[1] D. Bourne, Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues, Continuum Mech. Thermodyn. 15 (2003) 571–579.
[2] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, SpringerVerlag, 2007.
[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 1961.
[4] L. Collatz, Numerical methods for free boundary problems, in: Proceedings of Free Boundary Problems: Theory and Applications, Montecatini, Italy, 1981.
[5] J.J. Dongarra, B. Straughan, D.W. Walker, Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problem, Appl. Numer. Math. 22 (1996) 399–434.
[6] F.I. Dragomirescu, Rayleigh number in a stability problem for a micropolar fluid, Turk. J. Math. 31 (2) (2007) 123–137.
[7] F.I. Dragomirescu, Bifurcation and numerical study in an EHD convection problem, An. St. Univ. ‘‘Ovidius” Constanta 16 (2) (2008) 47–57.
[8] D.R. Gardner, S.A. Trogdon, R.W. Douglas, A modified tau spectral method that eliminates spurious eigenvalues, J. Comput. Phys. 80 (1989) 137–167.
[9] A. Georgescu, Hydrodynamic Stability Theory, Kluwer, Dordrecht, 1985.
[10] A. Georgescu, D. Pasca, S. Gradinaru, M. Gavrilescu, Bifurcation manifolds in multiparametric linear stability of continua, ZAMM 73 (1993). 7/8 T767– T768.
[11] A. Georgescu, L. Palese, On a method in linear stability problems. Application to a natural convection in a porous medium, Rapp. Int. Dept. Math. Univ. Bari 9 (1996).
[12] A. Georgescu, M. Gavrilescu, L. Palese, Neutral thermal hydrodynamic and hydromagnetic stability hypersurface for a micropolar fluid layer, Indian J. Pure Appl. Math. 29 6 (1998) 575–582.
[13] C.I. Gheorghiu, I.S. Pop, A Modified Chebyshev–Tau Method for a Hydrodynamic Stability Problem, in: Proceedings of ICAOR 1996, vol. II, 1996, pp. 119–126.
[14] C.I. Gheorghiu, Spectral Methods for Differential Problems, Casa Cartii de Stiinta Publishing House, Cluj-Napoca, 2007.
[15] C.I. Gheorghiu, F.I. Dragomirescu, Spectral methods in linear stability. Applications to thermal convection with variable gravity field, Appl. Numer. Math. 59 (2009) 1290–1302.
[16] D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods, SIAM, Philadelphia, PA., 1977.
[17] M.J. Gross, Mantles of the Earth and Terrestrial Planets, Wiley, 1967.
[18] P. Henrici, Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices, Numer. Math. 4 (1962) 24–40.
[19] A.A. Hill, B. Straughan, A legendre spectral element method for eigenvalues in hydromagnetic stability, J. Comput. Appl. Math. 193 (2003) 363–381.
[20] W. Huang, D.M. Sloan, The pseudospectral method for third-order differential equations, SIAM J. Numer. Anal. 29 (6) (1992) 1626–1647.
[21] W. Huang, D.M. Sloan, The pseudospectral method for solving differential eigenvalue problems, J. Comput. Phys. 111 (1994) 399–409.
[22] S.A. Orszag, Accurate solution of the Orr–Sommerfeld stability equation, J. Fluid Mech. 50 (1971) 689–703.
[23] P.H. Roberts, Electrohydrodynamic convection, Q.J. Mech. Appl. Math. 22 (1969) 211–220.
[24] R. Rosensweig, Ferrohydrodynamics, Cambridge Univ. Press, 1985.
[25] P.J. Schmid, D.S. Henningson, Stability and Transition in Shear Flows, Springer-Verlag, 2001.
[26] B. Straughan, The Energy Method, Stability, and Nonlinear Convection, second ed., Springer, Berlin, 2003.
[27] R. Tunbull, Electroconvective instability with a stabilizing temperature gradient. I. Theory, Phys. Fluids 11 (1968) 2588–2596.
[28] R. Turnbull, Electroconvective instability with a stabilizing temperature gradient. II. Experimental results, Phys. Fluids 11 (1968) 2597–2603.
[29] L.N. Trefethen, Computation of Pseudospectra, Acta Numer. (1999) 247–295.
[30] J.A.C. Weideman, S.C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Softw. 26 (2000) 465–519.