Posts by Eduard Grigoriciuc

Abstract

In this paper we introduce a Stancu type extension of the Cheney-Sharma Chlodovsky operators based on the ideas presented by Cătinaș and Buda, Bostanci and Bașcanbaz-Tunca, respectively Söylemez and Tașdelen. For this new operators we study some approximation and convexity properties and the preservation of the Lipschitz constant and order. Finally, we study approximation properties of the new operators with the help of Korovkin type theorems.

Authors

Eduard-Stefan Grigoriciuc
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Cheney-Sharma operator; Stancu operator; Bernstein-Chlodovsky polynomials; Korovkin theorem

Paper coordinates

E.-S. Grigoriciuc, A Stancu type extension of the Cheney-Sharma Chlodovsky operators, Journal of Numerical Analysis and Approximation Theory, 53 (2024) no. 1, pp. 103-117, https://doi.org/10.33993/jnaat531-1406

PDF

About this paper

Journal

Journal of Numerical Analysis and Approximation Theory

Publisher Name

Romanian Academy

Print ISSN

2457-6794

Online ISSN

ISSN-E 2501-059X

google scholar link

[1] F. Altomare and M. Campiti, Korovkin-type approximaton theory and its applications, Walter de Gruyter, Berlin-New York, 1994. DOI: https://doi.org/10.1515/9783110884586

[2] G. Başcanbaz-Tunca, A. Erençin and F. Taşdelen, Some properties of Bernstein type Cheney and Sharma operators, General Mathematics, 24 (2016) no. 1-2, pp. 17–25.

[3] T. Bostanci and G. Başcanbaz-Tunca, A Stancu type extension of Cheney and Sharma operator, J. Numer. Anal. Approx. Theory, 47 (2018) no. 2, pp. 124–134. https://doi.org/10.33993/jnaat472-1133 DOI: https://doi.org/10.33993/jnaat472-1133

[4] T. Cătinaş, Extension of some Cheney-Sharma type operators to a triangle with one curved side, Miskolc Math. Notes 21 (2020), pp. 101–111. https://dx.doi.org/10.18514/MMN.2020.2686 DOI: https://doi.org/10.18514/MMN.2020.2686

[5] T. Cătinaş, Cheney-Sharma type operators on a triangle with straight sides, Symmetry 14 (2022), no. 11, 2446. https://doi.org/10.3390/sym14112446 DOI: https://doi.org/10.3390/sym14112446

[6] T. Cătinaş and I. Buda, An extension of the Cheney-Sharma operator of the first kind, J. Numer. Anal. Approx. Theory, 52 (2023) no. 2, pp. 172–181. https://doi.org/10.33993/jnaat522-1373 DOI: https://doi.org/10.33993/jnaat522-1373

[7] T. Cătinaş and D. Otrocol, Iterates of multivariate Cheney-Sharma operators J. Comput. Anal. Appl. 15 (2013), No. 7, pp. 1240–1246.

[8] T. Cătinaş and D. Otrocol, Iterates of Cheney-Sharma type operators on a triangle with curved side J. Comput. Anal. Appl. 28 (2020), No. 4, pp. 737–744.

[9] E.W. Cheney and A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 2 (1964), pp. 77–84.

[10] I. Chlodovsky, Sur le development des fonctions défines dans un interval infinien series de polynomes de S.N. Bernstein, Compositio Math., 4 (1937), pp. 380–392.

[11] A.D. Gadjiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P.P. Korovkin, Dokl. Akad. Nauk SSSR, 218 (1974) no. 5, pp. 1001–1004.

[12] A.D. Gadjiev, Theorems of the type of P. P. Korovkin’s theorems (in Russian), Math. Z. 205 (1976), pp. 781–786. Translated in Maths Notes 20 (1977) no. 5-6, pp. 995–998. DOI: https://doi.org/10.1007/BF01146928

[13] H. Karsli, Recent results on Chlodovsky operators, Stud. Univ. Babeş-Bolyai Math. 56 (2011) no. 2, pp. 423–436.

[14] D. Söylemez and F. Taşdelen, On Cheney-Sharma Chlodovsky operators, Bull. Math. Anal. Appl. 11 (2019) no. 1, pp. 36–43.

[15] D. Söylemez and F. Taşdelen, Approximation by Cheney-Sharma Chlodovsky operators, Hacet. J. Math. Stat. 49 (2020) no. 2, pp. 510–522. https://doi.org/10.15672/hujms.458188 DOI: https://doi.org/10.15672/hujms.458188

[16] D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), pp. 241–251. https://doi.org/10.1007/978-3-0348-6308-7_23 DOI: https://doi.org/10.1007/978-3-0348-6308-7_23

[17] D. Stancu and C. Cismaşiu, On an approximating linear positive operator of Cheney Sharma, Rev. Anal. Numer. Theor. Approx., 26 (1997), pp. 221–227. https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art30

Related Posts