[1] Agratini O., Binomial polynomials and their applications in Approximation Theory, Conferenze del Seminario di Matematica dell’Universita di Bari 281, Roma, 2001, pp. 1–22.
[2] Altomare F., Campiti M., Korovkin-Type Approximation Theory and its Applications, de Gruyter Series Studies in Mathematics, Vol.17, Walter de Gruyter, Berlin-New York, 1994.
[3] Cheney E.W., Sharma A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma (2) 5 (1964), 77–84.
[4] Kelisky R.P., Rivlin T.J., Iterates of Bernstein polynomials, Pacific J. Math. 21 (1967), 511–520.
[5] Lupas A., Approximation operators of binomial type, New developments in approximation theory (Dortmund, 1998), pp. 175–198, International Series of Numerical Mathematics, Vol.132, Birkhauser Verlag Basel/Switzerland, 1999.
[6] Mastroianni G., Occorsio M.R., Una generalizzatione dell’operatore di Stancu, Rend. Accad. Sci. Fis. Mat. Napoli (4) 45 (1978), 495–511
[7] Popoviciu T., Remarques sur les polynomes binomiaux, Bul. Soc. Sci. Cluj (Roumanie) 6 (1931), 146–148 (also reproduced in Mathematica (Cluj) 6 (1932), 8–10).
[8] Rota G.-C., Kahaner D., Odlyzko A., On the Foundations of Combinatorial Theory. VIII. Finite operator calculus, J. Math. Anal. Appl. 42 (1973), 685–760.
[9] Rus I.A., Weakly Picard mappings, Comment. Math. Univ. Carolinae 34 (1993), no. 4, 769–773.
[10] Rus I.A., Picard operators and applications, Seminar on Fixed Point Theory, Babes-Bolyai Univ., Cluj-Napoca, 1996.
[11] Rus I.A., Generalized Contractions and Applications, University Press, Cluj-Napoca, 2001.
[12] Sablonniere P., Positive Bernstein-Sheffer operators, J. Approx. Theory 83 (1995), 330–341.
[13] Stancu D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. 13 (1968), no. 8, 1173–1194.
[14] Stancu D.D., Occorsio M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numer. Theor. Approx. 27 (1998), no. 1, 167–181