb{R}g:[a,b]R be such that the equation
(2) x g ( x ) = 0 (2) x g ( x ) = 0 {:(2)x-g(x)=0:}\begin{equation*} x-g(x)=0 \tag{2} \end{equation*}(2)xg(x)=0
is equivalent to (1).
As it is well known, the Steffensen method consists in approximating the solution x x x^(**)x^{*}x of (1) by the sequence ( x n ) n 1 x n n 1 (x_(n))_(n >= 1)\left(x_{n}\right)_{n \geq 1}(xn)n1 given by
(3) x n + 1 = x n f ( x n ) [ x n , g ( x n ) ; f ] , n = 1 , 2 , , x 0 [ a , b ] (3) x n + 1 = x n f x n x n , g x n ; f , n = 1 , 2 , , x 0 [ a , b ] {:(3)x_(n+1)=x_(n)-(f(x_(n)))/([x_(n),g(x_(n));f])","quad n=1","2","dots","x_(0)in[a","b]:}\begin{equation*} x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\left[x_{n}, g\left(x_{n}\right) ; f\right]}, \quad n=1,2, \ldots, x_{0} \in[a, b] \tag{3} \end{equation*}(3)xn+1=xnf(xn)[xn,g(xn);f],n=1,2,,x0[a,b]
We are interested in the following in the conditions under which the sequences ( x n ) n 1 x n n 1 (x_(n))_(n >= 1)\left(x_{n}\right)_{n \geq 1}(xn)n1 and ( g ( x n ) ) n 1 g x n n 1 (g(x_(n)))_(n >= 1)\left(g\left(x_{n}\right)\right)_{n \geq 1}(g(xn))n1 are monotone, and offer bilateral approximations to x x x^(**)x^{*}x. The importance of such sequences resides in the fact that at each iteration step we obtain a rigorous error bound. We shall construct the function g g ggg without assuming that f f fff is differentiable on the whole interval [ a , b ] [ a , b ] [a,b][a, b][a,b]. In this sense, we shall use the divided differences of f f fff.
Regarding the monotony and convexity of the function f f fff we shall adopt the following definitions.
Definition 1. The function f f fff is nondecreasing (increasing) on [ a , b ] [ a , b ] [a,b][a, b][a,b] if [ u , v ; f ] 0 ( > 0 ) u , v [ a , b ] [ u , v ; f ] 0 ( > 0 ) u , v [ a , b ] [u,v;f] >= 0( > 0)AA u,v in[a,b][u, v ; f] \geq 0(>0) \forall u, v \in[a, b][u,v;f]0(>0)u,v[a,b], while f f fff is nonincreasing (decreasing) if [ u , v ; f ] 0 ( < 0 ) u , v [ a , b ] [ u , v ; f ] 0 ( < 0 ) u , v [ a , b ] [u,v;f] <= 0( < 0)AA u,v in[a,b][u, v ; f] \leq 0(<0) \forall u, v \in[a, b][u,v;f]0(<0)u,v[a,b].
Definition 2. The function f f fff is nonconcave (convex) on [ a , b ] [ a , b ] [a,b][a, b][a,b] if
[ u , v , w ; f ] 0 ( > 0 ) , u , v , w [ a , b ] [ u , v , w ; f ] 0 ( > 0 ) , u , v , w [ a , b ] [u,v,w;f] >= 0( > 0),quad AA u,v,w in[a,b][u, v, w ; f] \geq 0(>0), \quad \forall u, v, w \in[a, b][u,v,w;f]0(>0),u,v,w[a,b]
and is nonconvex (concave) if
[ u , v , w ; f ] 0 ( < 0 ) , u , v , w [ a , b ] [ u , v , w ; f ] 0 ( < 0 ) , u , v , w [ a , b ] [u,v,w;f] <= 0( < 0),quad AA u,v,w in[a,b][u, v, w ; f] \leq 0(<0), \quad \forall u, v, w \in[a, b][u,v,w;f]0(<0),u,v,w[a,b]
Consider the function p x 0 : [ a , b ] { x 0 } R p x 0 : [ a , b ] x 0 R p_(x_(0)):[a,b]\\{x_(0)}rarrRp_{x_{0}}:[a, b] \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}px0:[a,b]{x0}R given by
(4) p x 0 = [ x 0 , x ; f ] (4) p x 0 = x 0 , x ; f {:(4)p_(x_(0))=[x_(0),x;f]:}\begin{equation*} p_{x_{0}}=\left[x_{0}, x ; f\right] \tag{4} \end{equation*}(4)px0=[x0,x;f]
Recall the following result:
Theorem 3. [3, p. 290].
a) If f f fff is nonconcave on [ a , b ] [ a , b ] [a,b][a, b][a,b] then p x 0 p x 0 p_(x_(0))p_{x_{0}}px0 is nondecreasing on [ a , b ] [ a , b ] [a,b][a, b][a,b];
b) If f f fff is convex on [ a , b ] [ a , b ] [a,b][a, b][a,b] then p x 0 p x 0 p_(x_(0))p_{x_{0}}px0 is increasing on [ a , b ] [ a , b ] [a,b][a, b][a,b];
c) If f f fff is nonconvex on [ a , b ] [ a , b ] [a,b][a, b][a,b] then p x 0 p x 0 p_(x_(0))p_{x_{0}}px0 is nonincreasing on [ a , b ] [ a , b ] [a,b][a, b][a,b];
d) If f f fff is concave on [ a , b ] [ a , b ] [a,b][a, b][a,b] then p x 0 p x 0 p_(x_(0))p_{x_{0}}px0 is decreasing on [ a , b ] [ a , b ] [a,b][a, b][a,b].
Consider now u , v , w , t [ a , b ] u , v , w , t [ a , b ] u,v,w,t in[a,b]u, v, w, t \in[a, b]u,v,w,t[a,b] such that u min { v , w , t } u min { v , w , t } u <= min{v,w,t}u \leq \min \{v, w, t\}umin{v,w,t} and t max { u , v , w } t max { u , v , w } t >= max{u,v,w}t \geq \max \{u, v, w\}tmax{u,v,w}. The following result is known:
Lemma 4. [8]. If f f fff is nonconcave (convex) on [ a , b ] [ a , b ] [a,b][a, b][a,b] then the following relation holds:
(5) [ u , v ; f ] ( < ) [ w , t ; f ] , v , w [ u , t ] , v w (5) [ u , v ; f ] ( < ) [ w , t ; f ] , v , w [ u , t ] , v w {:(5)[u","v;f] <= ( < )[w","t;f]","quad AA v","w in[u","t]","v!=w:}\begin{equation*} [u, v ; f] \leq(<)[w, t ; f], \quad \forall v, w \in[u, t], v \neq w \tag{5} \end{equation*}(5)[u,v;f](<)[w,t;f],v,w[u,t],vw
An inequality analogous to (5) holds when f f fff is nonconvex (concave) on [ a , b ] [ a , b ] [a,b][a, b][a,b].

2. THE CONVERGENCE OF THE STEFFENSEN METHOD

We shall consider that f f fff obeys the following hypotheses:
i. f f fff is continuous at a a aaa and b b bbb;
ii. f ( a ) f ( b ) < 0 f ( a ) f ( b ) < 0 f(a)*f(b) < 0f(a) \cdot f(b)<0f(a)f(b)<0;
iii. f f fff is increasing on [ a , b ] [ a , b ] [a,b][a, b][a,b];
iv. f f fff is convex on [ a , b ] [ a , b ] [a,b][a, b][a,b] and f f fff is continuous at a a aaa and b b bbb;
v. f f fff is differentiable at x x x^(**)x^{*}x, the solution of (1), and x ( a , b ) x ( a , b ) x^(**)in(a,b)x^{*} \in(a, b)x(a,b).
Remark 1. Hypotheses iv. ensures the continuity of f f fff on ( a , b ) ( a , b ) (a,b)(a, b)(a,b) (see, e.g. [3, p. 295]).
Remark 2. Hypotheses i.-iv. ensure the existence and the unicity of the solution x ( a , b ) x ( a , b ) x^(**)in(a,b)x^{*} \in(a, b)x(a,b) of equation (1).
Let α , β ( a , b ) α , β ( a , b ) alpha,beta in(a,b)\alpha, \beta \in(a, b)α,β(a,b) be such that f ( α ) < 0 f ( α ) < 0 f(alpha) < 0f(\alpha)<0f(α)<0 and f ( β ) > 0 f ( β ) > 0 f(beta) > 0f(\beta)>0f(β)>0 (their existence is ensured by hypotheses i.-iv.).
Consider the function g : [ α , β ] R g : [ α , β ] R g:[alpha,beta]rarrRg:[\alpha, \beta] \rightarrow \mathbb{R}g:[α,β]R given by
(6) g ( x ) = x f ( x ) [ a , α ; f ] (6) g ( x ) = x f ( x ) [ a , α ; f ] {:(6)g(x)=x-(f(x))/([a,alpha;f]):}\begin{equation*} g(x)=x-\frac{f(x)}{[a, \alpha ; f]} \tag{6} \end{equation*}(6)g(x)=xf(x)[a,α;f]
By iii. and iv. and Lemma 4 it follows that
(7) [ u , v ; g ] < 0 , u , v ( α , β ) (7) [ u , v ; g ] < 0 , u , v ( α , β ) {:(7)[u","v;g] < 0","quad AA u","v in(alpha","beta):}\begin{equation*} [u, v ; g]<0, \quad \forall u, v \in(\alpha, \beta) \tag{7} \end{equation*}(7)[u,v;g]<0,u,v(α,β)
i.e., g g ggg is decreasing.
We shall make the following hypotheses regarding the initial approximation x 1 x 1 x_(1)x_{1}x1 in (3):
а) f ( x 1 ) < 0 f x 1 < 0 f(x_(1)) < 0f\left(x_{1}\right)<0f(x1)<0;
b) g ( x 1 ) < β g x 1 < β g(x_(1)) < betag\left(x_{1}\right)<\betag(x1)<β.
Regarding the convergence of the Steffensen method (3) we prove the following result:
Theorem 5. Assume that f f fff obeys assumptions i.-v., that the function g g ggg is given by (6) and x 1 x 1 x_(1)x_{1}x1 obeys a) and b). Then the sequence ( x n ) n 1 x n n 1 (x_(n))_(n >= 1)\left(x_{n}\right)_{n \geq 1}(xn)n1 and ( g ( x n ) ) n 1 g x n n 1 (g(x_(n)))_(n >= 1)\left(g\left(x_{n}\right)\right)_{n \geq 1}(g(xn))n1 generated by (3) satisfy the following properties:
j. the sequence ( x n ) n 1 x n n 1 (x_(n))_(n >= 1)\left(x_{n}\right)_{n \geq 1}(xn)n1 is increasing and bounded;
jj. the sequence ( g ( x n ) ) n 1 g x n n 1 (g(x_(n)))_(n >= 1)\left(g\left(x_{n}\right)\right)_{n \geq 1}(g(xn))n1 is decreasing and bounded;
jjj. the following is true:
(8) x n < x < g ( x n ) , n N (8) x n < x < g x n , n N {:(8)x_(n) < x^(**) < g(x_(n))","AA n inN:}\begin{equation*} x_{n}<x^{*}<g\left(x_{n}\right), \forall n \in \mathbb{N} \tag{8} \end{equation*}(8)xn<x<g(xn),nN
Proof. By (6) we get that x = g ( x ) x = g x x^(**)=g(x^(**))x^{*}=g\left(x^{*}\right)x=g(x). Since x 1 < x x 1 < x x_(1) < x^(**)x_{1}<x^{*}x1<x, and g g ggg is decreasing, it follows g ( x 1 ) > g ( x ) = x g x 1 > g x = x g(x_(1)) > g(x^(**))=x^(**)g\left(x_{1}\right)>g\left(x^{*}\right)=x^{*}g(x1)>g(x)=x and so x 1 < x < g ( x 1 ) x 1 < x < g x 1 x_(1) < x^(**) < g(x_(1))x_{1}<x^{*}<g\left(x_{1}\right)x1<x<g(x1).
We show now that x 2 x 2 x_(2)x_{2}x2 given by (3) verifies x 1 < x 2 < x x 1 < x 2 < x x_(1) < x_(2) < x^(**)x_{1}<x_{2}<x^{*}x1<x2<x. Since f ( x 1 ) < 0 f x 1 < 0 f(x_(1)) < 0f\left(x_{1}\right)<0f(x1)<0 and f f fff is increasing, it follows x 2 = x 1 f ( x 1 ) [ x 1 , g ( x 1 ) ; f ] > x 1 x 2 = x 1 f x 1 x 1 , g x 1 ; f > x 1 x_(2)=x_(1)-(f(x_(1)))/([x_(1),g(x_(1));f]) > x_(1)x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{\left[x_{1}, g\left(x_{1}\right) ; f\right]}>x_{1}x2=x1f(x1)[x1,g(x1);f]>x1. Further, it can be easily seen that the following identity holds:
x 1 f ( x 1 ) [ x 1 , g ( x 1 ) ; f ] = g ( x 1 ) f ( g ( x 1 ) ) [ x 1 , g ( x 1 ) ; f ] , x 1 f x 1 x 1 , g x 1 ; f = g x 1 f g x 1 x 1 , g x 1 ; f , x_(1)-(f(x_(1)))/([x_(1),g(x_(1));f])=g(x_(1))-(f(g(x_(1))))/([x_(1),g(x_(1));f]),x_{1}-\frac{f\left(x_{1}\right)}{\left[x_{1}, g\left(x_{1}\right) ; f\right]}=g\left(x_{1}\right)-\frac{f\left(g\left(x_{1}\right)\right)}{\left[x_{1}, g\left(x_{1}\right) ; f\right]},x1f(x1)[x1,g(x1);f]=g(x1)f(g(x1))[x1,g(x1);f],
whence, by (3) for n = 1 n = 1 n=1n=1n=1 it follows x 2 < g ( x 1 ) x 2 < g x 1 x_(2) < g(x_(1))x_{2}<g\left(x_{1}\right)x2<g(x1), since f ( g ( x 1 ) ) > 0 f g x 1 > 0 f(g(x_(1))) > 0f\left(g\left(x_{1}\right)\right)>0f(g(x1))>0 and [ x 1 , g ( x 1 ) ; f ] > 0 x 1 , g x 1 ; f > 0 [x_(1),g(x_(1));f] > 0\left[x_{1}, g\left(x_{1}\right) ; f\right]>0[x1,g(x1);f]>0.
From the identity
f ( x 2 ) = = f ( x 1 ) + [ x 1 , g ( x 1 ) ; f ] ( x 2 x 1 ) + [ x 2 , x 1 , g ( x 1 ) ; f ] ( x 2 x 1 ) ( x 2 g ( x 1 ) ) f x 2 = = f x 1 + x 1 , g x 1 ; f x 2 x 1 + x 2 , x 1 , g x 1 ; f x 2 x 1 x 2 g x 1 {:[f(x_(2))=],[quad=f(x_(1))+[x_(1),g(x_(1));f](x_(2)-x_(1))+[x_(2),x_(1),g(x_(1));f](x_(2)-x_(1))(x_(2)-g(x_(1)))]:}\begin{aligned} & f\left(x_{2}\right)= \\ & \quad=f\left(x_{1}\right)+\left[x_{1}, g\left(x_{1}\right) ; f\right]\left(x_{2}-x_{1}\right)+\left[x_{2}, x_{1}, g\left(x_{1}\right) ; f\right]\left(x_{2}-x_{1}\right)\left(x_{2}-g\left(x_{1}\right)\right) \end{aligned}f(x2)==f(x1)+[x1,g(x1);f](x2x1)+[x2,x1,g(x1);f](x2x1)(x2g(x1))
taking into account (3) for n = 1 n = 1 n=1n=1n=1 and the fact that f f fff is convex, we get f ( x 2 ) < f x 2 < f(x_(2)) <f\left(x_{2}\right)<f(x2)< 0 and so x 2 < x x 2 < x x_(2) < x^(**)x_{2}<x^{*}x2<x.
By x 2 > x 1 x 2 > x 1 x_(2) > x_(1)x_{2}>x_{1}x2>x1 it results g ( x 2 ) < g ( x 1 ) g x 2 < g x 1 g(x_(2)) < g(x_(1))g\left(x_{2}\right)<g\left(x_{1}\right)g(x2)<g(x1). We prove that g ( x 2 ) > x g x 2 > x g(x_(2)) > x^(**)g\left(x_{2}\right)>x^{*}g(x2)>x. Since x 2 < x x 2 < x x_(2) < x^(**)x_{2}<x^{*}x2<x, from the monotony of g g ggg it follows g ( x 2 ) > g ( x ) = x g x 2 > g x = x g(x_(2)) > g(x^(**))=x^(**)g\left(x_{2}\right)>g\left(x^{*}\right)=x^{*}g(x2)>g(x)=x. In conclusion, we get
(9) x 1 < x 2 < x < g ( x 2 ) < g ( x 1 ) (9) x 1 < x 2 < x < g x 2 < g x 1 {:(9)x_(1) < x_(2) < x^(**) < g(x_(2)) < g(x_(1)):}\begin{equation*} x_{1}<x_{2}<x^{*}<g\left(x_{2}\right)<g\left(x_{1}\right) \tag{9} \end{equation*}(9)x1<x2<x<g(x2)<g(x1)
Assume now that for some n 2 n 2 n >= 2n \geq 2n2, the elements obtained by (3) verify:
(10) x 1 < x 2 < < x n < < x < < g ( x n ) < < g ( x 2 ) < g ( x 1 ) . (10) x 1 < x 2 < < x n < < x < < g x n < < g x 2 < g x 1 . {:(10)x_(1) < x_(2) < cdots < x_(n) < cdots < x^(**) < cdots < g(x_(n)) < cdots < g(x_(2)) < g(x_(1)).:}\begin{equation*} x_{1}<x_{2}<\cdots<x_{n}<\cdots<x^{*}<\cdots<g\left(x_{n}\right)<\cdots<g\left(x_{2}\right)<g\left(x_{1}\right) . \tag{10} \end{equation*}(10)x1<x2<<xn<<x<<g(xn)<<g(x2)<g(x1).
Repeating the above reason for x 1 = x n x 1 = x n x_(1)=x_(n)x_{1}=x_{n}x1=xn we get
(11) x n < x n + 1 < x < g ( x n + 1 ) < g ( x n ) (11) x n < x n + 1 < x < g x n + 1 < g x n {:(11)x_(n) < x_(n+1) < x^(**) < g(x_(n+1)) < g(x_(n)):}\begin{equation*} x_{n}<x_{n+1}<x^{*}<g\left(x_{n+1}\right)<g\left(x_{n}\right) \tag{11} \end{equation*}(11)xn<xn+1<x<g(xn+1)<g(xn)
From (10) and (11) one obtains the monotony of the sequences ( x n ) n 1 x n n 1 (x_(n))_(n >= 1)\left(x_{n}\right)_{n \geq 1}(xn)n1 and ( g ( x n ) ) n 1 g x n n 1 (g(x_(n)))_(n >= 1)\left(g\left(x_{n}\right)\right)_{n \geq 1}(g(xn))n1. Obviously, these sequence are bounded, so there exists x ¯ = lim n x n x ¯ = lim n x n bar(x)=lim_(n rarr oo)x_(n)\bar{x}= \lim _{n \rightarrow \infty} x_{n}x¯=limnxn, and lim n g ( x n ) = g ( x ¯ ) lim n g x n = g ( x ¯ ) lim_(n rarr oo)g(x_(n))=g( bar(x))\lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(\bar{x})limng(xn)=g(x¯), since g g ggg is continuous.
Passing to limit in (3) implies x ¯ = x ¯ f ( x ¯ ) [ x ¯ , g ( x ¯ ) ; f ] x ¯ = x ¯ f ( x ¯ ) [ x ¯ , g ( x ¯ ) ; f ] bar(x)= bar(x)-(f(( bar(x))))/([( bar(x)),g(( bar(x)));f])\bar{x}=\bar{x}-\frac{f(\bar{x})}{[\bar{x}, g(\bar{x}) ; f]}x¯=x¯f(x¯)[x¯,g(x¯);f] i.e. f ( x ¯ ) = 0 f ( x ¯ ) = 0 f( bar(x))=0f(\bar{x})=0f(x¯)=0, and so x ¯ = x x ¯ = x bar(x)=x^(**)\bar{x}=x^{*}x¯=x.
Relations (11) imply the following a posteriori errors
(12) x x n g ( x n ) x n , n = 1 , 2 , (12) x x n g x n x n , n = 1 , 2 , {:(12)x^(**)-x_(n) <= g(x_(n))-x_(n)","quad n=1","2","dots:}\begin{equation*} x^{*}-x_{n} \leq g\left(x_{n}\right)-x_{n}, \quad n=1,2, \ldots \tag{12} \end{equation*}(12)xxng(xn)xn,n=1,2,
Remark 3. Consider in (3) the function g : [ α , β ] R g : [ α , β ] R g:[alpha,beta]rarrRg:[\alpha, \beta] \rightarrow \mathbb{R}g:[α,β]R,
(13) g ( x ) = x f ( x ) [ β , b ; f ] (13) g ( x ) = x f ( x ) [ β , b ; f ] {:(13)g(x)=x-(f(x))/([beta,b;f]):}\begin{equation*} g(x)=x-\frac{f(x)}{[\beta, b ; f]} \tag{13} \end{equation*}(13)g(x)=xf(x)[β,b;f]
If f f fff is concave on [ α , β ] [ α , β ] [alpha,beta][\alpha, \beta][α,β], then [ u , v ; f ] > [ β , b ; f ] , u , v [ α , β ] [ u , v ; f ] > [ β , b ; f ] , u , v [ α , β ] [u,v;f] > [beta,b;f],AA u,v in[alpha,beta][u, v ; f]>[\beta, b ; f], \forall u, v \in[\alpha, \beta][u,v;f]>[β,b;f],u,v[α,β] and so g g ggg is decreasing on [ α , β ] [ α , β ] [alpha,beta][\alpha, \beta][α,β]. Suppose now that hypotheses iv. and a) resp. b) imposed on f f fff and g g ggg are replaced by
iv ^(')^{\prime}. the function f f fff is concave on [ a , b ] [ a , b ] [a,b][a, b][a,b];
the initial value x 1 x 1 x_(1)x_{1}x1 in (3) is such that
a ) . f ( x 1 ) > 0 a . f x 1 > 0 {:a^(')).f(x_(1)) > 0\left.\mathrm{a}^{\prime}\right) . f\left(x_{1}\right)>0a).f(x1)>0;
b b b^(')\mathrm{b}^{\prime}b ). g ( x 1 ) > α g x 1 > α g(x_(1)) > alphag\left(x_{1}\right)>\alphag(x1)>α, with g g ggg given by (13).
Then the sequences ( x n ) n 1 x n n 1 (x_(n))_(n >= 1)\left(x_{n}\right)_{n \geq 1}(xn)n1 and ( g ( x n ) ) n 1 g x n n 1 (g(x_(n)))_(n >= 1)\left(g\left(x_{n}\right)\right)_{n \geq 1}(g(xn))n1 have the following properties: j . ( x n ) n 1 j . x n n 1 j^(').(x_(n))_(n >= 1)\mathrm{j}^{\prime} .\left(x_{n}\right)_{n \geq 1}j.(xn)n1 is decreasing;
jj . ( g ( x n ) ) n 1 jj . g x n n 1 jj^(').(g(x_(n)))_(n >= 1)\mathrm{jj}^{\prime} .\left(g\left(x_{n}\right)\right)_{n \geq 1}jj.(g(xn))n1 is increasing;
jjj . g ( x n ) < x < x n , n = 1 , 2 , jjj . g x n < x < x n , n = 1 , 2 , jjj^(').g(x_(n)) < x^(**) < x_(n),quad n=1,2,dots\mathrm{jjj}^{\prime} . g\left(x_{n}\right)<x^{*}<x_{n}, \quad n=1,2, \ldotsjjj.g(xn)<x<xn,n=1,2,
The proof of these properties is similar to that given for Theorem 5.

REFERENCES

[1] Balázs, M., A bilateral approximating method for finding the real roots of real equations, Rev. Anal. Numér. Théor. Approx., 21 no. 2, pp. 111-117, 1992.
[2] Casulli, V. and Trigiante, D., The convergence order for iterative multipoint procedures, Calcolo, 13, no. 1, pp. 25-44, 1977.
[3] Cobzaş, S., Mathematical Analysis, Presa Universitară Clujeană, Cluj-Napoca, 1997 (in Romanian).
[4] Ostrowski, A. M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960.
[5] Păvăloiu, I., On the monotonicity of the sequences of approximations obtained by Steffensens's method, Mathematica (Cluj), 35 (58), no. 1, pp. 71-76, 1993.
[6] Păvăloiu, I., Bilateral approximations for the solutions of scalar equations, Rev. Anal. Numér. Théor. Approx., 23, no. 1, pp. 95-100, 1994.
[7] Păvăloiu, I., Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32, nos. 1-2, pp. 69-82, 1995.
[8] Păvăloiu, I., Aitken-Steffensen-type methods for nonsmooth functions (I), Rev. Anal. Numér. Théor. Approx., 31, no. 1, pp. 111-116, 2002.
[9] Păvăloiu, I., Aitken-Steffensen type methods for nonsmooth functions (II), Rev. Anal. Numér. Théor. Approx., 31, no. 2, pp. 203-206, 2002.
[10] Traub, F. J., Iterative Methods for the Solution of Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
Received by the editors: March 12, 2003.

  1. *This work has been supported by the Romanian Academy under grant GAR 19/2003.
    ^(†){ }^{\dagger} "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: pavaloiu@ictp.acad.ro.
2003

Related Posts