Abstract
Let \(X,Y\) be two Banach spaces and \(P:X\rightarrow Y\) a nonlinear operator. We study the semilocal convergence of the Newton, chord and Steffensen methods for which the derivative \(P^{\prime}\left( x\right) \) or the divided differences from each iteration step are approximated by a sequence of operators obtained with the Schultz method:
\begin{equation}
\left\{
\begin{array}
[c]{l}%
x_{n+1}=x_{n}-A_{n}P\left( x_{n}\right) \\
A_{n+1}=A_{n}\left( 2E-\left[ x_{n},x_{n+1};P\right] A_{n}\right)
,\qquad n=0,1,\ldots
\end{array}
\right. \label{f.1.6}%
\end{equation}
and considering the Steffensen method:%
\begin{equation}
\left\{
\begin{array}
[c]{l}%
x_{n+1}=x_{n}-A_{n}P\left( x_{n}\right) \\
A_{n+1}=A_{n}\left( 2E-\left[ x_{n+1},Q\left( x_{n+1}\right) ;P\right]
A_{n}\right) ,\qquad n=0,1,\ldots
\end{array}
\right. \label{f.1.7}%
\end{equation}
Authors
Adrian Diaconu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Originnal title (in French)
Sur quelques méthods itératives pour la résolution des equations operationnelles
English translation of the title
On some iterative methods for solving operator equations
Keywords
Newton method; chord method; Steffensen method; Schultz method; semilocal convergence
Cite this paper as:
A. Diaconu, I. Păvăloiu, Sur quelques méthods itératives pour la résolution des equations operationnelles, Rev. Anal. Numér. Théor. Approx., 1 (1972), pp. 45-61, https://doi.org/10.33993/jnaat11-3 (in French).
About this paper
Journal
Revue d’Analyse Numérique et de Théorie de l’ Approximation
Publisher Name
Academia Republicii S.R.
Print ISBN
Not available yet.
Online ISBN
Not available yet.
References
[1] Collatz, L., Naherungsverfahren hoherer Ordnung fur Gleichungen in Banach-Raumen, Archive for Rational Mechanics and Analysis II (1), 66–75 (1958).
[2] Diaconu, A., Pavaloiu, I., Asupra unor metode iterative pentru rezolvarea ecuatiilor operationale neliniare (I), Revista de analiza numerica si teoria aproximatiei, sous presse 2 (1973), nr. 1, pp. 61–79.
[3] Janko, B., Sur la theorie unitaire des methdes d’iteration pour la resolution des equations operationelles non lineaires. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, II, Ser. A, 302–311 (1961).
[4] Janko, B., Rezolvarea ecuatiilor operationale neliniare in spatii Banach. Bucuresti, Editura Academiei R.S.R. (1969).
[5] Pavaloiu, I., Sur la methode de Steffensen pour la resolution des equations operationnelles non lineaires, Revue Roumaine de mathematiques pures et appliquees, XIII, 6, 857–861 (1968).
[6] Pavaloiu, I., Interpolation dans des espaces lineaires normes et applications. Mathematica (Cluj), 12(35), 1, 149–158 (1970).
[7] Pavaloiu, I., Sur les procedes iteratifs a un ordre eleve de convergence. Mathematica (Cluj), 12 (35), 2, 309–324 (1970).
[8] Pavaloiu, I., Consideratii asupra metodelor iterative obtinute prin interpolare inversa, Studii si cercetari matematice, XXIII, 10, 1545–1549 (1971).
[9] Popoviciu, T., Sur la delimitation de l’erreur dans l’approximation des racines d’une equation par interpolation lineaire ou quadratique. Revue Roumaine de mathematiques pures et appliquees, XIII, 1, 75–78 (1968).
[10] Sergheev, A. S., O metode hord. Sibirski mat. jurnal, XI, 2, 282–289 (1961)
[11] Traub, J. F., Iterative Methods for the Solution of Equations. Prentice-Hall Inc. Englewood Cliffs N.J. (1964).
[12] Ul’m, S., Ob obobscenih razdelenyh raznostjah I. Izv. Akad. Nauk. Estonskoi S.S.R., 16, 1, 13–26 (1967).
[13] Ul’m, S., Ob obobscenih razdelenyh raznostjah II. Izv. Akad. Nauk Estonskoi S.S.R., 16, 2, 146–155 (1967).
[14] Ul’m, S., Ob iteraccionnyh metodah s posledovatel’noi approksimacii obratnovo operatora. Izv. Akad. Nauk Estonskoi S.S.R., 16, 4, 403–411 (1967)