[1] W.F. Ames, Numerical Methods for Partial Differential Equations, second ed., Academic Press, New York, 1977.
[2] S. Attinger, M. Dentz, H. Kinzelbach, W. Kinzelbach, Temporal behavior of a solute cloud in a chemical heterogeneous porous medium, J. Fluid Mech. 386 (1999) 77.
CrossRef (DOI)
[3] M. Avellaneda, A.J. Majda, Superdiffusion in nearly stratified flows, J. Stat. Phys. 69 (3/4) (1992) 689.
CrossRef (DOI)
[4] A. Bellin, P. Salandin, A. Rinaldo, Simulation of dispersion in heterogeneous porous formations: statistics, first-order theories, convergence of computations, Water Resour. Res. 28 (9) (1992) 2211.
CrossRef (DOI)
[5] C.W. Gardiner, Handbook of Stochastic Methods, Springer, New York, 1983. C. Vamos et al. / Journal of Computational Physics 186 (2003) 527–544 543
[6] S.K. Godunov, V.S. Ryabenkii, Difference Schemes: An Introduction to the Underlying Theory, North-Holland, Amsterdam, 1987.
[7] A.J. Chorin, Vortex sheet approximation of boundary layers, J. Comput. Phys. 27 (1978) 428.
CrossRef (DOI)
[8] A.F. Ghoniem, F.S. Sherman, Grid-free simulation of diffusion using random walk methods, J. Comput. Phys. 61 (1985) 1.
CrossRef (DOI)
[9] W. Horsthemke, R. Lefever, Noise-induced Transitions. Theory and Applications in Physics, Chemistry and Biology, Springer, Berlin, 1984.
[10] C. Kapoor, L.W. Gelhar, Transport in three-dimensionallity heterogeneous aquifers 1. Dynamics of concentration fluctuations, Water Resour. Res. 30 (6) (1994) 1775.
CrossRef (DOI)
[11] C. Kapoor, L.W. Gelhar, Transport in three-dimensionallity heterogeneous aquifers 2. Prediction and observations of concentration fluctuations, Water Resour. Res. 30 (6) (1994) 1789.
CrossRef (DOI)
[12] W. Kinzelbach, Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser, Oldenbourg Verlag, Munchen, 1992. €
[13] G.L. Moltyaner, M.H. Klukas, C.A. Willis, R.W.D. Killey, Numerical simulations of twin lake natural-gradient tracer tests: A comparison of methods, Water Resour. Res. 29 (10) (1992) 3443.
CrossRef (DOI)
[14] O. Neuendorf, Numerische 3D-Simulation des Stofftransport in einem heterogenen Aquifer. Ph.D. Thesis, Jul-3421 Forschungs- € zentrum Julich, 1997. €
[15] A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York, 1991.
[16] K. Roth, K. Hammel, Transport of conservative chemical through an unsaturated two-dimensional Miller-similar medium with steady state flow, Water Resour. Res. 32 (6) (1996) 1653.
CrossRef (DOI)
[17] P. Salandin, V. Fiorotto, Solute transport in highly heterogeneous aquifers, Water Resour. Res. 34 (5) (1998) 949.
CrossRef (DOI)
[18] H. Schwarze, U. Jaekel, H. Vereecken, Estimation of macrodispersivity by different approximation methods for flow and transport in randomly heterogeneous media, Transp. Porous Media 43 (2001) 265.
[19] Ne.-Z. Sun, Mathematical Modeling in Groundwater Pollution, Springer, New York, 1996.
CrossRef (DOI)
[20] A.F.B. Tompson, L.W. Gelhar, Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water Resour. Res. 26 (10) (1990) 2541.
CrossRef (DOI)
[21] A.F.B. Tompson, R.B. Knapp, Reactive Geochemical Transport Problems in Nuclear Waste Analyses, Preprint UCRL-00552, Lawrence Livermore National Laboratory, Livermore, 1989.
[22] A.F.B. Tompson, R.D. Falgout, S.G. Smith, W.J. Bosl, S.F. Asby, Analysis of subsurface contaminant migration and remediation using high performance computing, Adv. Water Resour. 22 (3) (1998) 203.
CrossRef (DOI)
[23] C. Vamos, N. Suciu, H. Vereecken, O. Nitzsche, H. Hardelauf, Global random walk simulations of diffusion, in: W. Kramer, J.W.V. Gudenberg (Eds.), Scientific Computing, Validated Numerics, Interval Methods, 343, Kluwer Academic Publishers, Dordrecht, 2001.
CrossRef (DOI)
[24] R. Zhang, K. Huang, M.T. van Genuchten, An efficient Eulerian–Lagrangian method for solving solute transport problems in steady and transient flow fields, Water Resour. Res. 29 (12) (1993) 4131.
CrossREf (DOI)