-
O. Agratini, Linear operators that preserve some test functions, International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID 94136, pp. 11, DOI 10.1155/IJMMS. Google Scholar
-
O. Agratini, On a class of linear positive bivariate operators of King type, Studia Univ. “Babeş-Bolyai”, Mathematica, 51(2006), f. 4, 13–22. MATH MathSciNet Google Scholar
-
O. Agratini, On the iterates of a class of summation-type linear positive operators, Computers Mathematics with Applications, 55(2008), 1178–1180. CrossRef MATH MathSciNet Google Scholar
-
D. Cárdenas-Morales, P. Garrancho, F.J. Mu noz-Delgado, Shape preserving approximation by Bernstein-type operators which fix polynomials, Applied Mathematics and Computation, 182(2006), 1615–1622. CrossRef MATH MathSciNet Google Scholar
-
E. Censor, Quantitative results for positive linear approximation operators, J. Approx. Theory, 4(1971), 442–450. CrossRef MATH MathSciNet Google Scholar
-
O. Duman, C. Orhan, An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen, 69(2006), f. 1-2, 33–46. MATH MathSciNet Google Scholar
-
O. Duman, M.A. Özarslan, Szász-Mirakjan type operators providing a better error estimation, Applied Math. Letters, 20(2007), 1184–1188. CrossRef MATH Google Scholar
-
A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(2002), 129–138. CrossRef MATH MathSciNet Google Scholar
-
H. Gonska, P. Piţul, Remarks on an article of J.P. King, Schriftenreihe des Fachbereichs Mathematik, SM-DU-596, 2005, Universität Duisburg-Essen, 1–8. Google Scholar
-
J.P. King, Positive linear operators which preserve x 2, Acta Math. Hungar., 99(2003), f. 3, 203–208. CrossRef MATH MathSciNet Google Scholar
-
E. Kolk, Matrix summability of statistical convergent sequences, Analysis, 13(1993), 77–83. MATH MathSciNet Google Scholar
-
S. Ostrovska, The first decade of the q-Bernstein polynomials: results and perspectives, Journal of Mathematical Analysis and Approximation Theory, 2(2007), Number 1, 35–51. MATH MathSciNet Google Scholar
-
G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4(1997), 511–518. MATH MathSciNet Google Scholar
-
L. Rempulska, K. Tomczak, Approximation by certain linear operators preserving x 2, Turk. J. Math., 32(2008), 1–11. Google Scholar
-
V.I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables (in Russian), Dokl. Akad. Nauk SSSR (N.S.), 115(1957), 17–19.