Abstract
Authors
Eduard-Stefan Grigoriciuc
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Complex Banach space, g-Loewner chain, g-starlike mapping, Graham–Kohr extension operator
Paper coordinates
E.S. Grigoriciuc, g-Loewner Chains and the Graham–Kohr Extension Operator in Complex Banach Spaces. Comput. Methods Funct. Theory (2025). https://doi.org/10.1007/s40315-025-00581-8
About this paper
Journal
Computational Methods and Function Theory
Publisher Name
Springer
Print ISSN
1617-9447
Online ISSN
2195-3724
google scholar link
Arosio, L., Bracci, F., Hamada, H., Kohr, G.: An abstract approach to Loewner chains. J. Anal. Math. 119, 89–114 (2013)
Chirilă, T.: An extension operator associated with certain Loewner chains. Taiwanese J. Math. 17, 1819–1837 (2013)
Chirilă, T.: Analytic and geometric properties associated with some extension operators. Complex Var. Elliptic Equ. 59, 427–442 (2014)
Elin, M.: Extension operators via semigroups. J. Math. Anal. Appl. 377, 239–250 (2011)
Gong, S., Liu, T.S.: On the Roper–Suffridge extension operator. J. Anal. Math. 88, 397–404 (2002)
Gong, S., Liu, T.S.: The generalized Roper–Suffridge extension operator. J. Math. Anal. Appl. 284, 425–434 (2003)
Graham, I., Hamada, H., Kohr, G.: Extremal problems and Loewner chains in Cn and reflexive complex Banach spaces. In: Rassias, T.M., Toth, L. (eds.) Topics in Mathematical Analysis and Applications, vol. 94, pp. 387–418. Springer (2014)
Graham, I., Hamada, H., Kohr, G., Kohr, M.: Univalent subordination chains in reflexive complex Banach spaces. Contemp. Math. (AMS) 591, 83–111 (2013)
Graham, I., Hamada, H., Kohr, G., Kohr, M.: Loewner chains, Bloch functions and extension operators in complex Banach spaces. Anal. Math. Phys. 10(1), Art. 5 (2020)
Graham, I., Hamada, H., Kohr, G., Suffridge, T.J.: Extension operators for locally univalent mappings. Mich. Math. J. 50, 37–55 (2002)
Graham, I., Kohr, G.: Univalent mappings associated with the Roper–Suffridge extension operator. J. Anal. Math. 81, 331–342 (2000)
Graham, I., Kohr, G.: An extension theorem and subclasses of univalent mappings in several complex variables. Complex Var. Theory Appl. 47, 59–72 (2002)
Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Marcel Dekker Inc., New York (2003)
Hamada, H., Honda, T.: Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin. Ann. Math. Ser. B 29, 353–368 (2008)
Hamada, H., Honda, T., Kohr, G.: Parabolic starlike mappings in several complex variables. Manuscr. Math. 123, 301–324 (2007)
Hamada, H., Kohr, G., Muir, J.R., Jr.: Extensions of Loewner chains to higher dimensions. J. Anal. Math. 120, 357–392 (2013)
Muir, J.R., Jr.: A modification of the Roper–Suffridge extension operator. Comput. Methods Funct. Theory 5, 237–251 (2005)
Muir, J.R., Jr.: The roles played by order of convexity or starlikeness and the Bloch condition in the extension of mappings from the disk to the ball. Complex Anal. Oper. Theory 6, 1167–1187 (2012)
Pfaltzgraff, J.A.: Subordination chains and univalence of holomorphic mappings in Cn, Math. Ann. 210, 55–68 (1974)
Pfaltzgraff, J.A., Suffridge, T.J.: An extension theorem and linear invariant families generated by starlike maps. Ann. Univ. Mariae Curie Sklodowska Sect. A 53, 193–207 (1999)
Pommerenke, C.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)
Poreda, T.: On the univalent subordination chains of holomorphic mappings in Banach spaces. Comment. Math. Prace Mat. 28, 295–304 (1989)
Reich, S., Shoikhet, D.: Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces. Imperial College Press, London (2005)
Suffridge, T.J.: Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions. In: Lecture Notes Math., vol. 599, pp. 146–159. Springer (1977)
Wang, J.: Extension operators and support points associated with Loewner chains on complex Banach spaces. J. Math. Anal. Appl. (2023). https://doi.org/10.1016/j.jmaa.2023.127411
Wang, J., Wang, J.: Generalized Roper–Suffridge operatr for starlike and boundary starlike mappings. Acta Math. Sci. 40B(6), 1753–1764 (2020)
Wang, J., Zhang, X.: The subordination principle and its application to the generalized Roper–Suffridge extension operator. Acta Math. Sci. 42, 611–622 (2022)
Xu, Q.-H., Liu, T.: Löwner chains and a subclass of biholomorphic mappings. J. Math. Anal. Appl. 334, 1096–1105 (2007)
Zhang, X., Tang, Y.: Loewner chain associated with Muir-type extension operator. Complex Var. Elliptic Equ. (2022). https://doi.org/10.1080/17476933.2022.2157823
Zhang, X., Feng, S., Li, Y.: Loewner chain associated with the modified Roper–Suffridge extension operator. Comput. Methods Funct. Theory 16(2), 265–281 (2016)