Extension of bilinear functionals and best approximation in 2-normed space

Abstract


The paper investigates the relations between the extension properties of bounded bilinear functionals and the approximation properties in 2-normed spaces.

Authors

Ștefan CobzaΘ™
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Bilinear functionals; 2-normed spaces; best approximation.

Paper coordinates

Şt. Cobzaş, C. MustΔƒΕ£a, Extension of bilinear functionals and best approximation in 2-normed space, Studia Univ. ”Babeş-Bolyai”, Seria Mathematica, XLIII, Nr. 2 (1998), 1-13.

PDF

About this paper

Journal

Studia Universitatis “Babes-Bolyai”, Mathematica

Publisher Name
DOI
Print ISSN

1843-3855

Online ISSN

google scholar link

[1] S. Cobzas, C. Mustata, Norm-preserving extension of convex Lipschitz functions, Journal of Approx. Theory 24 (1978), 236-244.

[2] S. Cobzas, C. Mustata, Extension of bilinear operators and best approximaiton in 2-normed spaces, Rev. anal. Numer. Theor. Approx. 25 (1996), 61-75.

[3] C. Diminnie, S. Gahler, A . White, Stgrictly convex linear 2- normed spaces, Math. Nachr. 59(1974), 319-324.

[4] C. Diminnie, S. Gahler, A. White, Remarks on strictly convex and strictly 2-convex 2-normed spaces, Math. Nachr. 88(1979), 363-372.

[5] C. Diminnie, A. White, Some geometric remarks concerning strictly 2-convex 2-normed spaces, Math. Seminar Notes. Kobe Univ., 6(1978(, 245-253.

[6] N. Dunfod, J.T. Schwartz, Linear operators, Part.I: General Theory, Interscience Publishers, New York, 1958.

[7] I. Franic, an extension theorem for bounded linear 2-funcitonals and applications, Math. Japonica, 40(1944), 79-85.

[8] R.W. Freese, Y.J. Cho, Characterization of linear 2-normed spaces, Math. Japonica 40(1944), 115-122.

[9] S. Gahler, 2-Metrische Raume und ihre Topologische Struktur, Math. Nachr. 26(1963/64), 115-148.

[10] S. Gahler, Lineare 2-Normierte Raume, Math. Nachr. 28 (1965), 335-347.

[11] S. Gahler, Uber 2-Banach-Raume, Math. Nachr. 42(1969), 335-347.

[12] K.S. Ha, Y.J. Cho, A. White, Strictly convex and strictly 2-convex 2-normed spaces, Math.Japonica 33(1988), 375-384.

[13] K. Iseki, Mathematics on 2-normed spaces, Bull. Korean Math. Soc. 13 (1976), 127-136.

[14] G. Kothe, Topologische Lineare Raume, vol.I, Springer Verlag, Berlin-Gottingen-Heidelberg, 1960.

[15] S.N.Lal, M. Das, 2-functionals and some extension theorems in linear spaces, Indian J. Pure Appl. Math. 13(8) (1982), 912-919.

[16] S. Mabizela, A characterization of strictly convex linear 2-normed spaces, Questiones Mathematicae 12 (1989), 201-204.

[17] S. Mabizela, On bounded linear 2-funcitonals, Math. Japonica 35 (1990), 51-55.

[18] C. Mustata, Best approximation and unique extension of Lipschitz functions, J.Approx.Theory 19 (1977), 222-230.

[19] R.R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.

[20] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Publishing House of the Romanian Academy and Springer Verlag, Bucharest-Berlin, 1970.

[21] A.G. White, Jr., 2-Banach spaces, Math. Nachr. 42(1969), 43-60.

[22] A.G. White Jr., Yeol Je Cho, Linear mappings on linear 2-normed spaces, Bull. Korean Math. Soc. 21 (1984), 1-6.

Paper (preprint) in HTML form

EXTENSION OF BILINEAR FUNCTIONALS AND BEST APPROXIMATION IN 2-NORMED SPACES

S. COBZAS AND C. MUSTATA
Abstract

The paper investigates the relations between the extension properties of bounded bilinear functionals and the approximation properties in 2βˆ’2- normed spaces.

Abstract

In this paper, Ore’s generalized theorems given in [4] are used to study some special o-Schunck classes. Thus we prove that: 1) the equivalence of D, A and B properties (given in [7] and [3]) on a o-Schunck class takes place; 2) the "composite" of two o-Schunck classes with the D property is in turn a o-Schunck class with the D property; 3) the class D of all o-Schunck classes with the D property, ordered by inclusion, forms respect to the operations of "composite" and intersection a complete lattice.

1. Introduction

In the sixties S.GΓ€hler ([8] and [9]) introduced and studied the basic properties of 2 -metric and 2 -normed spaces. Since then these topics have been intensively studied and deve loped.The references given at the end of this paper are far from being complete, containing only the papers related to the problems treated here.

The aim of the present paper is to study the relations between the extension properties of bounded bilinear functionals and the approximation properties in 2-normed spaces. In the case of bounded linear functionals on normed linear spaces the problem was first considered by R.R.Phelps [19]. For other related results see I. Singer’s book [20].

In the case of Banach spaces of Lipschitz functions similar results were obtained by the authors (see [1], [18]). The case of bilinear operators on 2 -normed spaces has been considered in [2].

Throughout this paper all the linear spaces will be considered over the field K=𝐑K=\mathbf{R} or K=𝐂K=\mathbf{C}. A 2 -norm on a linear space XX of algebraic dimension at least 2 , is a functional βˆ₯β‹…βˆ₯:,XΓ—Xβ†’[0,∞)\|\cdot\|:,X\times X\rightarrow[0,\infty) verifying the axioms:

BN 1) βˆ₯x,yβˆ₯=0\|x,y\|=0 if and only if x,yx,y are linearly dependent,
BN 2) βˆ₯x,yβˆ₯=βˆ₯y,xβˆ₯\|x,y\|=\|y,x\|,
BN 3) βˆ₯Ξ»x,yβˆ₯=βˆ₯Ξ»βˆ₯β‹…βˆ₯x,yβˆ₯\|\lambda x,y\|=\|\lambda\|\cdot\|x,y\|,

00footnotetext: 1991 Mathematics Subject Classification. 46B28.
Key words and phrases. bilinear functionals, 2 -normed spaces, best approximation.

BN 4) βˆ₯x+y,zβˆ₯≀βˆ₯x,zβˆ₯+βˆ₯y,zβˆ₯\|x+y,z\|\leq\|x,z\|+\|y,z\|, for all x,y,z∈Xx,y,z\in X and λ∈K\lambda\in K (see [9])

If βˆ₯β‹…,β‹…βˆ₯\|\cdot,\cdot\| is a 2 -norm on the linear space XX then the function ρ:X3β†’[0,∞)\rho:X^{3}\rightarrow[0,\infty) defined by ρ(x,y,z)=βˆ₯xβˆ’z,yβˆ’zβˆ₯,x,y,z∈X\rho(x,y,z)=\|x-z,y-z\|,x,y,z\in X is a 2 -metric on XX, in the sense of S.GΓ€hler [8], which is translation invariant, i.e. ρ(x+a,y+a,z+a)=ρ(x,y,z)\rho(x+a,y+a,z+a)=\rho(x,y,z) for all x,y,z∈Xx,y,z\in X and a fixed element a∈Xa\in X.

For a fixed b∈Xb\in X, the function pb(x)=βˆ₯x,bβˆ₯,x∈Xp_{b}(x)=\|x,b\|,x\in X, is a seminorm on XX and the family P={pb:b∈X}P=\left\{p_{b}:b\in X\right\} of seminorms generates a locally convex topology on XX, called the natural topology induced by the 2-norm βˆ₯β‹…\|\cdot,βˆ₯.\|.

A pair (X,βˆ₯β‹…βˆ₯(X,\|\cdot\|,)whereX)whereX is a linear space and βˆ₯β‹…\|\cdot,βˆ₯a2\|a2-norm an XX will be called a 2 -normed space.

Remark 1. S.GΓ€hler [10] considered only 2 -normed space over the field 𝐑\mathbf{R} of real numbers, but his definition automatically extends to the complex scalars too.

2. Continuity and boundedness properties for bilinear functionals.

Let (X,βˆ₯β‹…βˆ₯(X,\|\cdot\|,)bea2)bea2-normed space and X1,X2X_{1},X_{2} two subspaces of XX. A 2 functional is an application f:X1Γ—X2β†’Kf:X_{1}\times X_{2}\rightarrow K. The 2-functional ff is called bilinear if:

BL 1) f(x+xβ€²,y+yβ€²)=f(x,y)+f(x,yβ€²)+f(xβ€²,y)+f(xβ€²,yβ€²)f\left(x+x^{\prime},y+y^{\prime}\right)=f(x,y)+f\left(x,y^{\prime}\right)+f\left(x^{\prime},y\right)+f\left(x^{\prime},y^{\prime}\right)
BL 2) f(Ξ±x,Ξ²y)=Ξ±Ξ²f(x,y)f(\alpha x,\beta y)=\alpha\beta f(x,y),
for all (x,y),(xβ€²,yβ€²)(x,y),\left(x^{\prime},y^{\prime}\right) in X1Γ—X2X_{1}\times X_{2} and all Ξ±,β∈K\alpha,\beta\in K.
A 2-functional f:X1Γ—X2β†’Kf:X_{1}\times X_{2}\rightarrow K is called bounded if there exists a real number Lβ‰₯0L\geq 0 (called a Lipschitz constant for ff ) such that

|f(x,y)|≀Lβˆ₯x,yβˆ₯,|f(x,y)|\leq L\|x,y\|, (2.1)

for all (x,y)∈X1Γ—X2(x,y)\in X_{1}\times X_{2}.
This notion of boundedness was introduced by A.G.White Jr. [20] who defined also the norm of a bounded bilinear functional by:

β€–fβ€–=inf{Lβ‰₯0:L is a Lipschitz constant for f}\|f\|=\inf\{L\geq 0:L\text{ is a Lipschitz constant for }f\} (2.2)

Some immediate consequences of the definition are given in:
Proposition 2.1. (A.G. White Jr. [21].) Let ( X,βˆ₯β‹…X,\|\cdot,βˆ₯)bea2βˆ’normedspace,X1,X2\|)bea2-normedspace,X_{1},X_{2} two linear subspaces of XX and f:X1Γ—X2β†’Kf:X_{1}\times X_{2}\rightarrow K a bounded bilinear functional. Then
a) f(x,y)=0f(x,y)=0, for any pair (x,y)∈X1Γ—X2(x,y)\in X_{1}\times X_{2} of linear dependent elements;
b) f(y,x)=βˆ’f(x,y)f(y,x)=-f(x,y), i.e. ff is an alternate bilinear functional;
c) The norm β€–fβ€–\|f\| of ff can be calculated also by the formulae:

β€–fβ€–\displaystyle\|f\| =sup{|f(x,y)|:(x,y)∈X1Γ—X2,βˆ₯x,yβˆ₯≀1}\displaystyle=\sup\left\{|f(x,y)|:(x,y)\in X_{1}\times X_{2},\|x,y\|\leq 1\right\} (2.3)
=sup{|f(x,y)|:(x,y)∈X1Γ—X2,βˆ₯x,yβˆ₯=1}\displaystyle=\sup\left\{|f(x,y)|:(x,y)\in X_{1}\times X_{2},\|x,y\|=1\right\}
=sup{|f(x,y)|/βˆ₯x,yβˆ₯:(x,y)∈X1Γ—X2,βˆ₯x,yβˆ₯>0}\displaystyle=\sup\left\{|f(x,y)|/\|x,y\|:(x,y)\in X_{1}\times X_{2},\|x,y\|>0\right\}

A.G.White Jr. [21] defined a kind of continuity for 2 -functionals, called subsequently 2 -continuity by S.GΓ€hler [11].

A 2 -functional f:X1Γ—X2β†’Kf:X_{1}\times X_{2}\rightarrow K, where X1,X2X_{1},X_{2} are linear subspaces of a 2 normed space (X,βˆ₯β‹…βˆ₯(X,\|\cdot\|,)iscalled2βˆ’continuousat(x0,y0)∈X1Γ—X2)iscalled2-continuousat\left(x_{0},y_{0}\right)\in X_{1}\times X_{2} if for every Ξ΅>0\varepsilon>0 there exists Ξ΄>0\delta>0 such that |f(x,y)βˆ’f(x0,y0)|<Ξ΅\left|f(x,y)-f\left(x_{0},y_{0}\right)\right|<\varepsilon whenever
(i) βˆ₯x,yβˆ’y0βˆ₯<Ξ΄\left\|x,y-y_{0}\right\|<\delta and βˆ₯x0βˆ’x,yβˆ₯<Ξ΄\left\|x_{0}-x,y\right\|<\delta, or
(ii) βˆ₯x0βˆ’x,yβˆ₯<Ξ΄\left\|x_{0}-x,y\right\|<\delta and βˆ₯x0,y0βˆ’yβˆ₯<Ξ΄\left\|x_{0},y_{0}-y\right\|<\delta

A 2-functional ff is called 2-continuous on X1Γ—X2X_{1}\times X_{2} if it is 2-continuous at every point (x,y)∈X1Γ—X2(x,y)\in X_{1}\times X_{2}.

An example of 2 -continuous 2 -functional is given by:

Proposition 2.2. (A.G. White Jr. [21, Th 2.2]) If ( X,βˆ₯β‹…X,\|\cdot,βˆ₯)isa2βˆ’normedspacethen\|)isa2-normedspacethen the 2 -functional βˆ₯β‹…\|\cdot,βˆ₯is2\|is2-continuous on XΓ—XX\times X.

It turns out that for bilinear functionals, boundedness and 2-continuity are equivalent and 2-continuity at (0,0)(0,0) implies 2-continuity on whole X1Γ—X2X_{1}\times X_{2} :

Theorem 2.3. (A.G.White Jr. [21, Theorems 2.3 and 2.4]) a) A bilinear functional f:X1Γ—X2β†’Kf:X_{1}\times X_{2}\rightarrow K is 2-continuous on X1Γ—X2X_{1}\times X_{2} if and only if it is bounded;
b) A bilinear functional f:X1Γ—X2β†’Kf:X_{1}\times X_{2}\rightarrow K which is 2-continuous at ( 0,0 ) is continuous on X1Γ—X2X_{1}\times X_{2}.
S.GΓ€hler [11] remarked that 2-continuity of a 2-functional ff on XΓ—XX\times X and its continuity with respect to the product topology on XΓ—XX\times X are different notions. By proposition 2.2 a 2 -norm is a 2 -continuous functional on XΓ—XX\times X, but S.GΓ€hler [11] exhibited an example of a 2 -norm which is not continuous on XΓ—XX\times X (with respect to the product topology) and gave conditions ensuring the continuity of a 2 -norm on XΓ—XX\times X.

There are also examples of 2-functionals which are continuous on XΓ—XX\times X with respect to the product topology but are not 2-continuous (see also S.GΓ€hler [11]).

3. Extension theorems for bounded bilinear functionals.

Let (X,βˆ₯β‹…,β‹…βˆ₯)(X,\|\cdot,\cdot\|) be a 2 -normed space, X1,X2X_{1},X_{2} two linear subspaces of XX and f:X1Γ—X2β†’Kf:X_{1}\times X_{2}\rightarrow K a bounded bilinear functional. The extension problem for ff consists in finding a bounded bilinear functional F:XΓ—Xβ†’KF:X\times X\rightarrow K such that

i) F(x,y)=f(x,y), for all (x,y)∈X1Γ—X2,\displaystyle\text{ i) }F(x,y)=f(x,y)\text{, for all }(x,y)\in X_{1}\times X_{2}\text{, } (3.1)
ii) β€–Fβ€–=β€–fβ€–.\displaystyle\text{ ii) }\|F\|=\|f\|\text{. }

We agree to call such an FF a norm preserving extension or a Hahn-Banach extension of ff. As it was remarked by S.GΓ€hler [11], p. 345 Korollar zu S. 5 und S.6, the norm preserving extension is not always possible. Some Hahn-Banach and Hahn type extension theorems for subspaces of the form YΓ—[b]Y\times[b], where YY is a linear subspace of XX, b∈Xb\in X and [b][b] denotes the subspace of XX spanned by bb, were proved in the case of real 2 -normed spaces by A.G.White Jr. [21], S.Mabizela [17] and I.FraniΔ‡ [7].

In the following we shall show that all these extension results can be derived directly from the classical Hahn-Banach theorem. This approach allows to consider simultaneously both the cases of real and complex scalars.

Our methods of proofs rely upon slight extensions of Hahn-Banach and Hahn theorems from normed to seminormed spaces.

In what follows ( X,pX,p ) will denote a seminormed space (over the field K=𝐑K=\mathbf{R} or C), with pp a nontrivial seminorm on XX (i.e. pβ‰ 0p\neq 0 ). It is well known that a linear functional xβˆ—x^{*} is continuous on XX if and only if it is bounded (or Lipschitz) on XX, i.e. there exists a number Lβ‰₯0L\geq 0 such that

|xβˆ—(x)|≀Lβ‹…p(x), for all x∈X.\left|x^{*}(x)\right|\leq L\cdot p(x),\text{ for all }x\in X. (3.2)

A number Lβ‰₯0L\geq 0 verifying (3.2) is called a Lipschitz constant for xβˆ—x^{*}.
Proposition 3.1. Let ( X,pX,p ) be a seminormed space, Xβˆ—X^{*} its conjugate space and let q:Xβˆ—β†’[0,∞)q:X^{*}\rightarrow[0,\infty) be defined by

q(xβˆ—)=sup{|xβˆ—(x)|:x∈X,p(x)≀1}q\left(x^{*}\right)=\sup\left\{\left|x^{*}(x)\right|:x\in X,p(x)\leq 1\right\} (3.3)

Then
a) |xβˆ—(x)|≀q(xβˆ—)β‹…p(x)\left|x^{*}(x)\right|\leq q\left(x^{*}\right)\cdot p(x), for all x∈Xx\in X;
b) q(xβˆ—)=inf{Lβ‰₯0:Lq\left(x^{*}\right)=\inf\left\{L\geq 0:L\right. is a Lipschitz constant for xβˆ—}\left.x^{*}\right\};
c) The functional qq is a norm on Xβˆ—X^{*} and (Xβˆ—,q)\left(X^{*},q\right) is a Banach space.

Proof. a) Since xβˆ—βˆˆXβˆ—x^{*}\in X^{*} there exists Lβ‰₯0L\geq 0 such that (3.2) holds. Now, if x∈Xx\in X is such that p(x)=0p(x)=0 then xβˆ—(x)=0x^{*}(x)=0 too, and the inequality a) is trivially verified. If p(x)>0p(x)>0 then p(1p(x)β‹…x)=1p\left(\frac{1}{p(x)}\cdot x\right)=1 so that |xβˆ—(1p(x)β‹…x)|≀q(xβˆ—)\left|x^{*}\left(\frac{1}{p(x)}\cdot x\right)\right|\leq q\left(x^{*}\right), which is equivalent to a).
b) If Lβ‰₯0L\geq 0 verifies (3.2) then |xβˆ—(x)|≀L\left|x^{*}(x)\right|\leq L, for all x∈Xx\in X with p(x)≀1p(x)\leq 1, implying q(xβˆ—)≀Lq\left(x^{*}\right)\leq L. Since Lβ‰₯0L\geq 0 is an arbitrary Lipschitz constant it follows

q(xβˆ—)≀inf{Lβ‰₯0:L is a Lipschitz constant for xβˆ—}q\left(x^{*}\right)\leq\inf\left\{L\geq 0:L\text{ is a Lipschitz constant for }x^{*}\right\}

Because q(xβˆ—)q\left(x^{*}\right) is a Lipschitz constant for xβˆ—x^{*} it follows that

q(xβˆ—)=min⁑{Lβ‰₯0:L is a Lipschitz constant for xβˆ—}q\left(x^{*}\right)=\min\left\{L\geq 0:L\text{ is a Lipschitz constant for }x^{*}\right\}

implying the equality b).
c) It is immediate from (3.3) that qq is a seminorm on Xβˆ—X^{*}. If xβˆ—β‰ 0x^{*}\neq 0 and x0∈Xx_{0}\in X is such that xβˆ—(x0)β‰ 0x^{*}\left(x_{0}\right)\neq 0 then by a)

0<|xβˆ—(x0)|≀q(xβˆ—)β‹…p(x0)0<\left|x^{*}\left(x_{0}\right)\right|\leq q\left(x^{*}\right)\cdot p\left(x_{0}\right)

implying q(xβˆ—)>0q\left(x^{*}\right)>0 and showing that qq is a norm on Xβˆ—X^{*}.
The proof that (Xβˆ—,q)\left(X^{*},q\right) is a Banach space is standard and we omit it.

Theorem 3.2. (Hahn-Banach Theorem). Let ( X,pX,p ) be a seminormed space (over K=𝐑K=\mathbf{R} or 𝐂\mathbf{C} ) with pβ‰ 0,Yp\neq 0,Y a linear subspace and yβˆ—βˆˆYβˆ—y^{*}\in Y^{*} a continuons linear functional on YY. Define q1(yβˆ—)q_{1}\left(y^{*}\right) by

q1(yβˆ—)=sup{|yβˆ—(y)|:y∈Y,p(y)≀1}q_{1}\left(y^{*}\right)=\sup\left\{\left|y^{*}(y)\right|:y\in Y,p(y)\leq 1\right\} (3.4)

Then there exists a continuous linear functional xβˆ—x^{*} on XX such that

i) xβˆ—|Y=yβˆ— and\displaystyle\text{ i) }\left.x^{*}\right|_{Y}=y^{*}\text{ and } (3.5)
ii) q(xβˆ—)=q1(yβˆ—)\displaystyle\text{ ii) }q\left(x^{*}\right)=q_{1}\left(y^{*}\right)

where q(xβˆ—)q\left(x^{*}\right) is defined by (3.3).

Proof. The functional p1:Xβ†’[0,∞)p_{1}:X\rightarrow[0,\infty) defined by p1(x)=q1(yβˆ—)β‹…p(x),x∈Xp_{1}(x)=q_{1}\left(y^{*}\right)\cdot p(x),x\in X is a seminorm on XX and |xβˆ—(y)|≀p1(y)\left|x^{*}(y)\right|\leq p_{1}(y) for all y∈Yy\in Y, i.e. yβˆ—y^{*} is dominated by p1p_{1}. By the Hahn-Banach Theorem (see e.g. [6] or [14]) there exists xβˆ—βˆˆXβˆ—x^{*}\in X^{*} such that

i) xβˆ—|Y=yβˆ—\left.\quad x^{*}\right|_{Y}=y^{*}
ii) |xβˆ—(x)|≀q1(yβˆ—)β‹…p(x)\left|x^{*}(x)\right|\leq q_{1}\left(y^{*}\right)\cdot p(x), for all x∈Xx\in X.

By (3.6) ii) and Proposition 3.1 b) we obtain q(xβˆ—)≀q1(yβˆ—)q\left(x^{*}\right)\leq q_{1}\left(y^{*}\right). The reverse inequality follows from

q(xβˆ—)\displaystyle q\left(x^{*}\right) =sup{|xβˆ—(x)|:x∈X,p(x)≀1}\displaystyle=\sup\left\{\left|x^{*}(x)\right|:x\in X,p(x)\leq 1\right\}
β‰₯sup{|xβˆ—(y)|:y∈Y,p(y)≀1}\displaystyle\geq\sup\left\{\left|x^{*}(y)\right|:y\in Y,p(y)\leq 1\right\}
=q1(yβˆ—)\displaystyle=q_{1}\left(y^{*}\right)

β–‘\square

Hahn’s theorem ([6, Lemma II. 3.12) can be transposed to the seminormed case too

Theorem 3.3. (Hahn Theorem). Let ( X,pX,p ) be a seminormed space, YY a linear subspace of XX and x0∈X\YΒ―x_{0}\in X\backslash\bar{Y}. Then there exists a functional xβˆ—βˆˆXβˆ—x^{*}\in X^{*} such that

i) xβˆ—(x0)=1 and xβˆ—(Y)={0}\displaystyle x^{*}\left(x_{0}\right)=1\text{ and }x^{*}(Y)=\{0\} (3.7)
ii) q(xβˆ—)=Ξ΄βˆ’1\displaystyle q\left(x^{*}\right)=\delta^{-1}

where Ξ΄=inf{p(x0βˆ’y):y∈Y}\delta=\inf\left\{p\left(x_{0}-y\right):y\in Y\right\}.
Proof. Observe that x0∈X\YΒ―x_{0}\in X\backslash\bar{Y} implies Ξ΄>0\delta>0. Let Z=Y+Λ™Kx0Z=Y\dot{+}Kx_{0} and let zβˆ—:Zβ†’Kz^{*}:Z\rightarrow K be defined by zβˆ—(y+Ξ±x0)=Ξ±z^{*}\left(y+\alpha x_{0}\right)=\alpha, for y∈Yy\in Y and α∈K\alpha\in K. Obviously that zβˆ—z^{*} is linear and, for Ξ±β‰ 0\alpha\neq 0,

|zβˆ—(y+Ξ±x0)|=|Ξ±|≀|Ξ±|β‹…Ξ΄βˆ’1β‹…p(Ξ±βˆ’1y+x0)=Ξ΄βˆ’1β‹…p(y+Ξ±x0)\left|z^{*}\left(y+\alpha x_{0}\right)\right|=|\alpha|\leq|\alpha|\cdot\delta^{-1}\cdot p\left(\alpha^{-1}y+x_{0}\right)=\delta^{-1}\cdot p\left(y+\alpha x_{0}\right)

Since, for Ξ±=0,|zβˆ—(y)|=0β‰€Ξ΄βˆ’1β‹…p(y)\alpha=0,\left|z^{*}(y)\right|=0\leq\delta^{-1}\cdot p(y) it follows the continuity of zβˆ—z^{*} and q1(zβˆ—)β‰€Ξ΄βˆ’1q_{1}\left(z^{*}\right)\leq\delta^{-1}, where q1(zβˆ—)=sup{|zβˆ—(z)|:z∈Z,p(z)≀1}q_{1}\left(z^{*}\right)=\sup\left\{\left|z^{*}(z)\right|:z\in Z,p(z)\leq 1\right\}. Taking a minimizing sequence (yn)βŠ†Y\left(y_{n}\right)\subseteq Y (i.e. p(x0βˆ’yn)β†’Ξ΄p\left(x_{0}-y_{n}\right)\rightarrow\delta, for nβ†’βˆžn\rightarrow\infty ), we obtain

1=zβˆ—(x0βˆ’yn)=|zβˆ—(x0βˆ’yn)|≀q1(zβˆ—)β‹…p(x0βˆ’yn),1=z^{*}\left(x_{0}-y_{n}\right)=\left|z^{*}\left(x_{0}-y_{n}\right)\right|\leq q_{1}\left(z^{*}\right)\cdot p\left(x_{0}-y_{n}\right),

which for nβ†’βˆžn\rightarrow\infty gives q1(zβˆ—)β‰₯Ξ΄βˆ’1q_{1}\left(z^{*}\right)\geq\delta^{-1}, implying q1(zβˆ—)=Ξ΄βˆ’1q_{1}\left(z^{*}\right)=\delta^{-1}.
Now Theorem 3.3 follows from Theorem 3.2 applied to ZZ and zβˆ—z^{*}. β–‘\square

Remark 2. The functional x1βˆ—βˆˆXβˆ—,x1βˆ—=Ξ΄β‹…xβˆ—x_{1}^{*}\in X^{*},x_{1}^{*}=\delta\cdot x^{*}, verifies the conditions:

i) x1βˆ—(x0)=Ξ΄ and x1βˆ—(Y)={0}\displaystyle\text{ i) }x_{1}^{*}\left(x_{0}\right)=\delta\text{ and }x_{1}^{*}(Y)=\{0\} (3.8)
ii) q(x1βˆ—)=1\displaystyle\text{ ii) }q\left(x_{1}^{*}\right)=1

Pass now to the extension theorems for bounded bilinear functionals. The reduction to Hahn-Banach and Hahn’s theorems for bounded linear functionals on seminormed linear spaces will be based on the following result:

Proposition 3.4. Let ( X,βˆ₯β‹…,β‹…βˆ₯X,\|\cdot,\cdot\| ) be a 2-normed space (over K=𝐑K=\mathbf{R} or 𝐂\mathbf{C} ), ZZ a subspace of X,b∈X\{0}X,b\in X\backslash\{0\} and let [b][b] be the subspace of XX spanned by bb. Denote by pbp_{b} the seminorm on ZZ given by

pb(z)=βˆ₯z,bβˆ₯,z∈Zp_{b}(z)=\|z,b\|,z\in Z

and let qbq_{b} be its conjugate norm on Zβˆ—Z^{*}, in the sense of Proposition 3.1. Then
a) If f:ZΓ—[b]β†’Kf:Z\times[b]\rightarrow K is a bounded bilinear functional then the functional zβˆ—:Zβ†’Kz^{*}:Z\rightarrow K defined by zβˆ—(z)=f(z,b),z∈Zz^{*}(z)=f(z,b),z\in Z is a continuous linear functional on ZZ and

qb(zβˆ—)=β€–fβ€–.q_{b}\left(z^{*}\right)=\|f\|.

b) Conversely, if zβˆ—z^{*} is a bounded linear functional on ZZ, then the 2-functional f:ZΓ—[b]β†’Kf:Z\times[b]\rightarrow K defined by f(z,Ξ±b)=Ξ±zβˆ—(z)f(z,\alpha b)=\alpha z^{*}(z), for (z,Ξ±)∈ZΓ—K(z,\alpha)\in Z\times K, is a bounded bilinear functional and

β€–fβ€–=qb(zβˆ—)\|f\|=q_{b}\left(z^{*}\right)

Proof. a) Obviously that, for a given bounded bilinear functional f:ZΓ—[b]β†’Kf:Z\times[b]\rightarrow K, the functional zβˆ—:Zβ†’Kz^{*}:Z\rightarrow K defined by zβˆ—(z)=f(z,b),z∈Zz^{*}(z)=f(z,b),z\in Z, is a linear functional on ZZ and

|zβˆ—(z)|=|f(z,b)|≀βˆ₯fβˆ₯β‹…βˆ₯z,bβˆ₯=βˆ₯fβˆ₯β‹…pb(z)\left|z^{*}(z)\right|=|f(z,b)|\leq\|f\|\cdot\|z,b\|=\|f\|\cdot p_{b}(z)

for all z∈Zz\in Z, implying that zβˆ—z^{*} is a continuous linear functional on the seminormed space (Z,pb)\left(Z,p_{b}\right) and

qb(zβˆ—)≀‖fβ€–q_{b}\left(z^{*}\right)\leq\|f\|\text{. }

On the other hand

|f(z,Ξ±b)|=|f(Ξ±z,b)|=|zβˆ—(Ξ±z)|≀qb(zβˆ—)β‹…pb(Ξ±z)=qb(zβˆ—)β‹…βˆ₯Ξ±z,bβˆ₯=qb(zβˆ—)β‹…βˆ₯z,Ξ±bβˆ₯|f(z,\alpha b)|=|f(\alpha z,b)|=\left|z^{*}(\alpha z)\right|\leq q_{b}\left(z^{*}\right)\cdot p_{b}(\alpha z)=q_{b}\left(z^{*}\right)\cdot\|\alpha z,b\|=q_{b}\left(z^{*}\right)\cdot\|z,\alpha b\|

implying that qb(zβˆ—)q_{b}\left(z^{*}\right) is a Lipschitz constant for ff, so that β€–f‖≀qb(zβˆ—)\|f\|\leq q_{b}\left(z^{*}\right) and, therefore, β€–fβ€–=qb(zβˆ—)\|f\|=q_{b}\left(z^{*}\right).
b) Suppose now that zβˆ—z^{*} is a given continuous linear functional on the seminormed space (Z,pb)\left(Z,p_{b}\right) and define f:ZΓ—[b]β†’Kf:Z\times[b]\rightarrow K by f(z,Ξ±b)=Ξ±β‹…zβˆ—(z),(z,Ξ±)∈ZΓ—Kf(z,\alpha b)=\alpha\cdot z^{*}(z),(z,\alpha)\in Z\times K. Obviously that ff is a bilinear functional and

|f(z,Ξ±b)|=|Ξ±zβˆ—(z)|=|zβˆ—(Ξ±z)|≀qb(zβˆ—)β‹…pb(Ξ±z)==qb(zβˆ—)β‹…βˆ₯Ξ±z,bβˆ₯=qb(zβˆ—)β‹…βˆ₯z,Ξ±bβˆ₯\begin{gathered}|f(z,\alpha b)|=\left|\alpha z^{*}(z)\right|=\left|z^{*}(\alpha z)\right|\leq q_{b}\left(z^{*}\right)\cdot p_{b}(\alpha z)=\\ =q_{b}\left(z^{*}\right)\cdot\|\alpha z,b\|=q_{b}\left(z^{*}\right)\cdot\|z,\alpha b\|\end{gathered}

for all (z,Ξ±)∈ZΓ—K(z,\alpha)\in Z\times K, showing that ff is a bounded bilinear functional and that β€–f‖≀qb(zβˆ—)\|f\|\leq q_{b}\left(z^{*}\right).

Taking into account the fact that pb(z)=βˆ₯z,bβˆ₯p_{b}(z)=\|z,b\| we obtain

qb(zβˆ—)=sup{|zβˆ—(z)|:z∈Z,βˆ₯z,bβˆ₯≀1}=sup{|f(z,b)|:z∈Z,βˆ₯z,bβˆ₯≀1}≀≀sup{|f(z,Ξ±b)|:(z,Ξ±)∈ZΓ—K,βˆ₯z,Ξ±bβˆ₯≀1}=βˆ₯fβˆ₯\begin{gathered}q_{b}\left(z^{*}\right)=\sup\left\{\left|z^{*}(z)\right|:z\in Z,\|z,b\|\leq 1\right\}=\sup\{|f(z,b)|:z\in Z,\|z,b\|\leq 1\}\leq\\ \leq\sup\{|f(z,\alpha b)|:(z,\alpha)\in Z\times K,\|z,\alpha b\|\leq 1\}=\|f\|\end{gathered}

Again the equality β€–fβ€–=qb(zβˆ—)\|f\|=q_{b}\left(z^{*}\right) holds.

Now we are in position to prove the promised extension theorem.

Theorem 3.5. (Hahn-Banach Extension Theorem, A.G.White Jr. [21, Th.2.7]) Let (X,βˆ₯β‹…βˆ₯(X,\|\cdot\|,)bea2)bea2-normed space (over K=𝐑K=\mathbf{R} or 𝐂\mathbf{C} ), YY a subspace of X,b∈XX,b\in X and let [b] be the subspace of XX spanned by b. If f:YΓ—[b]β†’Kf:Y\times[b]\rightarrow K is a bounded bilinear functional then there exists a bounded bilinear functional F:XΓ—[b]β†’KF:X\times[b]\rightarrow K such that

i) F|YΓ—[b]=f, and\displaystyle\text{ i) }\left.\quad F\right|_{Y\times[b]}=f\text{, and } (3.9)
ii) β€–Fβ€–=β€–fβ€–.\displaystyle\text{ ii) }\quad\|F\|=\|f\|\text{. }

Proof. Let pb:Xβ†’[0,∞)p_{b}:X\rightarrow[0,\infty) be the seminorm defined by pb(x)=βˆ₯x,bβˆ₯,x∈Xp_{b}(x)=\|x,b\|,x\in X, and let yβˆ—:Yβ†’Ky^{*}:Y\rightarrow K be given by yβˆ—(y)=f(y,b)y^{*}(y)=f(y,b). Then by Proposition 3.4 a ), yβˆ—y^{*} is a continuous linear functional on YY and qbβ€²(yβˆ—)=β€–fβ€–q_{b}^{\prime}\left(y^{*}\right)=\|f\|, where

qbβ€²(yβˆ—)=sup{|yβˆ—(y)|:y∈Y,pb(y)≀1}.q_{b}^{\prime}\left(y^{*}\right)=\sup\left\{\left|y^{*}(y)\right|:y\in Y,p_{b}(y)\leq 1\right\}. (3.10)

By Theorem 3.2 there exists a bounded linear functional xβˆ—βˆˆXβˆ—x^{*}\in X^{*} such that xβˆ—|Y=yβˆ—\left.x^{*}\right|_{Y}=y^{*} and qb(xβˆ—)=qbβ€²(yβˆ—)q_{b}\left(x^{*}\right)=q_{b}^{\prime}\left(y^{*}\right), where

qb(xβˆ—)=sup{|xβˆ—(x)|:x∈X,pb(x)≀1}q_{b}\left(x^{*}\right)=\sup\left\{\left|x^{*}(x)\right|:x\in X,p_{b}(x)\leq 1\right\} (3.11)

Defining now F:XΓ—[b]β†’KF:X\times[b]\rightarrow K by F(x,Ξ±b)=Ξ±β‹…xβˆ—(x)F(x,\alpha b)=\alpha\cdot x^{*}(x), for (x,Ξ±)∈XΓ—K(x,\alpha)\in X\times K and applying Proposition 3.4 b) it follows that the bilinear functional FF fulfils all the requierements of the Theorem. β–‘\square

The analogue of Hahn’s theorem for bilinear functionals is:

Theorem 3.6. (S.Mabizela [17, Th.2]) Let ( X,βˆ₯β‹…X,\|\cdot,βˆ₯)bea2\|)bea2-normed space over K=𝐑K=\mathbf{R} or 𝐂,Y\mathbf{C},Y a linear subspace of X,b∈XX,b\in X and [b][b] the subspace of XX spanned by bb. If x0∈Xx_{0}\in X is such that Ξ΄>0\delta>0, where

Ξ΄=inf{βˆ₯x0βˆ’y,bβˆ₯:y∈Y}\delta=\inf\left\{\left\|x_{0}-y,b\right\|:y\in Y\right\} (3.12)

then there exists a bounded bilinear functional F:XΓ—[b]β†’KF:X\times[b]\rightarrow K such that

i) F(x0,b)=1,F(y,b=0) for all y∈Y, and\displaystyle\text{ i) }F\left(x_{0},b\right)=1,F(y,b=0)\text{ for all }y\in Y\text{, and } (3.13)
ii) β€–Fβ€–=Ξ΄βˆ’1\displaystyle\text{ ii) }\|F\|=\delta^{-1}

Proof. Consider again the seminormed space (X,pb)\left(X,p_{b}\right), where pb(x)=βˆ₯x,bβˆ₯,x∈Xp_{b}(x)=\|x,b\|,x\in X, and apply Theorem 3.3 to obtain a bounded linear functional xβˆ—x^{*} on XX such that

i) xβˆ—(x0)=1 and xβˆ—(Y)={0}, and\displaystyle\text{ i) }x^{*}\left(x_{0}\right)=1\text{ and }x^{*}(Y)=\{0\}\text{, and } (3.14)
ii) qb(xβˆ—)=Ξ΄βˆ’1.\displaystyle\text{ ii) }q_{b}\left(x^{*}\right)=\delta^{-1}\text{. }

where qb(xβˆ—)q_{b}\left(x^{*}\right) is given by (3.11).
Defining F:XΓ—[b]β†’KF:X\times[b]\rightarrow K by F(x,Ξ±b)=Ξ±β‹…xβˆ—(x),(x,Ξ±)∈XΓ—KF(x,\alpha b)=\alpha\cdot x^{*}(x),(x,\alpha)\in X\times K, and applying Proposition 3.4 b), it follows that the bounded bilinear functional FF verifies the conditions (3.13) of the Theorem. β–‘\square

Remark 3. S.Mabizela [17, Th.2] requieres for x0x_{0} and bb to be linearly independent. Observe that if x0,bx_{0},b are linearly dependent then, by the axiom

BN 1) in Section 1, βˆ₯x0,bβˆ₯=0\left\|x_{0},b\right\|=0 and a fortiori Ξ΄=0\delta=0, because

0≀δ≀βˆ₯x0βˆ’0,bβˆ₯=βˆ₯x0,bβˆ₯=00\leq\delta\leq\left\|x_{0}-0,b\right\|=\left\|x_{0},b\right\|=0

Therefore the hypothesis δ>0\delta>0 forces x0x_{0} and bb to be linearly independent and x0∈X\Y¯x_{0}\in X\backslash\bar{Y}, where Y¯\bar{Y} denotes the closure of YY in the seminormed space (X,pb)\left(X,p_{b}\right).

An immediate consequence of Theorem 3.6 is the following result, known also as Hahn’s Theorem:

Theorem 3.7. If ( X,βˆ₯β‹…X,\|\cdot,βˆ₯)isa2\|)isa2-normed space and x0,bx_{0},b are linearly independent elements in XX then there exists a bounded bilinear functional F:XΓ—[b]β†’KF:X\times[b]\rightarrow K such that:

i) F(x0,b)=βˆ₯x0,bβˆ₯, and\displaystyle\text{ i) }F\left(x_{0},b\right)=\left\|x_{0},b\right\|\text{, and } (3.15)
ii) β€–Fβ€–=1.\displaystyle\text{ ii) }\|F\|=1\text{. }

Proof. Putting Y={0}Y=\{0\} in Theorem 3.6 and taking into account the linear independence of x0x_{0} and bb, one obtains Ξ΄=βˆ₯x0,bβˆ₯>0Λ™\delta=\left\|x_{0},b\right\|>\dot{0}.

By Theorem 3.6, it follows the existence of a bounded bilinear functional GG : XΓ—[b]β†’KX\times[b]\rightarrow K such that G(x0,b)=1G\left(x_{0},b\right)=1 and β€–Gβ€–=Ξ΄βˆ’1\|G\|=\delta^{-1}. Then F=Ξ΄β‹…GF=\delta\cdot G satisfies the conditions (3.15) of the theorem.

4. Unique extension of bounded bilinear functionals and unique best approximation

For a 2 -normed space (X,βˆ₯β‹…βˆ₯(X,\|\cdot\|,),asubspaceY),asubspaceY of XX and b∈Xb\in X denote by Ybβ™―Y_{b}^{\sharp} the linear space of all bounded bilinear functionals on YΓ—[b]Y\times[b]. Equipped with the norm (2.2), Ybβ™―Y_{b}^{\sharp} is a Banach space (see A.G.White Jr.[20]) The Banach space Xbβ™―X_{b}^{\sharp} is defined similarly.

For f∈Ybβ™―f\in Y_{b}^{\sharp} denote by E(f)E(f) the set of all norm-preserving extensions of ff to XΓ—[b]X\times[b], i.e.

E(f)={F∈Xbβ™―:F|YΓ—[b]=f and β€–Fβ€–=β€–fβ€–}E(f)=\left\{F\in X_{b}^{\sharp}:\left.F\right|_{Y\times[b]}=f\text{ and }\|F\|=\|f\|\right\} (4.1)

By Theorem 3.5, E(f)β‰ Ο•E(f)\neq\phi and E(f)E(f) is a convex subset of the unit sphere S(0,β€–fβ€–)={G∈Xbβ™―:β€–Gβ€–=β€–fβ€–}S(0,\|f\|)=\left\{G\in X_{b}^{\sharp}:\|G\|=\|f\|\right\}. Indeed, for F1,F2∈E(f)F_{1},F_{2}\in E(f) and λ∈[0,1]\lambda\in[0,1],

(Ξ»F1+(1βˆ’Ξ»)F2)|YΓ—[b]=f\left.\left(\lambda F_{1}+(1-\lambda)F_{2}\right)\right|_{Y\times[b]}=f

and

β€–Ξ»F1+(1βˆ’x)F2‖≀λ‖F1β€–+(1βˆ’Ξ»)β€–F2β€–=Ξ»β€–fβ€–+(1βˆ’Ξ»)β€–fβ€–=β€–fβ€–.\left\|\lambda F_{1}+(1-x)F_{2}\right\|\leq\lambda\left\|F_{1}\right\|+(1-\lambda)\left\|F_{2}\right\|=\lambda\|f\|+(1-\lambda)\|f\|=\|f\|.

Denoting G=Ξ»F1+(1βˆ’Ξ»)F2G=\lambda F_{1}+(1-\lambda)F_{2} it follows G|YΓ—[b]=f\left.G\right|_{Y\times[b]}=f and

βˆ₯Gβˆ₯=sup{|G(x,Ξ±b)|:(y,Ξ±)∈XΓ—K,βˆ₯x,Ξ±bβˆ₯≀1}β‰₯\displaystyle\|G\|=\sup\{|G(x,\alpha b)|:(y,\alpha)\in X\times K,\|x,\alpha b\|\leq 1\}\geq
β‰₯sup{|G(y,Ξ±b)|:(y,Ξ±)∈YΓ—K,βˆ₯y,Ξ±bβˆ₯≀1}=βˆ₯fβˆ₯\displaystyle\geq\sup\{|G(y,\alpha b)|:(y,\alpha)\in Y\times K,\|y,\alpha b\|\leq 1\}=\|f\|

For a subspace YY of a 2 -normed space (X,βˆ₯β‹…βˆ₯(X,\|\cdot\|,)let)let

YbβŸ‚={G∈Xbβ™―:G(YΓ—[b])={0}}Y_{b}^{\perp}=\left\{G\in X_{b}^{\sharp}:G(Y\times[b])=\{0\}\right\} (4.2)

be the annihilator of YY in Xbβ™―X_{b}^{\sharp}.
For a nonvoid subset ZZ of Xbβ™―X_{b}^{\sharp} the distance of an element F∈Xbβ™―F\in X_{b}^{\sharp} to ZZ is defined by

d(F,Z)=inf{βˆ₯Fβˆ’Gβˆ₯:G∈Z}.d(F,Z)=\inf\{\|F-G\|:G\in Z\}. (4.3)

An element G0∈ZG_{0}\in Z such that β€–Fβˆ’G0β€–=d(F,Z)\left\|F-G_{0}\right\|=d(F,Z) is called an element of best approximation (or a nearest point) for FF in ZZ.

Let

PZ(F)={G∈Z:β€–Fβˆ’Gβ€–=d(F,Z)}P_{Z}(F)=\{G\in Z:\|F-G\|=d(F,Z)\} (4.4)

denote the set of all elements of best approximation for FF in ZZ. The set ZZ is called proximinal if PZ(F)β‰ βˆ…P_{Z}(F)\neq\emptyset for all F∈Xbβ™―F\in X_{b}^{\sharp}, Chebyshev provided PZ(F)P_{Z}(F) is a singleton for all F∈Xbβ™―F\in X_{b}^{\sharp} and semi-Chebyshev if card⁑PZ(F)≀1\operatorname{card}P_{Z}(F)\leq 1, for all F∈Xbβ™―F\in X_{b}^{\sharp}.

A subspace of the form YbβŸ‚Y_{b}^{\perp} of Xbβ™―X_{b}^{\sharp} is always proximinal and we have simple formulae for the distance of an element F∈Xbβ™―F\in X_{b}^{\sharp} to YbβŸ‚Y_{b}^{\perp} and for the set of nearest points.

Theorem 4.1. If (X,βˆ₯β‹…β‹…βˆ₯)(X,\|\cdot\cdot\|) is a 2 -normed space, YY a subspace of X,b∈XX,b\in X and F∈Xb#F\in X_{b}^{\#} then

d(F,YbβŸ‚)=βˆ₯F|YΓ—[b]βˆ₯d\left(F,Y_{b}^{\perp}\right)=\left\|\left.F\right|_{Y\times[b]}\right\| (4.5)

Moreover, YbβŸ‚Y_{b}^{\perp} is a proximinal subspace of Xb#X_{b}^{\#} and

PYbβŸ‚(F)=Fβˆ’E(F|YΓ—[b])={Fβˆ’H:H∈E(F|YΓ—[b])}P_{Y_{b}^{\perp}}(F)=F-E\left(\left.F\right|_{Y\times[b]}\right)=\left\{F-H:H\in E\left(\left.F\right|_{Y\times[b]}\right)\right\} (4.6)

Proof. Since (Fβˆ’G)|YΓ—[b]=F|YΓ—[b]\left.(F-G)\right|_{Y\times[b]}=\left.F\right|_{Y\times[b]}, for any G∈YbβŸ‚G\in Y_{b}^{\perp} it follows

βˆ₯F|YΓ—[b]βˆ₯=βˆ₯(Fβˆ’G)|YΓ—[b]βˆ₯≀βˆ₯Fβˆ’Gβˆ₯,\left\|\left.F\right|_{Y\times[b]}\right\|=\left\|\left.(F-G)\right|_{Y\times[b]}\right\|\leq\|F-G\|,

so that

βˆ₯F|YΓ—[b]βˆ₯≀d(F,YbβŸ‚)\left\|\left.F\right|_{Y\times[b]}\right\|\leq d\left(F,Y_{b}^{\perp}\right)

To prove the reverse inequality observe that f=F|YΓ—[b]∈Ybβ™―f=\left.F\right|_{Y\times[b]}\in Y_{b}^{\sharp}. Now if HH is a normpreserving extension of ff to XΓ—[b]X\times[b] then Fβˆ’H∈YbβŸ‚F-H\in Y_{b}^{\perp} and

βˆ₯F|YΓ—[b]βˆ₯=βˆ₯Hβˆ₯=βˆ₯Fβˆ’(Fβˆ’H)βˆ₯β‰₯d(F,YbβŸ‚)\left\|\left.F\right|_{Y\times[b]}\right\|=\|H\|=\|F-(F-H)\|\geq d\left(F,Y_{b}^{\perp}\right)

proving the formula (4.5).
For H∈E(F|YΓ—[b])H\in E\left(\left.F\right|_{Y\times[b]}\right) we have Fβˆ’H∈YbβŸ‚F-H\in Y_{b}^{\perp} and βˆ₯Fβˆ’(Fβˆ’H)βˆ₯=βˆ₯Hβˆ₯=βˆ₯F|YΓ—[b]βˆ₯=d(F,YbβŸ‚)\|F-(F-H)\|=\|H\|=\left\|\left.F\right|_{Y\times[b]}\right\|=d\left(F,Y_{b}^{\perp}\right), showing that Fβˆ’HF-H is a nearest point to FF in YβŸ‚Y^{\perp}.

Conversely, if GG is a nearest point to FF in YbβŸ‚Y_{b}^{\perp} then (Fβˆ’G)|YΓ—[b]=F|YΓ—[b]\left.(F-G)\right|_{Y\times[b]}=\left.F\right|_{Y\times[b]} and, denoting H=Fβˆ’GH=F-G, it follows G=Fβˆ’HG=F-H and

βˆ₯Hβˆ₯=βˆ₯Fβˆ’Gβˆ₯=d(F,YbβŸ‚)=βˆ₯F|YΓ—[b]βˆ₯\|H\|=\|F-G\|=d\left(F,Y_{b}^{\perp}\right)=\left\|\left.F\right|_{Y\times[b]}\right\|

showing that HH is a norm preserving extension for F|YΓ—[b]\left.F\right|_{Y\times[b]}. The equality (4.6) is proved and since, by Theorem 3.5, E(F|YΓ—[b])β‰ βˆ…E\left(\left.F\right|_{Y\times[b]}\right)\neq\emptyset, for all F∈Xbβ™―F\in X_{b}^{\sharp}, it follows the proximinality of the subspace YbβŸ‚Y_{b}^{\perp} in Xbβ™―X_{b}^{\sharp}.

Now we are in position to state and prove the duality theorem relating the uniqueness of extension and of best approximation. Recall that for normed linear spaces and bounded linear functionals a similar result was first proved by R.R.Phelps [18].

Theorem 4.2. Let (X,βˆ₯β‹…βˆ₯(X,\|\cdot\|,)bea2βˆ’normedspace,Y)bea2-normedspace,Y a subspace of XX and b∈Xb\in X. Then the following assertions are equivalent:
101^{0} Every f∈Ybβ™―f\in Y_{b}^{\sharp} has a unique norm preserving extension to XΓ—[b]X\times[b];
20YbβŸ‚2^{0}Y_{b}^{\perp} is a Chebyshev subspace of the Banach space Xbβ™―X_{b}^{\sharp}.
Proof. The Theorem is an immediate consequence of the formula (4.6) from Theorem 4.1.

References

[1] S. Cobzaş, C. MustΔƒΕ£a,Norm-preserving extension of convex Lipschitz functions, Journal of Approx. Theory 24 (1978), 236-244.
[2] S.Cobzaş, C.MustΔƒΕ£a, Extension of bilinear operators and best approximation in 2-normed spaces, Rev.Anal.NumΓ©r. ThΓ©or.Approx. 25 (1996),61-75.
[3] C. Diminnie, S. GΓ€hler, A. White,Strictly convex linear 2-normed spaces, Math. Nachr. 59 (1974), 319-324
[4] C. Diminnie, S. GΓ€hler, A. White,Remarks on strictly convex and strictly 2-convex 2-normed spaces, Math. Nachr. 88 (1979), 363-372.
[5] C. Diminnie, A. White,Some geometric remarks concerning strictly 2-convex 2-normed spaces, Math. Seminar Notes, Kobe Univ., 6 (1978), 245-253.
[6] N. Dunford, J. T. Schwartz, Linear Operators, Part.I: General Theory, Interscience Publishers, New York, 1958.
[7] I. Franić,An extension theorem for bounded linear 2-functionals and applications, Math. Japonica,40 (1994), 79-85.
[8] R. W. Freese, Y. J. Cho, Characterization of linear 2-normed spaces, Math. Japonica 40 (1994), 115-122.
[9] S. GΓ€hler,2-Metrische RΓ€ume und ihre Topologische Struktur, Math. Nachr. 26 (1963/64), 115-148.
[10] S. GΓ€hler,Lineare 2-Normierte RΓ€ume, Math. Nachr. 28 (1965), 335-347.
[11] S. GÀhler, Über 2-Banach-RÀume, Math. Nachr. 42 (1969), 335-347.
[12] K. S. Ha, Y. J. Cho, A. White, Strictly convex and strictly 2-convex 2-normed spaces, Math. Japonica 33 (1988), 375-384.
[13] K. Iseki, Mathematics on 2-normed spaces, Bull.Korean Math.Soc. 13 (1976), 127-136.
[14] G. KΓΆthe,Topologische Lineare RΓ€ume, vol.I, Springer Verlag, Berlin-GΓΆttingen-Heidelberg, 1960.
[15] S. N. Lal, M. Das,2-functionals and some extension theorems in linear spaces, Indian J. Pure Appl. Math. 13 (8) (1982), 912-919.
[16] S. Mabizela, A characterization of strictly convex linear 2-normed spaces, Quaestiones Mathematicae 12 (1989), 201-204.
[17] S. Mabizela, On bounded linear 2-functionals, Math. Japonica 35 (1990), 51-55.
[18] C. Mustăta, Best approximation and unique extension of Lipschitz functions, J.Approx. Theory 19 (1977), 222-230.
[19] R. R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
[20] I. Singer,Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Publishing House of the Romanian Academy and Springer Verlag, Bucharest-Berlin, 1970.
[21] A. G. White Jr.,2-Banach spaces, Math. Nachr. 42 (1969), 43-60.
[22] A. G. White Jr., Yeol Je Cho,Linear mappings on linear 2-normed spaces, Bull. Korean Math. Soc. 21 (1984), 1-6.

Babes-Bolyai University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu 1, RO-3400 Cluj-Napoca, Romania.

Institute of Mathematics, 37, Republicii Str., Cluj-Napoca, Romania

ON SOME o-SCHUNCK CLASSES

RODICA COVACI

1. Preliminaries

All groups considered in the paper are finite. We denote by oo an arbitrary set of primes and by oβ€²o^{\prime} the complement to oo in the set of all primes.

Definition 1.1. a) A class XΒ―\underline{X} of groups is a homomorph if XΒ―\underline{X} is closed under homomorphisms.
b) A group GG is primitive if GG has a stabilizer, i.e. a maximal subgroup WW with coreG⁑W=1\operatorname{core}_{G}W=1, where

coreG⁑W=3{Wg/gΟ‡G}.\operatorname{core}_{G}W=3\left\{W^{g}/g\chi G\right\}.

c) A homomorph 𝐗\mathbf{X} is a Schunck class if 𝐗\mathbf{X} is primitively closed, i.e. if any group GG, all of whose primitive factor groups are in 𝐗¯\underline{\mathbf{X}}, is itself in 𝐗¯\underline{\mathbf{X}}.

Definition 1.2. Let XΒ―\underline{\mathrm{X}} be a class of groups, GG a group and HH a subgroup of GG. We say that:
a) HH is an 𝐗¯\underline{\mathbf{X}}-subgroup of GG if Hχ𝐗¯H\chi\underline{\mathbf{X}};
b) HH is an 𝐗¯\underline{\mathbf{X}}-maximal subgroup of GG if:
(1) Hχ𝐗¯H\chi\underline{\mathbf{X}};
(2) from H[Hβˆ—[G,Hβˆ—Ο‡π—Β―H\left[H^{*}\left[G,H^{*}\chi\underline{\mathbf{X}}\right.\right. follows H=Hβˆ—H=H^{*}.

00footnotetext: 1991 Mathematics Subject Classification. 20D10.

c) HH is an XΒ―\underline{\mathrm{X}}-covering subgroup of GG if :
(1) Hχ𝐗¯H\chi\underline{\mathbf{X}};
(2) H[V[G,V0↔V,V/V0χ𝐗¯H\left[V\left[G,V_{0}\leftrightarrow V,V/V_{0}\chi\underline{\mathbf{X}}\right.\right. imply V=HV0V=HV_{0}.

Obviously we have:

Proposition 1.3. Let XΒ―\underline{X} be a homomorph, GG a group and HH a subgroup of GG. If HH is an 𝐗¯\underline{\mathbf{X}}-covering subgroup of GG, then HH is 𝐗¯\underline{\mathbf{X}}-maximal in GG.

The converse of 1.3. does not hold generally.

Definition 1.4. a) A group GG is o-solvable if any chief factor of GG is either a solvable oo-group or a oβ€²o^{\prime}-group. For oo the set of all primes we obtain the notion of "solvable group".
b) A class 𝐗\mathbf{X} of groups is said to be 𝒐\boldsymbol{o}-closed if:

G/OΟ€β€²(G)βˆˆπ—Β―β‡’Gβˆˆπ—Β―,G/O\pi^{\prime}(G)\in\underline{\mathbf{X}}\Rightarrow G\in\underline{\mathbf{X}},

where OΟ€(G)O\pi(G) denotes the largest normal Ο€β€²\pi^{\prime}-subgroup of GG. We shall call Ο€\pi-homomorph a Ο€\pi-closed homomorph and Ο€\pi-Schunck class a Ο€\pi-closed Schunck class.

In our considerations we shall use the following result of R. Baer given in [1]:

Theorem 1.5. A solvable minimal normal subgroup of a group is abelian.

2. Ore’s generalized theorems

In [4] we obtained a generalization on Ο€\pi-solvable groups of some of Ore’s theorems given only for solvable groups. In this paper we shall use the following of them:

Theorem 2.1. Let GG be a primitive Ο€\pi-solvable group. If GG has a minimal normal subgroup which is a solvable Ο€\pi-group, then GG has one and only one minimal normal subgroup.

Theorem 2.2. If GG is a primitive Ο€\pi-solvable group and NN is a minimal normal subgroup of GG which is a solvable Ο€\pi-group, then CG(N)=NC_{G}(N)=N.

Theorem 2.3. Let GG be a Ο€\pi-solvable group such that:
(i) there is a minimal normal subgroup MM of GG which is a solvable Ο€\pi-group and CG(M)=M;C_{G}(M)=M;
(ii) there is a minimal normal subgroup L/ML/M of G/MG/M such that L/ML/M is a Ο€β€²\pi^{\prime}-group. Then GG is primitive.

Theorem 2.4. If GG is a Ο€\pi-solvable group satisfying (i) and (ii) from 2.3., then any two stabilizers W1W_{1} and W2W_{2} of GG are conjugate in GG.

3. Some special Ο€\pi-Schunck classes

Ore’s generalized theorems are a powerful tool in the formation theory of Ο€\pi solvable groups. This is proved by [5], which we complete here with new results. We first give a new proof, based on Ore’s generalized theorems, for the equivalence of 𝐃\mathbf{D}, 𝐀\mathbf{A} and B properties (given in [7] and [3] ) on a Ο€\pi-Schunck class.

Definition 3.1. ([7]; [3]) Let 𝐗¯\underline{\mathbf{X}} be a Ο€\pi-Schunck class. We say that 𝐗¯\underline{\mathbf{X}} has the DD property if for any Ο€\pi-solvable group GG, every 𝐗\mathbf{X}-subgroup HH of GG is contained in an 𝐗\mathbf{X} - covering subgroup EE of GG.

Remark 3.2. Definition 3.1. has sense because of the existence theorem of 𝐗\mathbf{X}-covering subgroups in finite Ο€\pi-solvable groups ( [5] ), where 𝐗¯\underline{\mathbf{X}} is a Ο€\pi-Schunck class. Furthermore, any two covering subgroups are conjugate.

Theorem 3.3. Let XΒ―\underline{\mathrm{X}} be a Ο€\pi-Schunck class. XΒ―\underline{\mathrm{X}} has the DD property if and only if in any Ο€\pi-solvable group GG, every XΒ―\underline{\mathrm{X}}-maximal subgroup is an XΒ―\underline{\mathrm{X}}-covering subgroup.

Proof. Suppose 𝐗\mathbf{X} has the DD property. Let GG be a Ο€\pi-solvable group and HH an 𝐗¯\underline{\mathbf{X}}-maximal subgroup of GG. Obviously Hβˆˆπ—Β―H\in\underline{\mathbf{X}}. Applying the DD property we obtain that HβŠ†EH\subseteq E, where EE is an 𝐗¯\underline{\mathbf{X}}-covering subgroup of GG. But HH is 𝐗¯\underline{\mathbf{X}}-maximal in GG. It follows that H=EH=E and so HH is an 𝐗¯\underline{\mathbf{X}}-covering subgroup of GG.

Conversely, suppose that in any Ο€\pi-solvable group GG every 𝐗¯\underline{\mathbf{X}}-maximal subgroup is an XΒ―\underline{\mathrm{X}}-covering subgroup. Let GG be a Ο€\pi-solvable group and HH an XΒ―\underline{\mathrm{X}}-subgroup of GG. If HH itself is 𝐗¯\underline{\mathbf{X}}-maximal in GG, we put E=HE=H and EE is an 𝐗¯\underline{\mathbf{X}}-covering subgroup of GG. If HH is not 𝐗¯\underline{\mathbf{X}}-maximal in GG, let EE be an 𝐗¯\underline{\mathbf{X}}-maximal subgroup of GG such that HβŠ†EH\subseteq E. Then HβŠ†EH\subseteq E and EE is an 𝐗¯\underline{\mathbf{X}}-covering subgroup of GG. So 𝐗¯\underline{\mathbf{X}} has the DD property. β–‘\square

Definition 3.4. ( [7];[3] )
a) The Ο€\pi-Schunck class 𝐗¯\underline{\mathbf{X}} has the AA property if for any Ο€\pi-solvable group GG and any subgroup HH of GG with coreG⁑Hβ‰ 1\operatorname{core}_{G}H\neq 1, every 𝐗¯\underline{\mathbf{X}}-covering subgroup of HH is contained in an 𝐗\mathbf{X}-covering subgroup of GG.
b) Let GG be a group and SS a subgroup of GG. The subgroup SS avoids the chief factor M/NM/N of GG if S∩MβŠ†NS\cap M\subseteq N. Particularly, if NN is a minimal normal subgroup of G,SG,S avoids NN if S∩N=1S\cap N=1.
c) The Ο€\pi-Schunck class 𝐗¯\underline{\mathbf{X}} has the BB property if for any Ο€\pi-solvable group GG and any minimal normal subgroup NN of GG, the existence of an XΒ―\underline{\mathrm{X}}-covering subgroup of GG which avoids NN implies that every 𝐗\mathbf{X}-maximal subgroup of GG avoids NN.

Theorem 3.5. Let XΒ―\underline{\mathrm{X}} be a Ο€\pi-Schunck class. The following statements are equivalent:
(i) XΒ―\underline{\mathrm{X}} has the A property;
(ii) XΒ―\underline{\mathrm{X}} has the DD property;
(iii) XΒ―\underline{\mathrm{X}} has the BB property.

Proof. A proof of 3.5. is given in [3], using some of R. Baer’s theorems from [1]. We consider the same proof like in [3] for (2) β‡’\Rightarrow (3) and for (3) β‡’(1)\Rightarrow(1).

A new proof is given here for (1) β‡’\Rightarrow (2). This proof is based on Ore’s generalized theorems. Let 𝐗¯\underline{\mathbf{X}} be a Ο€\pi-Schunck class and suppose that 𝐗¯\underline{\mathbf{X}} has the AA property. In order to prove that XΒ―\underline{\mathrm{X}} has the DD property we use 3.3. Let GG be a Ο€\pi-solvable group and HH an XΒ―\underline{\mathrm{X}} - maximal subgroup of GG. Let now SS be an XΒ―\underline{\mathrm{X}}-covering subgroup of GG ( SS exists by 3.2.). We shall prove by induction on |G||G| that HH and SS are conjugate in GG. Two cases are considered:

  1. 1.

    Gβˆˆπ—Β―G\in\underline{\mathbf{X}}. Then H=S=GH=S=G.

  2. 2.

    Gβˆ‰π—Β―G\notin\underline{\mathbf{X}}. Let NN be a minimal normal subgroup of GG. Applying the induction on G/NG/N, we deduce that HN=SgNHN=S^{g}N, where g∈Gg\in G. Hence HβŠ†SgNH\subseteq S^{g}N. Again two cases are considered:
    a) SgNβŠ‚GS^{g}N\subset G. Applying the induction on SgNS^{g}N, we obtain that HH and SgS^{g} are conjugate in SgNS^{g}N. Hence HH and SS are conjugate in GG.
    b) SgN=GS^{g}N=G. It follows that G=(SN)gG=(SN)^{g}, hence SgN=G=SNS^{g}N=G=SN. If coreG⁑Sβ‰ 1\operatorname{core}_{G}S\neq 1, the induction on G/coreG⁑SG/\operatorname{core}_{G}S leads to HxcoreG⁑S=SH^{x}\operatorname{core}_{G}S=S, where x∈Gx\in G. Then HxβŠ†SH^{x}\subseteq S. So Hx=SH^{x}=S, which means that HH and SS are conjugate in GG. Let now core SG=1.G{}_{G}S=1.G being Ο€\pi-solvable, NN is either a solvable Ο€\pi-group or a Ο€β€²\pi^{\prime}-group. Supposing that NN is a Ο€β€²\pi^{\prime}-group we have N≀OΟ€β€²(G)N\leq O\pi^{\prime}(G) and

G/OΟ€β€²(G)Ο†(G/N)/(OΟ€β€²(G)/N)G/O\pi^{\prime}(G)\varphi(G/N)/\left(O\pi^{\prime}(G)/N\right)

where

G/N=SN/NΟ†S/S3Nχ𝐗¯.G/N=SN/N\varphi S/S3N\chi\underline{\mathbf{X}}.

So G/OΟ€β€²(G)βˆˆπ—Β―G/O\pi^{\prime}(G)\in\underline{\mathbf{X}}, which implies by the Ο€\pi-closure of 𝐗¯\underline{\mathbf{X}} that Gβˆˆπ—Β―G\in\underline{\mathbf{X}}, a contradiction. It follows that NN is a solvable Ο€\pi-group, hence by 1.5., NN is abelian. This and G=SNG=SN lead to S∩N=1S\cap N=1 and SS is a maximal subgroup of GG. From Hβˆˆπ—Β―H\in\underline{\mathbf{X}} and Gβˆ‰π—Β―G\notin\underline{\mathbf{X}} we have HβŠ‚GH\subset G. Let MM be a maximal subgroup of GG such that HβŠ†MH\subseteq M. Applying the induction on MM it follows that HH is an 𝐗¯\underline{\mathbf{X}}-covering subgroup of MM. We consider now two possibilities:
b.1) coreG⁑Mβ‰ 1\operatorname{core}_{G}M\neq 1. Applying the AA property on G,M<G,coreG⁑Mβ‰ 1G,M<G,\operatorname{core}_{G}M\neq 1, the 𝐗¯\underline{\mathbf{X}} covering subgroup HH of MM and the 𝐗¯\underline{\mathbf{X}}-covering subgroup SS of GG, we obtain HβŠ†SxH\subseteq S^{x}, where x∈Gx\in G. Hence H=SxH=S^{x}. So HH and SS are conjugate in GG.
b.2) coreG⁑M=1\operatorname{core}_{G}M=1. Then SS and MM are two stabilizers of GG. Hence GG is primitive. We prove now that GG satisfies (i) and (ii) from 2.3.:
(i) There is a minimal normal subgroup MM of GG which is a solvable Ο€\pi group and CG(M)=MC_{G}(M)=M. Indeed, we put M=NM=N. We proved that NN is a solvable Ο€\pi-group and by 2.2. we have CG(N)=NC_{G}(N)=N.
(ii) There is a minimal normal subgroup L/NL/N of G/NG/N such that L/NL/N is a Ο€β€²\pi^{\prime} group. Suppose the contrary, i.e. any minimal normal subgroup L/NL/N of G/NG/N is a solvable Ο€\pi-group. Since NN is also a solvable Ο€\pi-group, it follows that LL is a solvable Ο€\pi-group. By 2.1., NN is the only minimal normal subgroup of GG. If LL is a minimal normal subgroup of GG, obviously follows that L=NL=N and L/N=1L/N=1, in contradiction with L/NL/N minimal normal subgroup of G/NG/N. If LL is not a minimal normal subgroup of GG, we have NβŠ‚LN\subset L and again a contradiction is obtained by G=SNβŠ‚SL=GG=SN\subset SL=G. So GG satisfies (i) and (ii) from 2.3. Then by 2.4., SS and MM are conjugate in GG, i.e. M=SxM=S^{x}, where x∈Gx\in G. But HβŠ†MH\subseteq M, hence HβŠ†SxH\subseteq S^{x}, where Sxβˆˆπ—Β―.HS^{x}\in\underline{\mathbf{X}}.H being 𝐗¯\underline{\mathbf{X}}-maximal, it follows that H=SxH=S^{x}. β–‘\square

4. The "composite" of two Ο€\pi-Schunck classes

Let us note by 𝐃¯\underline{\mathbf{D}} the class of all Ο€\pi-Schunck classes with the D property.

Definition 4.1. ([3]) If 𝐗¯\underline{\mathbf{X}} and 𝐘¯\underline{\mathbf{Y}} are two Ο€\pi-Schunck classes, we define the "composite" βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle as the class of all Ο€\pi-solvable groups GG such that G=⟨S,T⟩G=\langle S,T\rangle, where SS is an 𝐗¯\underline{\mathbf{X}} covering subgroup of GG and TT is an 𝐘¯\underline{\mathbf{Y}}-covering subgroup of GG.

In [3] we proved the following result:

Theorem 4.2. If 𝐗¯\underline{\mathbf{X}} and 𝐘¯\underline{\mathbf{Y}} are two Ο€\pi-Schunck classes, then βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle is also a Ο€\pi - Schunck class.

Using Ore’s generalized theorems we can prove now:

Theorem 4.3. If π—Β―βˆˆπƒΒ―\underline{\mathbf{X}}\in\underline{\mathbf{D}} and π˜Β―βˆˆπƒΒ―\underline{\mathbf{Y}}\in\underline{\mathbf{D}}, then βŸ¨π—Β―,π˜Β―βŸ©βˆˆπƒΒ―\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle\in\underline{\mathbf{D}}.

Proof. By 4.2., βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle is a Ο€\pi-Schunck class. Let us prove that βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle has the DD property using 3.3. Let GG be a Ο€\pi-solvable group and HH an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-maximal subgroup of GG. We prove by induction on |G||G| that HH is an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup of GG. We consider two cases:

  1. 1.

    GβˆˆβŸ¨π—Β―,𝐘¯⟩G\in\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle. Then H=GH=G is its own βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup.

  2. 2.

    Gβˆ‰βŸ¨π—Β―,𝐘¯⟩G\notin\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle. Applying 3.2., there is an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup PP of GG. We shall prove that H=PxH=P^{x}, where x∈Gx\in G.

Let NN be a minimal normal subgroup of GG. By the induction on G/NG/N, if we take HN/NβŸ¨π—Β―,𝐘¯⟩HN/N\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-maximal in G/NG/N and PN/NβŸ¨π—Β―,𝐘¯⟩PN/N\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup of G/NG/N, we have HN/NβŠ†PgN/NHN/N\subseteq P^{g}N/N for some g∈Gg\in G. Hence HβŠ†PgNH\subseteq P^{g}N. Now two possibilities:
a) PgNβŠ‚GP^{g}N\subset G. Applying the induction on PgNP^{g}N, for HβŸ¨π—Β―,𝐘¯⟩H\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-maximal in PgNP^{g}N and PgP^{g} an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup of PgNP^{g}N, it follows that H=(Pg)gβ€²=Pggβ€²H=\left(P^{g}\right)^{g^{\prime}}=P^{gg^{\prime}}, where gβ€²βˆˆPgNg^{\prime}\in P^{g}N. So H=Pggβ€²H=P^{gg^{\prime}} is an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup of GG.
b) PgN=GP^{g}N=G. Then G=PNG=PN. Again two cases:
b.1) coreG⁑Pβ‰ 1\operatorname{core}_{G}P\neq 1. By the induction on G/coreG⁑PG/\operatorname{core}_{G}P, we have H=PxH=P^{x}, where x∈Gx\in G. So HH is an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup of GG.
b.2) coreG⁑P=1\operatorname{core}_{G}P=1. First NN is a solvable Ο€\pi-group, for if we suppose that NN is a Ο€β€²\pi^{\prime}-group, we have NβŠ†OΟ€β€²(G)N\subseteq O\pi^{\prime}(G) and

G/OΟ€β€²(G)Ο†(G/N)/(OΟ€β€²(G)/N)G/N=PN/NΟ†P/P∩NβˆˆβŸ¨π—Β―,𝐘¯⟩\begin{gathered}G/O\pi^{\prime}(G)\varphi(G/N)/\left(O\pi^{\prime}(G)/N\right)\\ G/N=PN/N\varphi P/P\cap N\in\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle\end{gathered}

imply G/OΟ€β€²(G)βˆˆβŸ¨π—Β―,𝐘¯⟩G/O\pi^{\prime}(G)\in\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle, hence GβˆˆβŸ¨π—Β―,𝐘¯⟩G\in\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle, a contradiction. By 1.5., NN is abelian. From G=PNG=PN and NN abelian, we deduce that P∩N=1P\cap N=1, hence PP is a maximal subgroup of GG. So PP is a stabilizer of GG and GG is primitive. Then, by 2.1., we obtain that NN is the only minimal normal subgroup of GG and by 2.2. that CG(N)=NC_{G}(N)=N. It is easy to notice that HN=GHN=G and so, like for PP, we have H∩N=1H\cap N=1 and HH is a maximal subgroup of GG. Now we consider two possibilities:
b.2.1) coreG⁑Hβ‰ 1\operatorname{core}_{G}H\neq 1. Applying the induction on G/coreG⁑HG/\operatorname{core}_{G}H, we obtain that H=Px(x∈G)H=P^{x}(x\in G) is an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup of GG.
b.2.2) coreG⁑H=1\operatorname{core}_{G}H=1. Then HH is a stabilizer of GG. Let us notice that we are in the hypotheses of theorem 2.4. Indeed, (i) is true, because NN is a minimal normal subgroup of GG which is a solvable Ο€\pi-group and CG(N)=NC_{G}(N)=N. Further, (ii) is also true, for if we suppose the contrary, we obtain that any minimal normal subgroup L/NL/N of G/NG/N is a solvable Ο€\pi-group and in each of the two cases given below we get a contradiction:
(#): If LL is a minimal normal subgroup of GG, obviously L=NL=N and L/N=1L/N=1, in contradiction with L/NL/N minimal normal subgroup of G/NG/N.
(##): If LL is not a minimal normal subgroup of GG, then NβŠ‚LN\subset L and G=HNβŠ‚HL=GG=HN\subset HL=G, a contradiction.

So we are in the hypotheses of theorem 2.4. It follows that the two stabilizers PP and HH of GG are conjugate in GG, i.e. there is x∈Gx\in G such that H=PxH=P^{x}. But this means that HH is an βŸ¨π—Β―,𝐘¯⟩\langle\underline{\mathbf{X}},\underline{\mathbf{Y}}\rangle-covering subgroup of GG. β–‘\square

An immediate consequence of theorem 4.3. is the following:

Theorem 4.4. The class D, ordered by inclusion, forms respect to the operations of "composite" and intersection a complete lattice.

References

[1] Baer, R. , Classes of finite groups and their properties, Illinois J. Math., 1, 1957,115-187.
[2] Covaci, R., Projectors in finite Ο€\pi-solvable groups, Studia Univ. Babeş-Bolyai, Math., XXII, 1, 1977, 3-5.
[3] Covaci, R., Ο€\pi-Schunck classes with the DD property, Studia Univ. Babes-Bolyai, Math., XXII, 2, 1977, 3-8.
[4] Covaci,R., A generalization of some of Ore’s theorems, to appear.
[5] Covaci, R., Some applications of Ore’s generalized theorems in the formation theory, to appear.
[6] Huppert, B. , Endliche Gruppen I, Springer Verlag, Berlin - New York, 1967.
[7] Wood, G.J., A Lattice of Homomorphs, Math. Z., 130, 1, 1973, 31-37.
Babes-Bolyai University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu 1, RO-3400 Cluj-Napoca, Romania.

1998

Related Posts