Abstract
Let \(X\) be a Banach space and \(\varphi:X\rightarrow X\) a nonlinear operator. Assume the equation \(x=\varphi \left( x\right)\) has a solution \(x^{\ast}\), and the sequence \(x_{n}=\varphi \left( x_{n-1}\right) ,\ n\geq1\) converges with order at least \(k\geq2\).
We consider a setting useful for practical applications, where the sequence \(\left( x_{n}\right) _{n\geq0}\) is replaced by an approximate one \(\left( \xi_{n}\right) _{n\geq0\text{}}\) where \(\xi_{n}=\varphi^{\ast}\left( \xi_{n-1}\right) ,\ n\geq1\), where \(\left \Vert \varphi \left( x\right) -\varphi^{\ast}\left( x\right) \right \Vert \leq \varepsilon\) in a neighborhood of the solution.
We obtain a result regarding the evaluation of the errors \(\left \Vert \xi_{n}-x^{\ast}\right \Vert \), under the hypothesis that from a certain step, the sequence \(\left( \xi_{n}\right) _{n\geq0}\) is stationary.
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in Romanian)
Evaluarea erorilor în rezolvarea numerică a ecuaţiilor operatoriale
English translation of the title
Error estimation in the numerical solving of operator equations
Keywords
iterative methods; succesive approximations; approximate computations; convergence order; error estimation
Cite this paper as:
I. Păvăloiu, Evaluarea erorilor în rezolvarea numerică a ecuaţiilor operatoriale, Studii şi cercetări matematice, 9 23 (1971), pp. 1459-1464 (in Romanian).
About this paper
Journal
Studii şi cercetări matematice
Publisher Name
Academia Republicii S.R.
DOI
Not available yet.
Print ISBN
Not available yet.
Online ISBN
Not available yet.
Google Scholar Profile
References
[1] Fujii, M., Remarks to Accelerated Iterative Processes for Numerical Solution of Equations. J. Sci. Hiroshima Univ. Ser. A-I, 27, 97-118. (1963).
[2]. Lankaster P., Error for the Newton – Raphson Method, Numerische Mathematik, 9, 1, 55-68 (1966).
[3] Ostrowski A’M., The Round- off stability of iterations, Z,A.M.M,, 47, ,77-81 (1967).
[4]. Pavaloiu I., Asupra unor inegalitati recurente si aplicatii ale lor. St. cerc. mat. 8, 19, 1175-1179 (1967).
[5] I. Pavaloiu, Observatii asupra rezolvarii sistemelor de ecuatii cu ajutorul procedeelor iterative. Idem 9, 19, 1289-1298 (1967).
[6] Urabe, M., Convergence of Numerical lteratíon of Equations. J. Sci. Hiroshima IJniv. l Ser, A,. 19, 479-489 (1956).
[7] M. Urabe, Solution of Equation by Iteration Process. J. Sci. Hiroshima Univ. Ser. A-I, 26, 77-91 (1962).