Abstract
The \textquotedblleft equilibrium\textquotedblright \ electrons distribution function for a homogeneous, high frequency, fully ionized plasma is \(f_{0,0}^{0,0}=K_{1,2}\cdot u^{\frac{3A}{3A+1}}\cdot \exp \left( \frac {3}{2(3A+1}u^{2}\right)\) as limit, the global maxwellian electrons distribution function \(f_{0,0}^{0,0}\), is not maxwcllian not only to some restrictive physical condition imposed on the plasma (and therefore on the integrated equations) but also to the truncation procedure of the system of equations.
Authors
Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical analysis of Approximation, Romanian Academy, Romania
Keywords
?
Paper coordinates
C. Mustăţa, Gh. Lupu, Consideration on the ”equilibrium” electrons distribution function for a homogeneous high frequency, fully ionized plasma, Rev. Roumaine de Physique 18 (1973) 3, 365-372.
About this paper
Journal
Revue Roumaine de Physique
Publisher Name
Editions de l’Academie de la Republique Socialiste de Roumanie
DOI
Print ISSN
0035-4090
Online ISSN
google scholar link
1. Gii. Lupu, Rev. Roum. llath. Pures el Appl., (I—II), 14, 55, 63 (1969); (III—IV), 15, 871, 1011 (1970); (V —VI), 17, 731, and to be published in (1972), nr. 8.
2. M. Krusckal, I. B. Bernstein, Phys. Fluids, 7, 407 (1964).
3. G. L. Вплыла, Nuovo Ciincnto, 70 II, 169 (1970).
4. Gn. Lupu, Bull. Math, de la Soc. Sci. Math, de la R.S. de Roumanie, , 13(61), 349 (1969).
5. R. J Ancel, Nuovo Cimento, Suppl., 6, 1329 (1968).
6. E. A. Desloge, Statistical Physics, Holt, Riehart and Wiston, Inc. New York, 1966, p. 368.
7. E. II. Holt, R. E. Haskell, Fundations of Plasma Dynamics, Mac Millan Company, New York, 1965, p. 286, ; G. H. Waniner, Statistical Physics, John Willey Inc. New York, 1966, p. 466.
8. I. M. Rijik, I. S. Gradstein, Tabele de integrale, sume, serii fi produse, Ed. Tehnică, București, 1955, p. 169 and 170.
9. M. J. Dhuyvesteyn, Physica, 10, 69 (1930); G. D. Yarnould, Phyl. Mag., 36, 185 (1945).
10. A. R. Hochstim, G. A. Massel, in Kinetic Processes in Gases and Plasmas, Hochstim ed. Academic Press, New York, London, 1969, p. 142.
11. T. Wright, О. Тнеімеп, Phys. Fluids, 13, 859 (1970).
12. H. Margenau, L. M. Hartmann, Phys. Rev., 73, 309 (1948).
13. C. Carpenter, F. Mezger, J. Math. Phys., 2, 694 (1961).
14. Gii. Lupu, Bull. Math, de la Soc. Sci. Math, de la R.S. de Roumanie, 15, (63), 54 (1971).
15- D. V. Ionescu, Ecuații diferențiale și integrale, Ed. Didactică și pedagogică, București 1964, p. 25.