Estimates related to the iterates of positive linear operators and their multidimensional analogues

Abstract

The starting point of this paper is the construction of a general family \(\left( L_{n}\right) _{n\geq 1}\) of positive linear operators of discrete type. Considering \(L_{n\left( k\geq 1\right) }^{k}\) the sequence of iterates of one of such operators,\(L_{n}\) our goal is to find an expression of the upper edge of the error \(\left \Vert L_{n}^{k}f-f^{\ast }\right \Vert ,f\in\left[ 0,1\right]\),where \(f^{\ast }\), is the fixed point of \(L_{n}\).The estimate makes use of the error formula for the sequence of successive approximations in Banach’s fixed point theorem and the error of approximation of the operator \(L_{n}\).Examples of special operators are inserted. Some extensions to multidimensional approximation operators are also given.

Authors

Octavian Agratini
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

Radu Precup
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,  Romania
Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, Cluj-Napoca, 400084, Romania

Keywords

Positive linear operator; Bernstein operator; Stancu operator; Cheney–Sharma operator; Banach fixed point theorem; Perov fixed point theorem

Paper coordinates

O. Agratin, R. Precup, Estimates related to the iterates of positive linear operators and their multidimensional analogues, Positivity, 28 (2024) art. no. 27,

PDF

About this paper

Journal

Positivity

Publisher Name
Print ISSN
Online ISSN

google scholar link

[1] Agratini, O., Precup, R., Iterates of multidimensional operators via Perov theorem, Carpathian J. Math., 38(2022), No. 3, 539-546
[2] Agratini, O., Rus, I.A., Iterates of a class of discrete operators via contraction principle, Comment. Math. Univ. Carolinae, 44(2003), No. 3, 555-563
[3] Banach, S.: Sur les opérations dans les ensemble abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922) Article MathSciNet Google Scholar
[4] Cheney, E.W., Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5(1964), No. 2, 77-84
[5] Kelinsky, R.P., Rivlin, T.J., Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), No. 3, 511-520
[6] Păltănea, R., Optimal constant in approximation by Bernstein operators, J. Comput. Analysis Appl., 5(2003), No. 2, 195-235
[7] Precup, R.: Methods in Nonlinear Integral Equations. Springer, Dordrecht (2002) Book Google Scholar
[8] Rus, I.A.: Iterates of Bernstein operators via contraction principle. J. Math. Anal. Appl. 292, 259–261 (2004) Article MathSciNet Google Scholar
[9] Shisha, O., Mond, B.: The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. USA 60, 1196–1200 (1968) Article MathSciNet Google Scholar
[10] Sikkema, P.C., Der,: Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen. Numer. Math. 3, 107–116 (1961)
[11] Stancu, D.D.: Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl. 13(8), 1173–1194 (1968) MathSciNet Google Scholar
[12] Stancu, D.D., Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26(1997), Nos. 1-2, 221-227

Paper (preprint) in HTML form

Estimates related to the iterates of positive linear operators and their multidimensional analogues

Octavian Agratini Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania agratini@math.ubbcluj.ro  and  Radu Precup Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania & Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania r.precup@math.ubbcluj.ro
Abstract.

The starting point of this paper is the construction of a general family (Ln)n1subscriptsubscript𝐿𝑛𝑛1(L_{n})_{n\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT of positive linear operators of discrete type. Considering (Lnk)k1subscriptsuperscriptsubscript𝐿𝑛𝑘𝑘1(L_{n}^{k})_{k\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPT the sequence of iterates of one of such operators, Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, our goal is to find an expression of the upper edge of the error Lnkffnormsuperscriptsubscript𝐿𝑛𝑘𝑓superscript𝑓\|L_{n}^{k}f-f^{\ast}\|∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f - italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥, fC[0,1]𝑓𝐶01f\in C[0,1]italic_f ∈ italic_C [ 0 , 1 ], where fsuperscript𝑓f^{\ast}italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is the fixed point of Ln.subscript𝐿𝑛L_{n}.italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT . The estimate makes use of the error formula for the sequence of successive approximations in Banach’s fixed point theorem and the error of approximation of the operator Ln.subscript𝐿𝑛L_{n}.italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT . Examples of special operators are inserted. Some extensions to multidimensional approximation operators are also given.

Mathematics Subject Classification: 41A36, 47H10.

Keywords and phrases: Positive linear operator, Bernstein operator, Stancu operator, Cheney-Sharma operator, contraction principle, Banach fixed point theorem, Perov fixed point theorem

1. Introduction

A distinct branch of Approximation theory is the approximation of functions by using sequences of linear operators, say (Ln)n1subscriptsubscript𝐿𝑛𝑛1(L_{n})_{n\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT, the special feature being that of positivity. Such sequences become approximation processes if they satisfy certain additional conditions. Further we present the most common approach. Considering the Banach space C[a,b]𝐶𝑎𝑏C[a,b]italic_C [ italic_a , italic_b ] of all real-valued continuous functions defined on [a,b]𝑎𝑏[a,b][ italic_a , italic_b ] endowed with the uniform norm \|\cdot\|∥ ⋅ ∥,

f=supx[a,b]|f(x)|,norm𝑓subscriptsupremum𝑥𝑎𝑏𝑓𝑥\|f\|=\sup\limits_{x\in[a,b]}|f(x)|,∥ italic_f ∥ = roman_sup start_POSTSUBSCRIPT italic_x ∈ [ italic_a , italic_b ] end_POSTSUBSCRIPT | italic_f ( italic_x ) | ,

a powerful criterion to decide if Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, n1𝑛1n\geq 1italic_n ≥ 1, defined on C[a,b]𝐶𝑎𝑏C[a,b]italic_C [ italic_a , italic_b ] forms a sequence converging to the identity operator was established by Popoviciu, Bohman and Korovkin in the fifties. In its last version, this criterion says: if (Lnek)n1subscriptsubscript𝐿𝑛subscript𝑒𝑘𝑛1(L_{n}e_{k})_{n\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT converges to eksubscript𝑒𝑘e_{k}italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT uniformly on [a,b]𝑎𝑏[a,b][ italic_a , italic_b ], k{0,1,2}𝑘012k\in\{0,1,2\}italic_k ∈ { 0 , 1 , 2 }, for the test functions

e0(x)=1,e1(x)=x,e2(x)=x2,formulae-sequencesubscript𝑒0𝑥1formulae-sequencesubscript𝑒1𝑥𝑥subscript𝑒2𝑥superscript𝑥2e_{0}(x)=1,\ e_{1}(x)=x,\ e_{2}(x)=x^{2},italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) = 1 , italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) = italic_x , italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

then (Lnf)n1subscriptsubscript𝐿𝑛𝑓𝑛1(L_{n}f)_{n\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT converges to f𝑓fitalic_f uniformly on [a,b]𝑎𝑏[a,b][ italic_a , italic_b ] for each fC[a,b]𝑓𝐶𝑎𝑏f\in C[a,b]italic_f ∈ italic_C [ italic_a , italic_b ].

For a linear positive approximation process (Ln)n1subscriptsubscript𝐿𝑛𝑛1(L_{n})_{n\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT it is of interest to investigate the sequences of iterates (Lnk)k1subscriptsuperscriptsubscript𝐿𝑛𝑘𝑘1(L_{n}^{k})_{k\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPT, where

Ln1f=Lnf,Lnkf=Ln(Lnk1f),k>1,formulae-sequencesuperscriptsubscript𝐿𝑛1𝑓subscript𝐿𝑛𝑓formulae-sequencesuperscriptsubscript𝐿𝑛𝑘𝑓subscript𝐿𝑛superscriptsubscript𝐿𝑛𝑘1𝑓𝑘1L_{n}^{1}f=L_{n}f,\ \ \ L_{n}^{k}f=L_{n}(L_{n}^{k-1}f),\ \ \ k>1,italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_f = italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f , italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f = italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT italic_f ) , italic_k > 1 ,

assuming that k𝑘kitalic_k does not depend on n𝑛nitalic_n. Since any interval [a,b]𝑎𝑏[a,b][ italic_a , italic_b ] is isomorphic to [0,1]01[0,1][ 0 , 1 ], in what follows we use only this compact interval.

Considering that fC[0,1]superscript𝑓𝐶01f^{\ast}\in C[0,1]italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_C [ 0 , 1 ] is a fixed point of the operator Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, our first aim in this paper is to find the expression of the upper edge of the error

Lnkff,fC[0,1], where k1.formulae-sequencenormsuperscriptsubscript𝐿𝑛𝑘𝑓superscript𝑓𝑓𝐶01 where 𝑘1\|L_{n}^{k}f-f^{\ast}\|,\ \ \ f\in C[0,1],\mbox{ where }k\geq 1.∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f - italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ , italic_f ∈ italic_C [ 0 , 1 ] , where italic_k ≥ 1 . (1)

The estimation combines the error related to Banach’s fixed point theorem with the approximation error of the operator Ln.subscript𝐿𝑛L_{n}.italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .

An estimate of the error between any two iterates of the same operator Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is also obtained.

The results are applied to the Bernstein operators, Stancu operators and Cheney-Sharma operators.

The last part of this paper is devoted to an extension of some of the previous estimates to a class of multidimensional approximation operators of the type preveously considered in [1].

2. Preliminaries

2.1. Positive linear operators

The general family of operators used in our study has an expression that appears often in many papers. Thus, for each n𝑛n\in\mathbb{N}italic_n ∈ blackboard_N we consider a net ΔnsubscriptΔ𝑛\Delta_{n}roman_Δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT on [0,1]01[0,1][ 0 , 1 ],

Δn=(0=xn,0<xn,1<<xn,n=1),subscriptΔ𝑛0subscript𝑥𝑛0subscript𝑥𝑛1subscript𝑥𝑛𝑛1\Delta_{n}=(0=x_{n,0}<x_{n,1}<\ldots<x_{n,n}=1),roman_Δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( 0 = italic_x start_POSTSUBSCRIPT italic_n , 0 end_POSTSUBSCRIPT < italic_x start_POSTSUBSCRIPT italic_n , 1 end_POSTSUBSCRIPT < … < italic_x start_POSTSUBSCRIPT italic_n , italic_n end_POSTSUBSCRIPT = 1 ) ,

and a system of function (φn,l)l=0,n¯,subscriptsubscript𝜑𝑛𝑙𝑙¯0𝑛\ (\varphi_{n,l})_{l=\overline{0,n}},( italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_l = over¯ start_ARG 0 , italic_n end_ARG end_POSTSUBSCRIPT , φn,lC[0,1],subscript𝜑𝑛𝑙𝐶01\varphi_{n,l}\in C[0,1],italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ∈ italic_C [ 0 , 1 ] , 0ln,0𝑙𝑛0\leq l\leq n,0 ≤ italic_l ≤ italic_n , satisfying the relations

φn,l0(l=0,,n),φn,0(0)=φn,n(1)=1,formulae-sequencesubscript𝜑𝑛𝑙0𝑙0𝑛subscript𝜑𝑛00subscript𝜑𝑛𝑛11\varphi_{n,l}\geq 0\ \ (l=0,...,n),\quad\varphi_{n,0}(0)=\varphi_{n,n}(1)=1,italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ≥ 0 ( italic_l = 0 , … , italic_n ) , italic_φ start_POSTSUBSCRIPT italic_n , 0 end_POSTSUBSCRIPT ( 0 ) = italic_φ start_POSTSUBSCRIPT italic_n , italic_n end_POSTSUBSCRIPT ( 1 ) = 1 ,
l=0nφn,l=e0,l=0nxn,lφn,l=e1.formulae-sequencesuperscriptsubscript𝑙0𝑛subscript𝜑𝑛𝑙subscript𝑒0superscriptsubscript𝑙0𝑛subscript𝑥𝑛𝑙subscript𝜑𝑛𝑙subscript𝑒1\sum_{l=0}^{n}\varphi_{n,l}=e_{0},\ \quad\sum_{l=0}^{n}x_{n,l}\varphi_{n,l}=e_% {1}.∑ start_POSTSUBSCRIPT italic_l = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ∑ start_POSTSUBSCRIPT italic_l = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . (2)

The operators have the following form

Ln:C[0,1]C[0,1],(Lnf)(x)=l=0nφn,l(x)f(xn,l).:subscript𝐿𝑛formulae-sequence𝐶01𝐶01subscript𝐿𝑛𝑓𝑥superscriptsubscript𝑙0𝑛subscript𝜑𝑛𝑙𝑥𝑓subscript𝑥𝑛𝑙L_{n}:C[0,1]\rightarrow C[0,1],\quad(L_{n}f)(x)=\sum_{l=0}^{n}\varphi_{n,l}(x)% f(x_{n,l}).italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT : italic_C [ 0 , 1 ] → italic_C [ 0 , 1 ] , ( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) ( italic_x ) = ∑ start_POSTSUBSCRIPT italic_l = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ( italic_x ) italic_f ( italic_x start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ) . (3)

Clearly, Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, n1𝑛1n\geq 1italic_n ≥ 1, are positive linear operators and based on (2), their degree of exactness is one,

Lne0=e0 and Lne1=e1,subscript𝐿𝑛subscript𝑒0subscript𝑒0 and subscript𝐿𝑛subscript𝑒1subscript𝑒1L_{n}e_{0}=e_{0}\ \mbox{ and }\ L_{n}e_{1}=e_{1},\ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , (4)

which means that they preserve the affine functions. Also,

(Lnf)(x)=f(x),for x{0,1},formulae-sequencesubscript𝐿𝑛𝑓𝑥𝑓𝑥for 𝑥01(L_{n}f)(x)=f(x),\ \ \text{for }\ x\in\{0,1\},( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) ( italic_x ) = italic_f ( italic_x ) , for italic_x ∈ { 0 , 1 } ,

that is the operators are interpolators at the ends of the compact interval [0,1]01[0,1][ 0 , 1 ].

Taking in view (4), by virtue of the classical result obtained by Shisha and Mond [9] regarding the error of approximation, on has

|(Lnf)(x)f(x)|2ω1(f,δn(x)),x[0,1],formulae-sequencesubscript𝐿𝑛𝑓𝑥𝑓𝑥2subscript𝜔1𝑓subscript𝛿𝑛𝑥𝑥01\left|(L_{n}f)(x)-f(x)\right|\leq 2\omega_{1}(f,\delta_{n}(x)),\ \ \ \ x\in[0,% 1],| ( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) ( italic_x ) - italic_f ( italic_x ) | ≤ 2 italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f , italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) ) , italic_x ∈ [ 0 , 1 ] , (5)

where

δn(x)=(l=0nφn,l(x)xn,l2x2)1/2subscript𝛿𝑛𝑥superscriptsuperscriptsubscript𝑙0𝑛subscript𝜑𝑛𝑙𝑥superscriptsubscript𝑥𝑛𝑙2superscript𝑥212\delta_{n}(x)=\left(\sum_{l=0}^{n}\varphi_{n,l}(x)x_{n,l}^{2}-x^{2}\right)^{1/2}italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) = ( ∑ start_POSTSUBSCRIPT italic_l = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ( italic_x ) italic_x start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT (6)

and ω1(f,)subscript𝜔1𝑓\ \omega_{1}(f,\cdot)italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f , ⋅ ) represents the modulus of continuity of f𝑓fitalic_f defined by

ω1(f,δ)=supx1,x2[0,1]|x1x2|δ|f(x1)f(x2)|,δ0.formulae-sequencesubscript𝜔1𝑓𝛿subscriptsupremumsubscript𝑥1subscript𝑥201subscript𝑥1subscript𝑥2𝛿𝑓subscript𝑥1𝑓subscript𝑥2𝛿0\omega_{1}(f,\delta)=\sup_{\begin{subarray}{c}x_{1},x_{2}\in[0,1]\\ |x_{1}-x_{2}|\leq\delta\end{subarray}}|f(x_{1})-f(x_{2})|,\ \ \ \delta\geq 0.italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f , italic_δ ) = roman_sup start_POSTSUBSCRIPT start_ARG start_ROW start_CELL italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ [ 0 , 1 ] end_CELL end_ROW start_ROW start_CELL | italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | ≤ italic_δ end_CELL end_ROW end_ARG end_POSTSUBSCRIPT | italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | , italic_δ ≥ 0 .

Based on the Popoviciu-Bohman-Korovkin theorem, if limnl=0nφn,lxn,l2=e2subscript𝑛superscriptsubscript𝑙0𝑛subscript𝜑𝑛𝑙superscriptsubscript𝑥𝑛𝑙2subscript𝑒2\ \lim\limits_{n\rightarrow\infty}\sum\limits_{l=0}^{n}\varphi_{n,l}x_{n,l}^{2% }=e_{2}\ roman_lim start_POSTSUBSCRIPT italic_n → ∞ end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_l = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT uniformly on [0,1]01[0,1][ 0 , 1 ], then for every fC[0,1]𝑓𝐶01f\in C[0,1]italic_f ∈ italic_C [ 0 , 1 ] we have

limnLnf=funiformly on [0,1].subscript𝑛subscript𝐿𝑛𝑓𝑓uniformly on 01\lim\limits_{n\rightarrow\infty}L_{n}f=f\ \ \ \text{uniformly on }[0,1].roman_lim start_POSTSUBSCRIPT italic_n → ∞ end_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f = italic_f uniformly on [ 0 , 1 ] .

2.2. Contraction property of the approximation operators

Defining

Xα,β={fC([0,1]):f(0)=α,f(1)=β},(α,β)×,formulae-sequencesubscript𝑋𝛼𝛽conditional-set𝑓𝐶01formulae-sequence𝑓0𝛼𝑓1𝛽𝛼𝛽X_{\alpha,\beta}=\left\{f\in C([0,1]):\ f(0)=\alpha,\ f(1)=\beta\right\},\ \ % \ (\alpha,\beta)\in\mathbb{R}\times\mathbb{R},italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT = { italic_f ∈ italic_C ( [ 0 , 1 ] ) : italic_f ( 0 ) = italic_α , italic_f ( 1 ) = italic_β } , ( italic_α , italic_β ) ∈ blackboard_R × blackboard_R , (7)

the system (Xα,β)(α,β)×subscriptsubscript𝑋𝛼𝛽𝛼𝛽(X_{\alpha,\beta})_{(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}}( italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ( italic_α , italic_β ) ∈ blackboard_R × blackboard_R end_POSTSUBSCRIPT makes up a partition of the space C[0,1]𝐶01C[0,1]italic_C [ 0 , 1 ]. The interpolation property of our operators guarantees that each Xα,βsubscript𝑋𝛼𝛽\ X_{\alpha,\beta}italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT is an invariant subset of every operator Ln.subscript𝐿𝑛L_{n}.italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .

Assume that

λn:=minx[0,1](φn,0(x)+φn,n(x))>0.assignsubscript𝜆𝑛subscript𝑥01subscript𝜑𝑛0𝑥subscript𝜑𝑛𝑛𝑥0\ \lambda_{n}:=\min\limits_{x\in[0,1]}(\varphi_{n,0}(x)+\varphi_{n,n}(x))>0.italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT := roman_min start_POSTSUBSCRIPT italic_x ∈ [ 0 , 1 ] end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_n , 0 end_POSTSUBSCRIPT ( italic_x ) + italic_φ start_POSTSUBSCRIPT italic_n , italic_n end_POSTSUBSCRIPT ( italic_x ) ) > 0 . (8)

Then according to [2, Theorem 4] one has:

(a) Ln|Xα,β:Xα,βXα,β:evaluated-atsubscript𝐿𝑛subscript𝑋𝛼𝛽subscript𝑋𝛼𝛽subscript𝑋𝛼𝛽L_{n}\Big{|}_{X_{\alpha,\beta}}:X_{\alpha,\beta}\rightarrow X_{\alpha,\beta}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT end_POSTSUBSCRIPT : italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT → italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT  is a contraction for every (α,β)×𝛼𝛽(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}( italic_α , italic_β ) ∈ blackboard_R × blackboard_R and n1𝑛1n\geq 1italic_n ≥ 1; in addition

LnfLng(1λn)fgnormsubscript𝐿𝑛𝑓subscript𝐿𝑛𝑔1subscript𝜆𝑛norm𝑓𝑔\|L_{n}f-L_{n}g\|\leq(1-\lambda_{n})\|f-g\|∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g ∥ ≤ ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ italic_f - italic_g ∥ (9)

for all f,gXα,β.𝑓𝑔subscript𝑋𝛼𝛽f,g\in X_{\alpha,\beta}.italic_f , italic_g ∈ italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT .

(b) The sequence (Lnk)k1subscriptsuperscriptsubscript𝐿𝑛𝑘𝑘1(L_{n}^{k})_{k\geq 1}( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPT of the iterates of Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT satisfies

limk(Lnkf)(x)=f(0)+(f(1)f(0))xuniformly on [0,1],subscript𝑘superscriptsubscript𝐿𝑛𝑘𝑓𝑥𝑓0𝑓1𝑓0𝑥uniformly on 01\lim\limits_{k\rightarrow\infty}(L_{n}^{k}f)(x)=f(0)+(f(1)-f(0))x\ \ \ \text{% uniformly on }\left[0,1\right],roman_lim start_POSTSUBSCRIPT italic_k → ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f ) ( italic_x ) = italic_f ( 0 ) + ( italic_f ( 1 ) - italic_f ( 0 ) ) italic_x uniformly on [ 0 , 1 ] , (10)

for every fC[0,1].𝑓𝐶01f\in C[0,1].\vskip 6.0pt plus 2.0pt minus 2.0ptitalic_f ∈ italic_C [ 0 , 1 ] .

Notice that the affine function f:=f(0)+(f(1)f(0))e1assignsuperscript𝑓𝑓0𝑓1𝑓0subscript𝑒1\ f^{\ast}:=f\left(0\right)+\left(f\left(1\right)-f\left(0\right)\right)e_{1}\ italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT := italic_f ( 0 ) + ( italic_f ( 1 ) - italic_f ( 0 ) ) italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a fixed point in Xf(0),f(1)subscript𝑋𝑓0𝑓1X_{f\left(0\right),f\left(1\right)}italic_X start_POSTSUBSCRIPT italic_f ( 0 ) , italic_f ( 1 ) end_POSTSUBSCRIPT of any operator Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and thus (10) is nothing else than the conclusion of Banach’s fixed point theorem (applied in the space Xf(0),f(1)subscript𝑋𝑓0𝑓1X_{f\left(0\right),f\left(1\right)}italic_X start_POSTSUBSCRIPT italic_f ( 0 ) , italic_f ( 1 ) end_POSTSUBSCRIPT) regarding the limit of the sequence of succesive approximations of the contraction Ln|Xf(0),f(1).evaluated-atsubscript𝐿𝑛subscript𝑋𝑓0𝑓1\ L_{n}\Big{|}_{X_{f\left(0\right),f\left(1\right)}}.italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_f ( 0 ) , italic_f ( 1 ) end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

3. Estimates for unidimensional operators

In accordance with (7), the function f=f(0)+(f(1)f(0))e1superscript𝑓𝑓0𝑓1𝑓0subscript𝑒1f^{*}=f(0)+(f(1)-f(0))e_{1}italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_f ( 0 ) + ( italic_f ( 1 ) - italic_f ( 0 ) ) italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT belongs to Xf(0),f(1)subscript𝑋𝑓0𝑓1X_{f(0),f(1)}italic_X start_POSTSUBSCRIPT italic_f ( 0 ) , italic_f ( 1 ) end_POSTSUBSCRIPT. Since Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT preserves affine functions, fsuperscript𝑓f^{*}italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is fixed point of Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT for each n1𝑛1n\geq 1italic_n ≥ 1.

To provide the reader with an in-depth mathematical background so that this presentation is completely self-contained, we will refer to Banach fixed point theorem [3]: If (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is a complete metric space and a map Λ:XX:Λ𝑋𝑋\Lambda:X\rightarrow Xroman_Λ : italic_X → italic_X is a contraction, then ΛΛ\Lambdaroman_Λ admits a unique fixed point xsuperscript𝑥x^{\ast}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT in X𝑋Xitalic_X. In addition, if q(0,1)𝑞01q\in(0,1)italic_q ∈ ( 0 , 1 ) is a Lipschitz constant of Λ,Λ\Lambda,roman_Λ , then for any starting element x0X,subscript𝑥0𝑋x_{0}\in X,italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X , the sequence (xk)k1subscriptsubscript𝑥𝑘𝑘1\left(x_{k}\right)_{k\geq 1}( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPT given by xk=Λ(xk1)(k1)subscript𝑥𝑘Λsubscript𝑥𝑘1𝑘1\ x_{k}=\Lambda\left(x_{k-1}\right)\ \left(k\geq 1\right)italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = roman_Λ ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) ( italic_k ≥ 1 ) converges to x superscript𝑥absent x^{\ast\text{ }}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPTand satisfies the following inequality describing the speed of convergence:

d(xk,x)qk1qd(x1,x0),k1.formulae-sequence𝑑subscript𝑥𝑘superscript𝑥superscript𝑞𝑘1𝑞𝑑subscript𝑥1subscript𝑥0𝑘1d(x_{k},x^{\ast})\leq\frac{q^{k}}{1-q}d(x_{1},x_{0}),\ \ \ k\geq 1.italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ divide start_ARG italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 1 - italic_q end_ARG italic_d ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , italic_k ≥ 1 . (11)

For our purposes, we consider X=C[0,1]𝑋𝐶01X=C[0,1]italic_X = italic_C [ 0 , 1 ] and d(f,g)=fg𝑑𝑓𝑔norm𝑓𝑔\ d(f,g)=\|f-g\|italic_d ( italic_f , italic_g ) = ∥ italic_f - italic_g ∥. Taking in view (9), we can choose q=1λn[0,1)𝑞1subscript𝜆𝑛01\ q=1-\lambda_{n}\in[0,1)italic_q = 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ [ 0 , 1 ). With this information it is easy to establish upper limits of approximation errors both between Lnkfsuperscriptsubscript𝐿𝑛𝑘𝑓L_{n}^{k}fitalic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f and fsuperscript𝑓f^{\ast}italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, and between two arbitrary terms of the sequence (Lnkf)k1.subscriptsuperscriptsubscript𝐿𝑛𝑘𝑓𝑘1\left(L_{n}^{k}f\right)_{k\geq 1}.( italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPT .

Theorem 1.

Let Lnsubscript𝐿𝑛\ L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, n1𝑛1n\geq 1italic_n ≥ 1, be the operators designated by (3) such that (8) holds. For each n,𝑛n,italic_n , the iterates of Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT satisfy the following relation

Lnkff2(1λn)kλnsupx[0,1]ω1(f,δn(x)),fC[0,1],k1,formulae-sequencenormsuperscriptsubscript𝐿𝑛𝑘𝑓superscript𝑓2superscript1subscript𝜆𝑛𝑘subscript𝜆𝑛subscriptsupremum𝑥01subscript𝜔1𝑓subscript𝛿𝑛𝑥formulae-sequence𝑓𝐶01𝑘1\left\|L_{n}^{k}f-f^{\ast}\right\|\leq\frac{2(1-\lambda_{n})^{k}}{\lambda_{n}}% \sup_{x\in[0,1]}\omega_{1}(f,\delta_{n}(x)),\ \ \ f\in C[0,1],\ k\geq 1,∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f - italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ ≤ divide start_ARG 2 ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG roman_sup start_POSTSUBSCRIPT italic_x ∈ [ 0 , 1 ] end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f , italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) ) , italic_f ∈ italic_C [ 0 , 1 ] , italic_k ≥ 1 , (12)

where δn(x)subscript𝛿𝑛𝑥\delta_{n}(x)italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) is given by (6).

Proof. Let n𝑛nitalic_n and fC[0,1]𝑓𝐶01f\in C[0,1]italic_f ∈ italic_C [ 0 , 1 ] be arbitrarily chosen. We will use inequality (11) transcribed to our case. We assign the following values

x0:=f,xk:=Lnkf(k1),x:=f.formulae-sequenceassignsubscript𝑥0𝑓formulae-sequenceassignsubscript𝑥𝑘superscriptsubscript𝐿𝑛𝑘𝑓𝑘1assignsuperscript𝑥superscript𝑓x_{0}:=f,\ \ \ x_{k}:=L_{n}^{k}f\ \ \left(k\geq 1\right),\ \ x^{\ast}:=f^{\ast}.italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := italic_f , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT := italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f ( italic_k ≥ 1 ) , italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT := italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

Then (11) reads as follows

Lnkff(1λn)kλnLnff.normsuperscriptsubscript𝐿𝑛𝑘𝑓superscript𝑓superscript1subscript𝜆𝑛𝑘subscript𝜆𝑛normsubscript𝐿𝑛𝑓𝑓\left\|L_{n}^{k}f-f^{\ast}\right\|\leq\frac{(1-\lambda_{n})^{k}}{\lambda_{n}}% \|L_{n}f-f\|.∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f - italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ ≤ divide start_ARG ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ . (13)

Next, from (5) one has

Lnff2supx[0,1]ω1(f,δn(x)).normsubscript𝐿𝑛𝑓𝑓2subscriptsupremum𝑥01subscript𝜔1𝑓subscript𝛿𝑛𝑥\left\|L_{n}f-f\right\|\leq 2\sup_{x\in[0,1]}\omega_{1}(f,\delta_{n}(x)).∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ ≤ 2 roman_sup start_POSTSUBSCRIPT italic_x ∈ [ 0 , 1 ] end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f , italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) ) . (14)

Now (13) and (14) give (12). \square

Remark 2.

For fC[0,1]𝑓𝐶01f\in C[0,1]italic_f ∈ italic_C [ 0 , 1 ], modulus ω1(f,)subscript𝜔1𝑓\omega_{1}(f,\cdot)italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f , ⋅ ) is a bounded function. Consequently, for any n𝑛nitalic_n arbitrarily fixed, relation (12) implies

limkLnkff=0.subscript𝑘normsuperscriptsubscript𝐿𝑛𝑘𝑓superscript𝑓0\lim\limits_{k\rightarrow\infty}\|L_{n}^{k}f-f^{\ast}\|=0.roman_lim start_POSTSUBSCRIPT italic_k → ∞ end_POSTSUBSCRIPT ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_f - italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ = 0 .

Thus we regained statement (10).

Theorem 3.

Let Lnsubscript𝐿𝑛L_{n}italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, n1𝑛1n\geq 1italic_n ≥ 1, be the operators designated by (3) such that (8) holds. For each n,𝑛n,italic_n , the iterates satisfy the following relation

Lnk1fLnk2f(1λn)k2λnLnff,k1>k21,fC[0,1].formulae-sequenceformulae-sequencenormsuperscriptsubscript𝐿𝑛subscript𝑘1𝑓superscriptsubscript𝐿𝑛subscript𝑘2𝑓superscript1subscript𝜆𝑛subscript𝑘2subscript𝜆𝑛normsubscript𝐿𝑛𝑓𝑓subscript𝑘1subscript𝑘21𝑓𝐶01\left\|L_{n}^{k_{1}}f-L_{n}^{k_{2}}f\right\|\leq\frac{(1-\lambda_{n})^{k_{2}}}% {\lambda_{n}}\left\|L_{n}f-f\right\|,\ \ \ \ k_{1}>k_{2}\geq 1,\ f\in C[0,1].∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f - italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f ∥ ≤ divide start_ARG ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≥ 1 , italic_f ∈ italic_C [ 0 , 1 ] .

Proof. Let f𝑓fitalic_f belong to C[0,1],𝐶01C[0,1],italic_C [ 0 , 1 ] , arbitrarily fixed. Based on (9), by induction on k2subscript𝑘2k_{2}italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT we obtain

Lnk2+1fLnk2f(1λn)k2Lnff.normsuperscriptsubscript𝐿𝑛subscript𝑘21𝑓superscriptsubscript𝐿𝑛subscript𝑘2𝑓superscript1subscript𝜆𝑛subscript𝑘2normsubscript𝐿𝑛𝑓𝑓\left\|L_{n}^{k_{2}+1}f-L_{n}^{k_{2}}f\right\|\leq(1-\lambda_{n})^{k_{2}}\left% \|L_{n}f-f\right\|.∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 end_POSTSUPERSCRIPT italic_f - italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f ∥ ≤ ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ .

For k1>k2,subscript𝑘1subscript𝑘2\ k_{1}>k_{2},italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , letting Ln0f=f,superscriptsubscript𝐿𝑛0𝑓𝑓\ L_{n}^{0}f=f,italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_f = italic_f , we can write successively

Lnk1fLnk2fnormsuperscriptsubscript𝐿𝑛subscript𝑘1𝑓superscriptsubscript𝐿𝑛subscript𝑘2𝑓\displaystyle\left\|L_{n}^{k_{1}}f-L_{n}^{k_{2}}f\right\|∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f - italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f ∥ Lnk1fLnk11f++Lnk2+1fLnk2fabsentnormsuperscriptsubscript𝐿𝑛subscript𝑘1𝑓superscriptsubscript𝐿𝑛subscript𝑘11𝑓normsuperscriptsubscript𝐿𝑛subscript𝑘21𝑓superscriptsubscript𝐿𝑛subscript𝑘2𝑓\displaystyle\leq\left\|L_{n}^{k_{1}}f-L_{n}^{k_{1}-1}f\right\|+\ \ldots+\left% \|L_{n}^{k_{2}+1}f-L_{n}^{k_{2}}f\right\|≤ ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f - italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_f ∥ + … + ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 end_POSTSUPERSCRIPT italic_f - italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f ∥
(1λn)k11Lnff++(1λn)k2Lnffabsentsuperscript1subscript𝜆𝑛subscript𝑘11normsubscript𝐿𝑛𝑓𝑓superscript1subscript𝜆𝑛subscript𝑘2normsubscript𝐿𝑛𝑓𝑓\displaystyle\leq(1-\lambda_{n})^{k_{1}-1}\left\|L_{n}f-f\right\|+\ \ldots+(1-% \lambda_{n})^{k_{2}}\left\|L_{n}f-f\right\|≤ ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ + … + ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥
=(1λn)k2Lnffj=0k1k21(1λn)jabsentsuperscript1subscript𝜆𝑛subscript𝑘2normsubscript𝐿𝑛𝑓𝑓superscriptsubscript𝑗0subscript𝑘1subscript𝑘21superscript1subscript𝜆𝑛𝑗\displaystyle=(1-\lambda_{n})^{k_{2}}\left\|L_{n}f-f\right\|\sum_{j=0}^{k_{1}-% k_{2}-1}(1-\lambda_{n})^{j}= ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ ∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT
(1λn)k2Lnffj=0(1λn)jabsentsuperscript1subscript𝜆𝑛subscript𝑘2normsubscript𝐿𝑛𝑓𝑓superscriptsubscript𝑗0superscript1subscript𝜆𝑛𝑗\displaystyle\leq(1-\lambda_{n})^{k_{2}}\left\|L_{n}f-f\right\|\sum_{j=0}^{% \infty}(1-\lambda_{n})^{j}≤ ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ ∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT
=(1λn)k2λnLnff.absentsuperscript1subscript𝜆𝑛subscript𝑘2subscript𝜆𝑛normsubscript𝐿𝑛𝑓𝑓\displaystyle=\frac{(1-\lambda_{n})^{k_{2}}}{\lambda_{n}}\left\|L_{n}f-f\right\|.= divide start_ARG ( 1 - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG ∥ italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f - italic_f ∥ .

Thus the proof is completed. \square

Application 1 (Berstein operators). It is widely acknowledged that the most studied positive linear operators are the Bernstein operators. They fit with our construction, namely

xn,l=ln,φn,l(x)=(nl)xl(1x)nl, 0ln,λn=(12)n1.formulae-sequenceformulae-sequencesubscript𝑥𝑛𝑙𝑙𝑛formulae-sequencesubscript𝜑𝑛𝑙𝑥binomial𝑛𝑙superscript𝑥𝑙superscript1𝑥𝑛𝑙 0𝑙𝑛subscript𝜆𝑛superscript12𝑛1x_{n,l}=\frac{l}{n},\ \ \varphi_{n,l}(x)=\binom{n}{l}x^{l}(1-x)^{n-l},\ \ 0% \leq l\leq n,\ \ \lambda_{n}=\left(\frac{1}{2}\right)^{n-1}.italic_x start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT = divide start_ARG italic_l end_ARG start_ARG italic_n end_ARG , italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ( italic_x ) = ( FRACOP start_ARG italic_n end_ARG start_ARG italic_l end_ARG ) italic_x start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT italic_n - italic_l end_POSTSUPERSCRIPT , 0 ≤ italic_l ≤ italic_n , italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT .

Requirements (4) and (8) are fulfilled and (6) becomes

δn(x)=(x(1x)n)1/212n,x[0,1].formulae-sequencesubscript𝛿𝑛𝑥superscript𝑥1𝑥𝑛1212𝑛𝑥01\delta_{n}(x)=\left(\frac{x(1-x)}{n}\right)^{1/2}\leq\frac{1}{2\sqrt{n}},\ \ % \ x\in[0,1].italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) = ( divide start_ARG italic_x ( 1 - italic_x ) end_ARG start_ARG italic_n end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ≤ divide start_ARG 1 end_ARG start_ARG 2 square-root start_ARG italic_n end_ARG end_ARG , italic_x ∈ [ 0 , 1 ] .

Consequently, for these operators relation (12) is valid. Returning at (5), for the Bernstein operators, the smallest value of the constant in front of the modulus ω1subscript𝜔1\omega_{1}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT was established by Sikkema [10]. Bernstein operators Bnsubscript𝐵𝑛B_{n}italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, n1𝑛1n\geq 1italic_n ≥ 1, satisfy

|(Bnf)(x)f(x)|cω1(f,1n),c=4306+837658321.089,formulae-sequencesubscript𝐵𝑛𝑓𝑥𝑓𝑥𝑐subscript𝜔1𝑓1𝑛𝑐4306837658321.089\left|(B_{n}f)(x)-f(x)\right|\leq c\omega_{1}\left(f,\frac{1}{\sqrt{n}}\right)% ,\quad c=\frac{4306+837\sqrt{6}}{5832}\approx 1.089,| ( italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) ( italic_x ) - italic_f ( italic_x ) | ≤ italic_c italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f , divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_n end_ARG end_ARG ) , italic_c = divide start_ARG 4306 + 837 square-root start_ARG 6 end_ARG end_ARG start_ARG 5832 end_ARG ≈ 1.089 ,

for any fC[0,1]𝑓𝐶01f\in C[0,1]italic_f ∈ italic_C [ 0 , 1 ].

Along the same line, it is worth mentioning that Păltănea [6, Eq. (2)] obtained the relation

|(Bnf)(x)f(x)|ω2(f,1n),fC[0,1],x(0,1),formulae-sequencesubscript𝐵𝑛𝑓𝑥𝑓𝑥subscript𝜔2𝑓1𝑛formulae-sequence𝑓𝐶01𝑥01\left|(B_{n}f)(x)-f(x)\right|\leq\omega_{2}\left(f,\frac{1}{\sqrt{n}}\right),% \ \ \ f\in C[0,1],\ x\in(0,1),| ( italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) ( italic_x ) - italic_f ( italic_x ) | ≤ italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f , divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_n end_ARG end_ARG ) , italic_f ∈ italic_C [ 0 , 1 ] , italic_x ∈ ( 0 , 1 ) ,

where ω2(f,)subscript𝜔2𝑓\omega_{2}(f,\cdot)italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f , ⋅ ) is the second modulus of smoothness associated with any bounded function f:[0,1],:𝑓01f:\left[0,1\right]\rightarrow\mathbb{R},italic_f : [ 0 , 1 ] → blackboard_R , defined as follows

ω2(f,δ)=supx,x±h[0,1]|h|δ|f(xh)2f(x)+f(x+h)|,δ0.formulae-sequencesubscript𝜔2𝑓𝛿subscriptsupremum𝑥plus-or-minus𝑥01𝛿𝑓𝑥2𝑓𝑥𝑓𝑥𝛿0\omega_{2}(f,\delta)=\sup_{\begin{subarray}{c}x,x\pm h\in[0,1]\\ \left|h\right|\leq\delta\end{subarray}}|f(x-h)-2f(x)+f(x+h)|,\ \ \ \delta\geq 0.italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f , italic_δ ) = roman_sup start_POSTSUBSCRIPT start_ARG start_ROW start_CELL italic_x , italic_x ± italic_h ∈ [ 0 , 1 ] end_CELL end_ROW start_ROW start_CELL | italic_h | ≤ italic_δ end_CELL end_ROW end_ARG end_POSTSUBSCRIPT | italic_f ( italic_x - italic_h ) - 2 italic_f ( italic_x ) + italic_f ( italic_x + italic_h ) | , italic_δ ≥ 0 .

Thus, for the Bernstein operators, our statement (12) can be improved considering these optimal constants connected with the moduli ω1subscript𝜔1\omega_{1}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and ω2subscript𝜔2\omega_{2}italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT respectively.

We note that the result about the limit of the iterates of Bernstein operators was first obtained by Kelinsky and Rivlin [5], and reobtained by I.A. Rus [8] using the contraction principle.

Application 2 (Stancu operators). Based on the Markov-Pólya urn scheme, Stancu [11] introduced the positive linear operators Pnαsuperscriptsubscript𝑃𝑛delimited-⟨⟩𝛼P_{n}^{\langle\alpha\rangle}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟨ italic_α ⟩ end_POSTSUPERSCRIPT, n1𝑛1n\geq 1italic_n ≥ 1, from C[0,1]𝐶01C[0,1]italic_C [ 0 , 1 ] to itself, α𝛼\alphaitalic_α being a nonnegative real parameter which can depend on n𝑛nitalic_n. In this case we identify

xn,l=ln,φn,l(x)=(nl)x[l,α](1x)[nl,α]1[n,α],x[0,1].formulae-sequencesubscript𝑥𝑛𝑙𝑙𝑛formulae-sequencesubscript𝜑𝑛𝑙𝑥binomial𝑛𝑙superscript𝑥𝑙𝛼superscript1𝑥𝑛𝑙𝛼superscript1𝑛𝛼𝑥01x_{n,l}=\frac{l}{n},\ \ \varphi_{n,l}(x)=\binom{n}{l}\frac{x^{[l,-\alpha]}(1-x% )^{[n-l,-\alpha]}}{1^{[n,-\alpha]}},\ \ \ x\in[0,1].italic_x start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT = divide start_ARG italic_l end_ARG start_ARG italic_n end_ARG , italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ( italic_x ) = ( FRACOP start_ARG italic_n end_ARG start_ARG italic_l end_ARG ) divide start_ARG italic_x start_POSTSUPERSCRIPT [ italic_l , - italic_α ] end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT [ italic_n - italic_l , - italic_α ] end_POSTSUPERSCRIPT end_ARG start_ARG 1 start_POSTSUPERSCRIPT [ italic_n , - italic_α ] end_POSTSUPERSCRIPT end_ARG , italic_x ∈ [ 0 , 1 ] .

In the above, t[s,α]superscript𝑡𝑠𝛼t^{[s,-\alpha]}italic_t start_POSTSUPERSCRIPT [ italic_s , - italic_α ] end_POSTSUPERSCRIPT stands for the generalized factorial power with the step α𝛼-\alpha- italic_α, i.e.,

t[0,α]=1,t[s,α]=t(t+α)(t+(s1)α)(s{0}).formulae-sequencesuperscript𝑡0𝛼1superscript𝑡𝑠𝛼𝑡𝑡𝛼𝑡𝑠1𝛼𝑠0t^{[0,-\alpha]}=1,\ \ \ t^{[s,-\alpha]}=t(t+\alpha)\ldots(t+(s-1)\alpha)\ \ \ % \left(s\in\mathbb{N\setminus}\left\{0\right\}\right).italic_t start_POSTSUPERSCRIPT [ 0 , - italic_α ] end_POSTSUPERSCRIPT = 1 , italic_t start_POSTSUPERSCRIPT [ italic_s , - italic_α ] end_POSTSUPERSCRIPT = italic_t ( italic_t + italic_α ) … ( italic_t + ( italic_s - 1 ) italic_α ) ( italic_s ∈ blackboard_N ∖ { 0 } ) .

Again, identities (4) are fulfilled and

λn(2n11[n,α])1,n1.formulae-sequencesubscript𝜆𝑛superscriptsuperscript2𝑛1superscript1𝑛𝛼1𝑛1\lambda_{n}\geq(2^{n-1}1^{[n,-\alpha]})^{-1},\ \ n\geq 1.italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ ( 2 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT 1 start_POSTSUPERSCRIPT [ italic_n , - italic_α ] end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_n ≥ 1 .

Regarding (6) we have

δn(x)=(1+nαn(1+α)x(1x))1/212(1+nαn(1+α))1/2,x[0,1].formulae-sequencesubscript𝛿𝑛𝑥superscript1𝑛𝛼𝑛1𝛼𝑥1𝑥1212superscript1𝑛𝛼𝑛1𝛼12𝑥01\delta_{n}(x)=\left(\frac{1+n\alpha}{n(1+\alpha)}x(1-x)\right)^{1/2}\leq\frac{% 1}{2}\left(\frac{1+n\alpha}{n(1+\alpha)}\right)^{1/2},\ \ x\in[0,1].italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) = ( divide start_ARG 1 + italic_n italic_α end_ARG start_ARG italic_n ( 1 + italic_α ) end_ARG italic_x ( 1 - italic_x ) ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ≤ divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( divide start_ARG 1 + italic_n italic_α end_ARG start_ARG italic_n ( 1 + italic_α ) end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT , italic_x ∈ [ 0 , 1 ] .

Thus Theorem 1 can be applied.

Application 3 (Cheney-Sharma operators). Based on a combinatorial identity of Abel-Jensen, Cheney and Sharma [4] have defined a new class of positive linear operators of discrete type. Using the notations promoted in this paper, for 0ln,0𝑙𝑛0\leq l\leq n,0 ≤ italic_l ≤ italic_n , we identify

xn,l=ln,subscript𝑥𝑛𝑙𝑙𝑛x_{n,l}=\frac{l}{n},italic_x start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT = divide start_ARG italic_l end_ARG start_ARG italic_n end_ARG ,
φn,l(x)=(1+nβ)1n(nl)x(x+lβ)l1(1x)(1x+(nl)β)n1l,subscript𝜑𝑛𝑙𝑥superscript1𝑛𝛽1𝑛binomial𝑛𝑙𝑥superscript𝑥𝑙𝛽𝑙11𝑥superscript1𝑥𝑛𝑙𝛽𝑛1𝑙\varphi_{n,l}(x)=(1+n\beta)^{1-n}\binom{n}{l}x(x+l\beta)^{l-1}(1-x)(1-x+(n-l)% \beta)^{n-1-l},italic_φ start_POSTSUBSCRIPT italic_n , italic_l end_POSTSUBSCRIPT ( italic_x ) = ( 1 + italic_n italic_β ) start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT ( FRACOP start_ARG italic_n end_ARG start_ARG italic_l end_ARG ) italic_x ( italic_x + italic_l italic_β ) start_POSTSUPERSCRIPT italic_l - 1 end_POSTSUPERSCRIPT ( 1 - italic_x ) ( 1 - italic_x + ( italic_n - italic_l ) italic_β ) start_POSTSUPERSCRIPT italic_n - 1 - italic_l end_POSTSUPERSCRIPT ,

where β𝛽\betaitalic_β is a nonnegative real number which can depend on n𝑛nitalic_n. The operators preserve the constant functions. In [12] it was shown that each operator reproduces the linear functions, thus (4) is fulfilled. Moreover, if β=o(n1)𝛽𝑜superscript𝑛1\beta=o(n^{-1})italic_β = italic_o ( italic_n start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ), the sequence of operators is an approximation process. Since

λn(2(1+nβ))1n,n1,formulae-sequencesubscript𝜆𝑛superscript21𝑛𝛽1𝑛𝑛1\lambda_{n}\geq(2(1+n\beta))^{1-n},\ \ \ n\geq 1,italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ ( 2 ( 1 + italic_n italic_β ) ) start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT , italic_n ≥ 1 ,

also (8) takes place and the conclusion of Theorem 1 is achieved.

4. Estimates for multidimensional operators

For the convenience of the reader, we start the section by some preliminaries of vector analysis.

4.1. Perov’s fixed point theorem

For the convenience of the reader, we present here Perov’s fixed point theorem in a version sufficient for our approach. For a Banach space (X,),\left(X,\left\|\cdot\right\|\right),( italic_X , ∥ ⋅ ∥ ) , we shall also denote by \left\|\cdot\right\|∥ ⋅ ∥ the vector-valued norm on Xp=X××Xsuperscript𝑋𝑝𝑋𝑋\ X^{p}=X\times...\times Xitalic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT = italic_X × … × italic_X  (p𝑝pitalic_p times) having the following meaning:

𝐮:=[u1up]assignnorm𝐮delimited-[]normsubscript𝑢1normsubscript𝑢𝑝\left\|\mathbf{u}\right\|:=\left[\begin{array}[]{c}\left\|u_{1}\right\|\\ \cdot\cdot\cdot\\ \left\|u_{p}\right\|\end{array}\right]∥ bold_u ∥ := [ start_ARRAY start_ROW start_CELL ∥ italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∥ end_CELL end_ROW start_ROW start_CELL ⋯ end_CELL end_ROW start_ROW start_CELL ∥ italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∥ end_CELL end_ROW end_ARRAY ] (15)

for 𝐮=(u1,,up)Xp.𝐮subscript𝑢1subscript𝑢𝑝superscript𝑋𝑝\mathbf{u}=\left(u_{1},...,u_{p}\right)\in X^{p}.bold_u = ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ∈ italic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .

Theorem 4 (Perov).

Let (X,)\left(X,\left\|\cdot\right\|\right)( italic_X , ∥ ⋅ ∥ ) be a Banach space and 𝐋:XpXp,:𝐋superscript𝑋𝑝superscript𝑋𝑝\mathbf{L}:X^{p}\rightarrow X^{p},bold_L : italic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT → italic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , 𝐋=(L1,,Lp),𝐋subscript𝐿1subscript𝐿𝑝\mathbf{L}=\left(L_{1},...,L_{p}\right),bold_L = ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) , Li:XpX(i=1,,p):subscript𝐿𝑖superscript𝑋𝑝𝑋𝑖1𝑝L_{i}:X^{p}\rightarrow X\ \left(i=1,...,p\right)italic_L start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT : italic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT → italic_X ( italic_i = 1 , … , italic_p ) be any mapping. Assume that there exists a matrix Mp×p(+)𝑀subscript𝑝𝑝subscriptM\in\mathcal{M}_{p\times p}\left(\mathbb{R}_{+}\right)italic_M ∈ caligraphic_M start_POSTSUBSCRIPT italic_p × italic_p end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) which converges to zero (i.e., Mksuperscript𝑀𝑘M^{k}italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT tends to the null matrix as k𝑘kitalic_k tends to infinity), such that

𝐋𝐮𝐋𝐯M𝐮𝐯norm𝐋𝐮𝐋𝐯𝑀norm𝐮𝐯\left\|\mathbf{Lu}-\mathbf{Lv}\right\|\leq M\left\|\mathbf{u-v}\right\|∥ bold_Lu - bold_Lv ∥ ≤ italic_M ∥ bold_u - bold_v ∥

for all 𝐮,𝐯Xp.𝐮𝐯superscript𝑋𝑝\mathbf{u},\ \mathbf{v}\in X^{p}.bold_u , bold_v ∈ italic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT . Then 𝐋𝐋\mathbf{L}bold_L has a unique fixed point 𝐮superscript𝐮\mathbf{u}^{\ast}bold_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT which is the limit of the sequence (𝐋k𝐮)k1subscriptsuperscript𝐋𝑘𝐮𝑘1\left(\mathbf{L}^{k}\mathbf{u}\right)_{k\geq 1}( bold_L start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT bold_u ) start_POSTSUBSCRIPT italic_k ≥ 1 end_POSTSUBSCRIPTof successive approximations starting from any 𝐮Xp.𝐮superscript𝑋𝑝\mathbf{u}\in X^{p}.bold_u ∈ italic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT . In addition, one has

𝐋k𝐮𝐮(IM)1Mk𝐋𝐮𝐮normsuperscript𝐋𝑘𝐮superscript𝐮superscript𝐼𝑀1superscript𝑀𝑘norm𝐋𝐮𝐮\left\|\mathbf{L}^{k}\mathbf{u}-\mathbf{u}^{\ast}\right\|\leq\left(I-M\right)^% {-1}M^{k}\left\|\mathbf{Lu}-\mathbf{u}\right\|∥ bold_L start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT bold_u - bold_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ ≤ ( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∥ bold_Lu - bold_u ∥ (16)

for all k1𝑘1k\geq 1italic_k ≥ 1 and 𝐮Xp.𝐮superscript𝑋𝑝\mathbf{u}\in X^{p}.bold_u ∈ italic_X start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .

We  note that if a matrix M𝑀Mitalic_M converges la zero, then the matrix IM𝐼𝑀I-Mitalic_I - italic_M is nonsingular, the entries of (IM)1superscript𝐼𝑀1\left(I-M\right)^{-1}( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT are nonnegative too, and

I+M++Mk+=(IM)1𝐼𝑀superscript𝑀𝑘superscript𝐼𝑀1I+M+...+M^{k}+...=\left(I-M\right)^{-1}italic_I + italic_M + … + italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + … = ( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (17)

(see [7]). Here I𝐼Iitalic_I stands for the unit matrix of size p.𝑝p.italic_p .

Also note that for p=1,𝑝1p=1,italic_p = 1 , Perov’s theorem reduces to Banach’s theorem in the space X,𝑋X,italic_X , where M𝑀Mitalic_M is a nonnegative constant with M<1.𝑀1M<1.italic_M < 1 .

4.2. Multidimensional approximation operators

Here following our previous paper [1], we define a class of multidimensional positive linear operators. First we construct convex combinations of p𝑝pitalic_p (p1)p\geq 1)italic_p ≥ 1 ) operators of type (3). To this aim, let

γi,j[0,1], 1i,jp,j=1pγi,j=1formulae-sequencesubscript𝛾𝑖𝑗01formulae-sequence1𝑖formulae-sequence𝑗𝑝superscriptsubscript𝑗1𝑝subscript𝛾𝑖𝑗1\gamma_{i,j}\in[0,1],\ \ \ 1\leq i,j\leq p,\ \ \ \sum_{j=1}^{p}\gamma_{i,j}=1italic_γ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ∈ [ 0 , 1 ] , 1 ≤ italic_i , italic_j ≤ italic_p , ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = 1

and take (α,β)×𝛼𝛽(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}( italic_α , italic_β ) ∈ blackboard_R × blackboard_R. Then define the operator

𝐋𝐋\displaystyle\mathbf{L}bold_L ::\displaystyle:: Xα,βpXα,βp,𝐋=(𝐋1,,𝐋p),formulae-sequencesuperscriptsubscript𝑋𝛼𝛽𝑝superscriptsubscript𝑋𝛼𝛽𝑝𝐋subscript𝐋1subscript𝐋𝑝\displaystyle X_{\alpha,\beta}^{p}\rightarrow X_{\alpha,\beta}^{p},\quad% \mathbf{L}=(\mathbf{L}_{1},\ldots,\mathbf{L}_{p}),italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT → italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , bold_L = ( bold_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , bold_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) , (18)
𝐋i𝐟subscript𝐋𝑖𝐟\displaystyle\mathbf{L}_{i}\mathbf{f}bold_L start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT bold_f =\displaystyle== j=1pγi,jLnijfj,𝐟=(f1,,fp),i=1,,p,formulae-sequencesuperscriptsubscript𝑗1𝑝subscript𝛾𝑖𝑗subscript𝐿subscript𝑛𝑖𝑗subscript𝑓𝑗𝐟subscript𝑓1subscript𝑓𝑝𝑖1𝑝\displaystyle\sum_{j=1}^{p}\gamma_{i,j}L_{n_{ij}}f_{j},\quad\ \mathbf{f=}\left% (f_{1},...,f_{p}\right),\ i=1,\ldots,p,∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_f = ( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) , italic_i = 1 , … , italic_p ,

where Xα,βsubscript𝑋𝛼𝛽X_{\alpha,\beta}italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT is given by (7). The above convex combination uses p𝑝pitalic_p operators of the form (3) having different orders nijsubscript𝑛𝑖𝑗n_{ij}italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT, j=1,,p𝑗1𝑝j=1,\ldots,pitalic_j = 1 , … , italic_p.

Notice that the operator 𝐋𝐋\mathbf{L}bold_L can be expressed in terms of two matrices:

Γ:=[γij]1i,jpand O:=[Lnij]1i,jp.formulae-sequenceassignΓsubscriptdelimited-[]subscript𝛾𝑖𝑗formulae-sequence1𝑖𝑗𝑝assignand 𝑂subscriptdelimited-[]subscript𝐿subscript𝑛𝑖𝑗formulae-sequence1𝑖𝑗𝑝\Gamma:=\left[\gamma_{ij}\right]_{1\leq i,j\leq p}\ \ \ \ \text{and\ \ \ }O:=% \left[L_{n_{ij}}\right]_{1\leq i,j\leq p}.roman_Γ := [ italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT 1 ≤ italic_i , italic_j ≤ italic_p end_POSTSUBSCRIPT and italic_O := [ italic_L start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT 1 ≤ italic_i , italic_j ≤ italic_p end_POSTSUBSCRIPT .

The first is a matrix of numbers, while the second is a matrix of linear operators. Then it is easy to see that the following representation formula holds:

𝐋𝐟=diag ΓO(𝐟),𝐋𝐟diag Γ𝑂superscript𝐟bottom\mathbf{Lf}=\text{diag\ }\Gamma O\left(\mathbf{f}\right)^{\bot},bold_Lf = diag roman_Γ italic_O ( bold_f ) start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ,

where O(𝐟)=[Lnijfj]1i,jp𝑂𝐟subscriptdelimited-[]subscript𝐿subscript𝑛𝑖𝑗subscript𝑓𝑗formulae-sequence1𝑖𝑗𝑝O\left(\mathbf{f}\right)=\left[L_{n_{ij}}f_{j}\right]_{1\leq i,j\leq p}italic_O ( bold_f ) = [ italic_L start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT 1 ≤ italic_i , italic_j ≤ italic_p end_POSTSUBSCRIPT and O(𝐟)𝑂superscript𝐟bottomO\left(\mathbf{f}\right)^{\bot}italic_O ( bold_f ) start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT is its transposed matrix.

We have the following convergence theorem whose proof is almost identical to that of the similar result from [1].

Theorem 5.

Assume that 𝐋𝐋\mathbf{L}bold_L is given by (18), where the operators Lnij, 1i,jpformulae-sequencesubscript𝐿subscript𝑛𝑖𝑗1𝑖𝑗𝑝L_{n_{ij}},\ 1\leq i,j\leq pitalic_L start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT , 1 ≤ italic_i , italic_j ≤ italic_p satisfy condition (8). Then for any vector-valued function 𝐟Xα,βp,𝐟superscriptsubscript𝑋𝛼𝛽𝑝\mathbf{f}\in X_{\alpha,\beta}^{p},bold_f ∈ italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , one has

limk𝐋k𝐟=𝐟,subscript𝑘superscript𝐋𝑘𝐟superscript𝐟\lim\limits_{k\rightarrow\infty}\mathbf{L}^{k}\mathbf{f}=\mathbf{f}^{\ast},roman_lim start_POSTSUBSCRIPT italic_k → ∞ end_POSTSUBSCRIPT bold_L start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT bold_f = bold_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , (19)

componentwise uniformly on [0,1],01\left[0,1\right],[ 0 , 1 ] , where the components of the vector-valued function 𝐟superscript𝐟\mathbf{f}^{\ast}bold_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT are all equal with the affine function α+(βα)x.𝛼𝛽𝛼𝑥\alpha+\left(\beta-\alpha\right)x.italic_α + ( italic_β - italic_α ) italic_x .

4.3. Estimates for the iterates of multidimensional operators

In this last section we extend some of the previous results to multidimensional operators.

Assume that 𝐋𝐋\mathbf{L}bold_L is a multidimensional operator of type (18), where the operators Lnij, 1i,jpformulae-sequencesubscript𝐿subscript𝑛𝑖𝑗1𝑖𝑗𝑝L_{n_{ij}},\ 1\leq i,j\leq pitalic_L start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT , 1 ≤ italic_i , italic_j ≤ italic_p satisfy condition (8). We first give the vector version of Theorem 3. We denote by δnijsubscript𝛿subscript𝑛𝑖𝑗\delta_{n_{ij}}italic_δ start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT and λnijsubscript𝜆subscript𝑛𝑖𝑗\lambda_{n_{ij}}italic_λ start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT (1i,jp)formulae-sequence1𝑖𝑗𝑝\left(1\leq i,j\leq p\right)( 1 ≤ italic_i , italic_j ≤ italic_p ) the corresponding numbers of Lnijsubscript𝐿subscript𝑛𝑖𝑗L_{n_{ij}}italic_L start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT defined as given by (6) and (8), respectively. Denoting

λ:=max{λnij: 1i,jp}assign𝜆:subscript𝜆subscript𝑛𝑖𝑗formulae-sequence1𝑖𝑗𝑝\lambda:=\max\left\{\lambda_{n_{ij}}:\ 1\leq i,j\leq p\right\}italic_λ := roman_max { italic_λ start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT : 1 ≤ italic_i , italic_j ≤ italic_p }

one has λ<1𝜆1\lambda<1italic_λ < 1 and, as in [1], the matrix  M:=[λγi,j]1i,jpassign𝑀subscriptdelimited-[]𝜆subscript𝛾𝑖𝑗formulae-sequence1𝑖𝑗𝑝M:=\left[\lambda\gamma_{i,j}\right]_{1\leq i,j\leq p}italic_M := [ italic_λ italic_γ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT 1 ≤ italic_i , italic_j ≤ italic_p end_POSTSUBSCRIPT is convergent to zero and 𝐋𝐋\mathbf{L}bold_L is a Perov contraction on Xα,βp,superscriptsubscript𝑋𝛼𝛽𝑝X_{\alpha,\beta}^{p},italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , in the sense that

𝐋𝐟𝐋𝐠M𝐟𝐠norm𝐋𝐟𝐋𝐠𝑀norm𝐟𝐠\left\|\mathbf{Lf}-\mathbf{Lg}\right\|\leq M\left\|\mathbf{f-g}\right\|∥ bold_Lf - bold_Lg ∥ ≤ italic_M ∥ bold_f - bold_g ∥ (20)

for all 𝐟,𝐠Xα,βp.𝐟𝐠superscriptsubscript𝑋𝛼𝛽𝑝\mathbf{f,g}\in X_{\alpha,\beta}^{p}.bold_f , bold_g ∈ italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT . Here \left\|\cdot\right\|∥ ⋅ ∥ stands for the vector-valued norm (15) on the space C[0,1]p.𝐶superscript01𝑝C\left[0,1\right]^{p}.italic_C [ 0 , 1 ] start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .

The vector version of Theorem 3 is the following:

Theorem 6.

The iterates of the operator 𝐋𝐋\mathbf{L}bold_L satisfy the following relation

𝐋k1𝐟𝐋k2𝐟(IM)1Mk2𝐋𝐟𝐟,k1>k21,𝐟Xα,βp.formulae-sequenceformulae-sequencenormsuperscript𝐋subscript𝑘1𝐟superscript𝐋subscript𝑘2𝐟superscript𝐼𝑀1superscript𝑀subscript𝑘2norm𝐋𝐟𝐟subscript𝑘1subscript𝑘21𝐟superscriptsubscript𝑋𝛼𝛽𝑝\left\|\mathbf{L}^{k_{1}}\mathbf{f}-\mathbf{L}^{k_{2}}\mathbf{f}\right\|\leq% \left(I-M\right)^{-1}M^{k_{2}}\left\|\mathbf{Lf}-\mathbf{f}\right\|,\ \ \ k_{1% }>k_{2}\geq 1,\ \mathbf{f}\in X_{\alpha,\beta}^{p}.∥ bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT bold_f - bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT bold_f ∥ ≤ ( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ bold_Lf - bold_f ∥ , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≥ 1 , bold_f ∈ italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .
Proof.

From (20), one has

𝐋k+1𝐟𝐋k𝐟Mk𝐋𝐟𝐟(k1).normsuperscript𝐋𝑘1𝐟superscript𝐋𝑘𝐟superscript𝑀𝑘norm𝐋𝐟𝐟𝑘1\left\|\mathbf{L}^{k+1}\mathbf{f}-\mathbf{L}^{k}\mathbf{f}\right\|\leq M^{k}% \left\|\mathbf{Lf}-\mathbf{f}\right\|\ \ \ \left(k\geq 1\right).∥ bold_L start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT bold_f - bold_L start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT bold_f ∥ ≤ italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∥ bold_Lf - bold_f ∥ ( italic_k ≥ 1 ) .

This together with (17) gives

𝐋k1𝐟𝐋k2𝐟normsuperscript𝐋subscript𝑘1𝐟superscript𝐋subscript𝑘2𝐟\displaystyle\left\|\mathbf{L}^{k_{1}}\mathbf{f}-\mathbf{L}^{k_{2}}\mathbf{f}\right\|∥ bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT bold_f - bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT bold_f ∥ \displaystyle\leq 𝐋k1𝐟𝐋k11𝐟++𝐋k2+1𝐟𝐋k2𝐟normsuperscript𝐋subscript𝑘1𝐟superscript𝐋subscript𝑘11𝐟normsuperscript𝐋subscript𝑘21𝐟superscript𝐋subscript𝑘2𝐟\displaystyle\left\|\mathbf{L}^{k_{1}}\mathbf{f}-\mathbf{L}^{k_{1}-1}\mathbf{f% }\right\|+\ ...+\left\|\mathbf{L}^{k_{2}+1}\mathbf{f}-\mathbf{L}^{k_{2}}% \mathbf{f}\right\|∥ bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT bold_f - bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT bold_f ∥ + … + ∥ bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 end_POSTSUPERSCRIPT bold_f - bold_L start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT bold_f ∥
\displaystyle\leq (Mk11++Mk2)𝐋𝐟𝐟superscript𝑀subscript𝑘11superscript𝑀subscript𝑘2norm𝐋𝐟𝐟\displaystyle\left(M^{k_{1}-1}+\ ...+M^{k_{2}}\right)\left\|\mathbf{Lf}-% \mathbf{f}\right\|( italic_M start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT + … + italic_M start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ∥ bold_Lf - bold_f ∥
=\displaystyle== (Mk1k21++I)Mk2𝐋𝐟𝐟superscript𝑀subscript𝑘1subscript𝑘21𝐼superscript𝑀subscript𝑘2norm𝐋𝐟𝐟\displaystyle\left(M^{k_{1}-k_{2}-1}+\ ...+I\right)M^{k_{2}}\left\|\mathbf{Lf}% -\mathbf{f}\right\|( italic_M start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT + … + italic_I ) italic_M start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ bold_Lf - bold_f ∥
\displaystyle\leq (IM)1Mk2𝐋𝐟𝐟.superscript𝐼𝑀1superscript𝑀subscript𝑘2norm𝐋𝐟𝐟\displaystyle\left(I-M\right)^{-1}M^{k_{2}}\left\|\mathbf{Lf}-\mathbf{f}\right\|.( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ bold_Lf - bold_f ∥ .

Finally, the estimate (16) given by Perov’s theorem immediately yields the following error result.

Theorem 7.

For every 𝐟Xα,βp𝐟superscriptsubscript𝑋𝛼𝛽𝑝\mathbf{f}\in X_{\alpha,\beta}^{p}bold_f ∈ italic_X start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and every k1,𝑘1k\geq 1,italic_k ≥ 1 , one has

𝐋k𝐟𝐟(IM)1Mk𝐋𝐟𝐟.normsuperscript𝐋𝑘𝐟superscript𝐟superscript𝐼𝑀1superscript𝑀𝑘norm𝐋𝐟𝐟\left\|\mathbf{L}^{k}\mathbf{f}-\mathbf{f}^{\ast}\right\|\leq\left(I-M\right)^% {-1}M^{k}\left\|\mathbf{Lf}-\mathbf{f}\right\|.∥ bold_L start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT bold_f - bold_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ ≤ ( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∥ bold_Lf - bold_f ∥ .

References

  • [1] Agratini, O., Precup, R., Iterates of multidimensional operators via Perov theorem, Carpathian J. Math., 38(2022), No. 3, 539-546.
  • [2] Agratini, O., Rus, I.A., Iterates of a class of discrete operators via contraction principle, Comment. Math. Univ. Carolinae, 44(2003), No. 3, 555-563.
  • [3] Banach, S., Sur les opérations dans les ensemble abstraits et leur application aux équations intégrales, Fund. Math., 3(1922), 133-181.
  • [4] Cheney, E.W., Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5(1964), No. 2, 77-84.
  • [5] Kelinsky, R.P., Rivlin, T.J., Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), No. 3, 511-520.
  • [6] Păltănea, R., Optimal constant in approximation by Bernstein operators, J. Comput. Analysis Appl., 5(2003), No. 2, 195-235.
  • [7] Precup, R., Methods in Nonlinear Integral Equations, Springer, Dordrecht, 2002.
  • [8] Rus, I.A., Iterates of Bernstein operators via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
  • [9] Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. USA, 60(1968), 1196-1200.
  • [10] Sikkema, P.C., Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math., 3(1961), 107-116.
  • [11] Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13(1968), No. 8, 1173-1194.
  • [12] Stancu, D.D., Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26(1997), Nos. 1-2, 221-227.
2024

Related Posts