Abstract
Let \(X\) be a Banach space, \(Y\) a normed space and \(P:X\rightarrow Y\) a nonlinear operator. We study the convergence of the following method for solving the equation \(P\left( x\right) =0\) \[ x_{n+1}=Q\left( x_{n}\right) -\left[ P^{\prime}\left( x_{n}\right) \right] ^{-1}P\left( Q(x_n)\right),\ n=0,1,…, \ x_{0}\in X \] where \(Q\) is a nonlinear operator associated to the nonlinear equation \(P\left( x\right) =0\). We show that if the successive approximations of \(Q\) converge with order \(k\geq2\), there the above sequence converge to the solution with order \(k+1\).
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Sur la convergence d’une classe de méthodes itératives de J.F. Traub
English translation of the title
On the convergence of a class of iteration methods of J.F. Traub
Keywords
Traub method; iterative method; nonlinear operator equation; convergence order; semilocal convergence
Cite this paper as:
I. Păvăloiu, Sur le convergence d’une classe de méthodes itératives de J. Traub, Rev. Anal. Numér. Théor. Approx., 2 (1973), pp. 99-104, https://doi.org/10.33993/jnaat21-15 (in French).
About this paper
Journal
Revue d’analyse numerique et de la Theorie de l’Approximation
Publisher Name
Academia R.S. Romane
Print ISSN
0301-9241
Online ISSN
2457-810X
References
[1] Pavaloiu, I., Interpolation dans des espaces lineaires normes et applications, Mathematica (Cluj), 12 (35), 1, 149–158 (1970).
[2] Pavaloiu, I., Sur les procedes iteratifs a un ordre eleve de convergence. Mathematica Cluj, 12 (35), 12 , 309-324 (1970).
[3] Pavaloiu, I., Asupra operatorilor iterativi, Studii si cercetari matematice, 10, 23, 1537–1544 (1971).
[4] Traub, J. F., Iterative Methods for the Solution of Equations, Prentice-Hall. Inc. Englewood Cliffs N. J., 1964.