Abstract
Publisher Name
Authors
Calin-Ioan Gheorghiu
Tiberiu Popoviciu Institute of Numerical Analysis
Damian Trif
Babes-Bolyai University, Faculty of Mathematics and Computer Science
Keywords
Cite this paper as
C.I. Gheorghiu, D. Trif, Direct and indirect approximations to positive solution for a nonlinear reaction-diffusion problem. Part I. Direct (variational) approximation, Rev. Anal. Numér. Théor. Approx. 31 (2002) 61-70.
About this paper
Journal
Publisher
Paper on the journal website
Print ISSN
1222-9024
Online ISSN
2457-8126
MR
?
ZBL
?
Google Scholar Profile
aici se introduce link spre google scholar
[1] Ambrosetti, A. and Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, pp. 349-381, 1973.
[2] Aronson, D. G. and Weinberger, H. F., Nonlinear diffusion in population genetics, combustion and nerve pulse propagation, Lecture Notes in Math., 446, Springer-Verlag, 1975.
[3] Crandal, M. G. and Rabinowitz, P. H., Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 19, pp. 1083-1102, 1970.
[4] Crandal, M. G. and Rabinowitz, P. H., Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rat. Mech. Anal., 52, pp. 161-180, 1973.
[5] Elsgolts, L., Differential Equations and the Calculus of Variations, Mir Publishers, Moscow, 1980.
[6] Gheorghiu, C. I., Solution to problem 97-8 by Ph. Korman, SIAM Review, 39, 1997, SIAM Review, 40, no. 2, pp. 382-385, 1998.
[7] Gheorghiu, C. I. and Trif, D., On the bifurcation and variational approximation of the positive solution of a nonlinear reaction-diffusion problem, Studia UBB, Mathematica, XLV, pp. 29-37, 2000.
[8] Grindrod, P., The Theory and Applications of Reaction-Diffusion Equations; Patern and Waves, Second Edition, Clarendon Press, Oxford, 1996.
[9] Keller, H. B. and Cohen, D. S., Some positone problems suggested by nonlinear heat generation, J. Math. Mech., 16, pp. 1361-1376, 1967.
[10] Korman, Ph., Average temperature in a reaction-diffusion process, Problem 97-8, SIAM Review, 39, pp.318, 1997.
[11] Laetsch, Th., The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20, pp. 1-13, 1970.
[12] Matkowsky, B. J., A simple nonlinear dynamic stability problem, Bull. Amer. Math. Soc., 76, pp. 620-625, 1970.
[13] Moore, R. A. and Nehari, Z., Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93, pp. 30-52, 1959.
[14] Sattinger, D. H., Topics in Stability and Bifurcation Theory, Springer-Verlag, 1973.
[15] Sattinger, D. H., Stability of bifurcating solutions by Leray-Schauder degree, Arch. Rat. Mech. Anal., 43, pp. 155-165, 1970.
[16] Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21, pp. 979-1000, 1972.
[17] Schwind, W. J., Ji, J. and Koditschek, D. E., A physically motivated further note on the mean value theorem for integrals, Amer. Math. Monthly, 126, pp. 559-564, 1999.
[18] Simpson, B. R. and Cohen, D. S., Positive solutions of nonlinear elliptic eigenvalue problems, J. Math. Mech., 19, pp. 895-910, 1970.
[19] Turner, R. E. I., Nonlinear eigenvalue problems with nonlocal operators, Comm. Pure Appl. Math., 23, pp. 963-972, 1970.
[20] Wollkind, D. J., Monoranjan, V. S. and Zhang, L., Weakly nonlinear stability analysis of prototype reaction-diffusion model equations, SIAM Review, 36, no. 2, pp. 176-214, 1994.