Consideration on the ”equilibrium” electrons distribution function for a homogeneous high frequency, fully ionized plasma

Abstract


The \textquotedblleft equilibrium\textquotedblright \ electrons distribution function for a homogeneous, high frequency, fully ionized plasma is \(f_{0,0}^{0,0}=K_{1,2}\cdot u^{\frac{3A}{3A+1}}\cdot \exp \left( \frac {3}{2(3A+1}u^{2}\right)\) as limit, the global maxwellian electrons distribution function \(f_{0,0}^{0,0}\), is not maxwcllian not only to some restrictive physical condition imposed on the plasma (and therefore on the integrated equations) but also to the truncation procedure of the system of equations.

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical analysis of Approximation, Romanian Academy, Romania

Keywords

?

Paper coordinates

C. Mustăţa, Gh. Lupu, Consideration on the ”equilibrium” electrons distribution function for a homogeneous high frequency, fully ionized plasma, Rev. Roumaine de Physique 18 (1973) 3, 365-372.

PDF

About this paper

Journal

Revue Roumaine de Physique

Publisher Name

Editions de l’Academie de la Republique Socialiste de Roumanie

DOI
Print ISSN

0035-4090

Online ISSN

google scholar link

1. Gii. Lupu, Rev. Roum. llath. Pures el Appl., (I—II), 14, 55, 63 (1969); (III—IV), 15, 871, 1011 (1970); (V —VI), 17, 731, and to be published in (1972), nr. 8.
2. M. Krusckal, I. B. Bernstein, Phys. Fluids, 7, 407 (1964).
3. G. L. Вплыла, Nuovo Ciincnto, 70 II, 169 (1970).
4. Gn. Lupu, Bull. Math, de la Soc. Sci. Math, de la R.S. de Roumanie, , 13(61), 349 (1969).
5. R. J Ancel, Nuovo Cimento, Suppl., 6, 1329 (1968).
6. E. A. Desloge, Statistical Physics, Holt, Riehart and Wiston, Inc. New York, 1966, p. 368.
7. E. II. Holt, R. E. Haskell, Fundations of Plasma Dynamics, Mac Millan Company, New York, 1965, p. 286, ; G. H. Waniner, Statistical Physics, John Willey Inc. New York, 1966, p. 466.
8. I. M. Rijik, I. S. Gradstein, Tabele de integrale, sume, serii fi produse, Ed. Tehnică, București, 1955, p. 169 and 170.
9. M. J. Dhuyvesteyn, Physica, 10, 69 (1930); G. D. Yarnould, Phyl. Mag., 36, 185 (1945).
10. A. R. Hochstim, G. A. Massel, in Kinetic Processes in Gases and Plasmas, Hochstim ed. Academic Press, New York, London, 1969, p. 142.
11. T. Wright, О. Тнеімеп, Phys. Fluids, 13, 859 (1970).
12. H. Margenau, L. M. Hartmann, Phys. Rev., 73, 309 (1948).
13. C. Carpenter, F. Mezger, J. Math. Phys., 2, 694 (1961).
14. Gii. Lupu, Bull. Math, de la Soc. Sci. Math, de la R.S. de Roumanie, 15, (63), 54 (1971).
15- D. V. Ionescu, Ecuații diferențiale și integrale, Ed. Didactică și pedagogică, București 1964, p. 25.

1973

Related Posts