Abstract
Using a generalization of Browder’s fixed point theorem for nonexpansive maps defined of a closed bounded convex is in a Hilbeert space, on proves the existence of periodic solutions of ordinary dsifferential equation in Hilbert spaces.
Authors
Mira-Cristiana Anisiu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Keywords
?
Paper coordinates
M.-C. Anisiu, Existence of periodic solutions of ODE via fixed point theorems, Proceedings of Equadiff 91, International Conference on Differential Equations, Barcelona, Ed. C. Perello, C. Simo, J. Sola-Morales, World Scientific 1993, 272-276
??
About this paper
Journal
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
[1] M.C.Anisiu, Fixed points of retractible mappings with respect to the metric projection, Babes-Bolyai University, Preprint nr.7, 1988, 87-96.
[2] M.C. Anisiu, V. Anisiu, On some conditions for the existence of the fixed points in Hilbert spaces, Babes-Bolyai University Itinerant Sem.on Funct. Eq., Approximation and convexity, 1989, 93-100.
[3] F.E. Browder, Fixed points theorems for noncompact mappings in Hilbert space, Proc. Mat. Acad. Sci, 53(1965), 1272-1276.
[4] F.E. Browder, Periodic solutions of nonlinear equations in infinite-dimensional spaces. In: Lecture Series in Differential Equations, A. Aziz[ed].Van Nostrand, New York, vol.1 71-93, 1969.
[5] R.F. Brown, Retraction methods in Nielsen fixed point theory, Pacific J. Math. 115 (1984), 277-316
[6] Tzu-Chu Lin, Chi-Lin Yen, applications of the proximity map to fixed point theorems in Hilbert spaces, J. Approx. Theory 52(1988), 141-148.
[7] I.A. Rus, The fixed point structures and the retraction mapping principle, Babes-Bolyai Univ., Preprint nr.3, 1986, 175-184.
[8] R. Schoneberg, Some fixed point theorems for mappings of nonexpresive tupe, Comm. Math. Univ. Carolinae 17 (1976), 399-411
[9] S.P. Singh, S. Massa, D. Roux, Approximation technique in fixed point theory, Rendiconti Sem. Mat. Fis. Milano VIII(1983), 165-172.