1. Agratini, O.: On approximation properties of Balázs–Szabados operators and their Kantorovich extension. Korean J. Comput. Appl. Math. 9(2), 361–372 (2002)
2. Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and its Applications. de Gruyter Studies in Mathematics, vol. 17. Walter de Gruyter, Berlin (1994)
3. Altomare, F., Cappelletti Montano, M., Leonessa, V.: On a generalization of Szász–Mirakjan–Kantorovich operators. Results Math. 63, 837–865 (2013) Kantorovich sequences associated to general approximation processes 693
4. Balázs, K.: Approximation by Bernstein type rational functions. Acta Math. Acad. Sci. Hung 26(f. 1–2), 123–134 (1975)
5. Balázs, C., Szabados, J.: Approximation by Bernstein type rational functions. II. Acta Math. Acad. Sci. Hung. 40, 331–337 (1982)
6. Butzer, P.L.: On the extensions of Bernstein polynomials to the infinite interval. Proc. Am. Math. Soc. 5, 547–553 (1954)
7. Chlodovsky, I.: Sur le développement des fonctions définies dans un interval infini en séries de polynômes de M.S. Bernstein. Compos. Math. 4, 380–393 (1937)
8. Ditzian, Z., Totik, V.: Moduli of Smoothness. New York Inc., Springer-Verlag (1987)
9. Gadjiev, A.D., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32(1), 129–138 (2002)
10. Habib, A., Wafi, A.: Degree of approximation of functions by modified Bernstein polynomials on an unbounded interval. Indian J. Pure Appl. Math. 8(6), 691–695 (1977)
11. Jain, G.C.: Approximation of functions by a new class of linear operators. J. Austr. Math. Soc. 13(3), 271–276 (1972)
12. Kantorovich, L.V.: Sur certains développement suivant les polynômes de la forme de S. Bernstein, I, II. C.R. Acad. URSS 563–568, 595–600 (1930)
13. López-Moreno, A.J., Martinez-Moreno, J.,Muñoz-Delgado, F.J.: Asymptotic behavior of Kantorovich type operators. Monogr. Semin. Mate. García Galdeano 27, 399–404 (2003)
14. Lorentz, G.G.: Bernstein Polynomials. University of Toronto Press, Toronto (1953)
15. Razi, Q.: Approximation of a function by Kantorovich type operators. Mate. Vesnik 41, 183–192 (1989)
16. Shisha, O., Mond, B.: The degree of convergence of linear positive operators. Proc. Natl. Acad. Sci. USA 60, 1196–1200 (1968)
17. Stancu, D.D.: Approximation of functions by a newclass of linear polynomial operators. Rev. Roumaine Math. Pures Appl. 8, 1173–1194 (1968)
18. Umar, S., Razi, Q.: Approximation of functions by a generalized Szász operators. Commun. Fac. Sci. l’Univ. d’Ankara Ser. A1 Math. 34, 45–52 (1985)