Controlling numerical diffusion in solving advection-dominated transport problems

Abstract

Numerical schemes for advection-dominated transport problems are are evaluated in a comparative study. Explicit and implicit finite difference methods are analyzed together with a global random walk algorithm in the frame of a splitting procedure. The efficiency of the methods with respect to the control of the numerical diffusion is investigated numerically on one-dimensional problems with constant coefficients and two-dimensional problems with variable coefficients consisting of realizations of space-random functions.

Authors

Nicolae Suciu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Imre Boros
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Keywords

Advection-dominated transport; Numerical diffusion; Finite differences; Method of lines; Global random walk

Paper coordinates

N. Suciu, I. Boros, Controlling numerical diffusion in solving advection-dominated transport problems, J. Numer. Anal. Approx. Theory, 53 (2024) no. 1,  pp, 144–157https://doi.org/10.33993/jnaat531-1438

PDF

About this paper

Journal

Journal of Numerical Analysis and Approximation Theory

Publisher Name

Romanian Academy

Print ISSN

2457-6794

Online ISSN

ISSN-E 2501-059X

google scholar link

[1] D.L. Book, C. Li, G. Patnaik and F.F. Grinstein, Quantifying residual numerical diffusion in flux-corrected transport algorithms, J. Sci. Comp. 6(3) (1991), 323–243. https://dx.doi.org/10.1007/BF01062816 DOI: https://doi.org/10.1007/BF01062816

[2] F. Brunner, F.A. Radu, M. Bause and P. Knabner, Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media, Adv. Water Resour. 35 (2012), 163–171. https://dx.doi.org/10.1016/j.advwatres.2011.10.001 DOI: https://doi.org/10.1016/j.advwatres.2011.10.001

[3] C.J.M. Hewett, Consistency and numerical diffusion (2021). https://www.youtube.com/watch?v=Cjb4YtgeIn0&t=263s

[4] P. Knabner and L. Angermann, Numerical methods for elliptic and parabolic partial differential equations, Springer, New York, 2003. https://doi.org/10.1007/b97419 DOI: https://doi.org/10.1007/b97419

[5] D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys. 228(7) (2009), 2517–2534. https://dx.doi.org/10.1016/j.jcp.2008.12.011 DOI: https://doi.org/10.1016/j.jcp.2008.12.011

[6] D. Kuzmin, A. Hannukainen and S. Korotov, A new a posteriori error estimate for convection-reaction-diffusion problems, J. Comput. Appl. Math. 218(1) (2008), 70–78. https://dx.doi.org/10.1016/j.cam.2007.04.033 DOI: https://doi.org/10.1016/j.cam.2007.04.033

[7] M. Ohlberger and C. Rohde, Adaptive finite volume approximations of weakly coupled convection dominated parabolic systems, IMA J. Numer. Anal. 22(2) (2002), 253–280. https://dx.doi.org/10.1093/imanum/22.2.253 DOI: https://doi.org/10.1093/imanum/22.2.253

[8] F.A. Radu, N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C-H. Park and S. Attinger, Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study, Adv. Water Resour. 34 (2011), 47-61. https://dx.doi.org/10.1016/j.advwatres.2010.09.012 DOI: https://doi.org/10.1016/j.advwatres.2010.09.012

[9] W.E. Schiesser and G.W. Griffiths, A compendium of partial differential equation models: method of lines analysis with Matlab, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511576270 DOI: https://doi.org/10.1017/CBO9780511576270

[10] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004. https://doi.org/10.1137/1.9780898717938 DOI: https://doi.org/10.1137/1.9780898717938

[11] N. Suciu, Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69 (2014), 114–133. http://dx.doi.org/10.1016/j.advwatres.2014.04.002 DOI: https://doi.org/10.1016/j.advwatres.2014.04.002

[12] N. Suciu, Diffusion in Random Fields. Applications to Transport in Groundwater, Birkhäuser, Cham, 2019. https://doi.org/10.1007/978-3-030-15081-5 DOI: https://doi.org/10.1007/978-3-030-15081-5

[13] N. Suciu, L. Schüler, S. Attinger and P. Knabner, Towards a filtered density function approach for reactive transport in groundwater, Adv. Water Resour. 90 (2016), 83–98. https://dx.doi.org/10.1016/j.advwatres.2016.02.016 DOI: https://doi.org/10.1016/j.advwatres.2016.02.016

[14] C. Vamoș, N. Suciu and H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comput. Phys. 186 (2003), 527–544. https://doi.org/10.1016/S0021-9991(03)00073-1 DOI: https://doi.org/10.1016/S0021-9991(03)00073-1

2024

Related Posts