[1] S. C. Gupta, The Classical Stefan Problem: Basic Concepts, Modelling and Analysis, Elsevier 2003. https://doi.org/10.1016/C2017-0-02306-6
[2] J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Ann. Physik Chemie 42 (1891), 269–286. https://doi.org/10.1002/andp.18912780206
[3] D. A Tarzia and C. V. Turner, The one-phase supercooled Stefan problem with a convective boundary condition, Q. Appl. Math. 55(1) (1997), 41–50. https://doi.org/10.1090/qam/1433750
[4] A. Visintin, Models of Phase Transition, Birkhäuser, 1996.
[5] K. Tsunoda, Derivation of Stefan problem from a one-dimensional exclusion process with speed change, Markov Process. Relat. 21 (2015), 263–273.
[6] S. Nepal, Y. Wondmagegne and A. Muntean, Analysis of a fully discrete approximation to a moving-boundary problem describing rubber exposed to diffusants, Appl. Math. Comput. 442 (2023), 127733. https://doi.org/10.1016/j.amc.2022.127733
[7] S. Nepal, R. Meyer, N. H. Kröger, T. Aiki, A. Muntean, Y. Wondmagegne and U. Giese, A moving boundary approach of capturing diffusants penetration into rubber: FEM Approximation and comparison with laboratory measurements, KGK-Kaut. Gumi. Kunst. 5 (2021), 61–69.
[8] D. A. Tarzia, L. T. Villa, On the free boundary problem in the Wen-Langmuir shrinking core model for noncatalytic gas-solid reactions, Meccanica 24 (1989), 86–92. https://doi.org/10.1007/BF01560134
[9] T. Aiki, A. Muntean, Existence and uniqueness of solutions to a matheatical model predicting service life of concrete structures, Advances in Mathematical Sciences and Applications 19(1) (2009), 109–129.
[10] J. D. Evans, J. R. King, The Stefan problem with nonlinear kinetic undercooling, Q. J. Mech. Appl. 56(1) (2003), 139–161. https://doi.org/10.1093/qjmam/56.1.139
[11] S. Nepal, M. Ögren, Y. Wondmagegne and A. Muntean, Random walks and moving boundaries: Estimating the penetration of diffusants into dense rubbers, Probabilist. Eng. Mech. 74 (2023), 103546. https://doi.org/10.1016/j.probengmech.2023.103546
[12] N. Suciu, D. Illiano, A. Prechtel and F.A. Radu, Global random walk solvers for fully coupled flow and transport in saturated/unsaturated porous media, Adv. Water Resour. 152 (2021), 103935. https://doi.org/10.1016/j.advwatres.2021.103935
[13] N. Suciu, Diffusion in Random Fields. Applications to Transport in Groundwater, Birkhäuser, Cham, 2019. https://doi.org/10.1007/978-3-030-15081-5
[14] N. Suciu and F.A. Radu, Global random walk solvers for reactive transport and biodegradation processes in heterogeneous porous media, Adv. Water Resour. 166 (2022), 104268. https://doi.org/10.1016/j.advwatres.2022.104268
[15] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004. https://doi.org/10.1137/1.9780898717938
[16] N. Suciu, F.A. Radu and E. Cătinaş, Iterative schemes for coupled flow and transport in porous media – Convergence and truncation errors, Numer. Anal. Approx. Theory 53(1) (2024), 158–183. https://doi.org/10.33993/jnaat531-1429
[17] S. Kutluay, A.R. Bahadir and A. Özdeş, The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math. 81(1) (1997), 135–144. https://doi.org/10.1016/S0377-0427(97)00034-4
[18] S. Savović and J. Caldwell, Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions, Int. J. Heat. Mass Tran. 46(15) (2003), 2911–2916. https://doi.org/10.1016/S0017-9310(03)00050-4
[19] M. Mori, A finite element method for solving the two phase Stefan problem in one space dimension, Publ. Res. I. Math. Sci. 13(3) (1977), 723–753. https://doi.org/10.2977/prims/1195189605
[20] M. Mori, Stability and convergence of a finite element method for solving the Stefan problem, Publ. Res. I. Math. Sci. 12(2) (1976), 539–563. https://doi.org/10.2977/prims/1195190728
[21] M.-C. Casabán, R. Company and L. Jódar, Numerical difference solution of moving boundary random Stefan problems, Math. Comput. Simulat. 205 (2023), 878–901. https://doi.org/10.1016/j.matcom.2022.10.026
[22] M. Ögren, Stochastic solutions of Stefan problems with general time-dependent boundary conditions, in: A. Malyarenko, Y. Ni, M. Rančié, S. Silvestrov (Eds.), Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019, Springer Proceedings in Mathematics & Statistics, vol. 408, Springer, Cham, 2022. http://dx.doi.org/10.1007/978-3-031-17820-7_29
[23] C.J. Roy, Review of code and solution verification procedures for computational simulation, J. Comput. Phys. 205 (2005), 131–156. https://doi.org/10.1016/j.jcp.2004.10.036
[24] C.D.Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A. Rupp and N. Suciu, Numerical benchmark study for flow in heterogeneous aquifers, Adv. Water Resour. 138 (2020), 103558. https://doi.org/10.1016/j.advwatres.2020.103558
[25] P. M. Lewis, Laboratory testing of rubber durability, Polom. Test. 1 (1980), 167–189. https://doi.org/10.1016/0142-9418(80)90002-1
[26] M.J. Hayes and G.S. Park, The diffusion of benzene in rubber. Part 1.—Low concentrations of benzene, T. Faraday Soc. 51 (1955), 1134–1142. https://doi.org/10.1039/TF9555101134
[27] A. V. Kaliyathan, A. V. Rane, S. Jackson and S. Thomas, Analysis of diffusion characteristics for aromatic solvents through carbon black filled natural rubber/butadiene rubber blends, Polym. Composite 42 (2021), 375–396. https://doi.org/10.1002/pc.25832
[28] K. Kumazaki and A. Muntean, Global weak solvability, continuous dependence on data, and large time growth of swelling moving interfaces, Interf. Free Bound. 22(1) (2020), 27–50. https://doi.org/10.4171/ifb/431
[29] S. Nepal, Y. Wondmagegne and A. Muntean, Error estimates for semi-discrete finite element approximations for a moving boundary problem capturing the penetration of diffusants into rubber, Int. J. Numer. Anal. Mod. 19 (2022), 101–125. https://global-sci.org/intro/article_detail/ijnam/20351.html
[30] P. J. Roache, Code verification by the method of manufactured solutions, J. Fluids Eng. 124(1) (2002), 4–10. http://dx.doi.org/10.1115/1.1436090
[31] C. Cuchiero, C. Reisinger and S. Rigger, Implicit and fully discrete approximation of the supercooled Stefan problem in the presence of blow-ups, SIAM J. Numer. Anal. 62(3) (2024), 1145–1170. https://doi.org/10.1137/22M1509722
[32] F. A. Radu, I. S. Pop and S. Attinger, Analysis of an Euler implicit-mixed finite element scheme for reactive solute transport in porous media, Numer. Meth. Part. D. E. 26(2) (2009), 320–344. https://doi.org/10.1002/num.20436