Abstract
Let \(X\) be a Banach space, \(Y\) a normed space, \(G:X\rightarrow Y\) a nonlinear operator, and \(G\left( x\right) =0\) a nonlinear equation. We denote by \(F:X^{2}\rightarrow Y\) a nonlinear operator for which the restriction to the diagonal of \(X^{2}\) coincide with \(G\). We first prove a Taylor type formula for operators with two variables. Next we consider the following two-step Newton type method: \[F\left( x_{n},x_{n-1}\right) +F_{x}^{\prime}\left( x_{n},x_{n-1}\right) \left( x_{n+1}-x_{n}\right) +F_{y}^{\prime}\left( x_{n},x_{n-1}\right) \left( x_{n}-x_{n-1}\right)=0.\] We study the convergence to the solution of the above sequence.
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Une généralisation de methode de Newton
English translation of the title
A generalization of the Newton method
Keywords
Taylor polynomial with two variables; two-step Newton type method
Cite this paper as:
I. Păvăloiu, Une généralisation de methode de Newton, Mathematica, 20(43) (1978) no. 1, pp. 45-52 (in French).
About this paper
Journal
Mathematica
Publisher Name
DOI
Not available yet.
Print ISSN
Not available yet.
Online ISSN
Not available yet.
References
[1] Kantorovici, L.V., Functionalnîi analiz i prikladnaia matematika, UMN, 28, 89-185 (1948).
[2] Pavaloiu, I., Sur les procédés iteratif à un ordere élevé de convergence. Mathematica, 12, (35), 2 309-324 (1970).
[3] Weinisckhe, J. H., Über eine Klasse von Iterationsverfahren. Numeriche Mathematik , 6, 395-404, (1964).