[1] J. Grof, Uber approximation durch polynome mit belegungsfunktion, Acta Mathematica Academiae Scientiarum Hungaricae, vol. 35, no. 1-2, pp. 109–116, 1980.
[2] H.G. Lehnhoff, “On amodified Szasz-Mirakjan-operator,” Journal of Approximation Theory, vol. 42, no. 3, pp. 278–282, 1984.
[3] O. Agratini, “On the convergence of a truncated class of operators,” Bulletin of the Institute of Mathematics. Academia Sinica, vol. 31, no. 3, pp. 213–223, 2003.
[4] G. A. Anastassiou and S. G. Gal, Approximation Theory. Moduli of Continuity and Global Smoothness Preservation, Birkhauser, Boston, Mass, USA, 2000.
[5] V. A. Baskakov, “An example of a sequence of linear positive operators in the space of continuous functions,” Doklady Akademii Nauk SSSR, vol. 113, pp. 249–251, 1957.
[6] M. Becker, “Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces,” Indiana University Mathematics Journal, vol. 27, no. 1, pp. 127–142, 1978.
[7] M. Gurdek, L. Rempulska, and M. Skorupka, “The Baskakov operators for functions of two variables,” Collectanea Mathematica, vol. 50, no. 3, pp. 289–302, 1999.
[8] J. Wang and S. Zhou, “On the convergence of modified Baskakov operators,” Bulletin of the Institute of Mathematics. Academia Sinica, vol. 28, no. 2, pp. 117–123, 2000.
[9] Z. Walczak, “Baskakov type operators,” The Rocky Mountain Journal of Mathematics, vol. 39, no. 3, pp. 981–993, 2009.
[10] O. Szasz, “Generalization of S. Bernstein’s polynomials to the infinite interval,” Journal of Research of the National Bureau of Standards, vol. 45, pp. 239–245, 1950.
[11] Z. Ditzian and V. Totik, Moduli of Smoothness, vol. 9, Springer, New York, NY, USA, 1987.
[12] N. Ispir and C. Atakut, “Approximation by modified Szasz-Mirakjan operators on weighted spaces,” Proceedings of the Indian Academy of Sciences, vol. 112, no. 4, pp. 571–578, 2002.
[13] N. I. Mahmudov, “Approximation by the q-Szasz-Mirakjan operators,” Abstract and Applied Analysis, vol. 2012, Article ID 754217, 16 pages, 2012.
[14] A. Aral, “A generalization of Szasz-Mirakyan operators based on q-integers,” Mathematical and Computer Modelling, vol. 47, no. 9-10, pp. 1052–1062, 2008.
[15] A. Aral and V. Gupta, “The q-derivative and applications to q-Szasz Mirakyan operators,” Calcolo, vol. 43, no. 3, pp. 151–170, 2006