Numerical Methods for Dynamical Systems

Book summary

Summary of the book…

Book cover

Contents

Ch. 1

Keywords

?

PDF

pdf file

References

see the expanding block below

Cite this book as:

C.I. Gheorghiu, Numerical Methods for Dynamical Systems, Casa Cartii de Stiinta, Cluj-Napoca, Romania, 2004 (in Romanian).

Book Title

Numerical Methods for Dynamical Systems

Publisher

Casa Cartii de Stiinta

Print ISBN

973-686-396-6, 978-973-686-896-2

Authors

C.I. Gheorghiu

Topics
Online ISBN

Google scholar

The book on google scholar.

[1] Aggarwala, B.D., On Some Limit Cycle Solutions of Ordinary Differential Equations,  The University of Calgary, Department of Mathematics and Statitics, Research Paper no.803, February 2003
[2] Arnold, V.I., Ecuații diferențiale ordinare, Editura Științifică și Enciclopedică, București, 1978 (traducere din limba rusă)
[3] Arnold, V.I., Chapitres supplementaires de la theorie des equations differentielles ordinaires, Editions Mir, Moscou, 1980 (traducere din limba rusă)
[4] Arveson, W.,  A Short Course in Spectral Theory, Springer Texts in Mathematics, 2002
[5] Beyn, W.J., On the numerical approximation of phase portraits near stationary points, SIAM J. Numer. Anal. 24(1987), pp. 1095-1113
[6] Carr, J., Applications of Centre Manifold Theory, Springer-Verlag, 1981.
[7] Cesari, L., Functional Analysis and Galerkin Method, Mich. Math. J., 11(1964), pp. 383-414
[8] Cesari, L., Asymptotic behaviour and stability problems in ordinary differential equations, (3rd. ed.) Academic Press, New York, 1971.
[9] Chow, L.N., Hale, J.F., Methods of Bifurcation Theory,  Springer-Verlag, 1983.
[10] van Dorsselaer, J.L.M., Kraaijevanger, J.F.B.M., Spijker, M.N., Linear stability analysis in the numerical solution of initial value problems,  Acta Numerica, (1983), pp. 199-237.
[11] Embree, M., Trefethen, L.N., Pseudospectra Gateway, https://www.comlab.ox.ac.uk/projects/pseudospectra, 2000
[12] Doering, C.R., Gibbon, J.D.,  Applied analysis of the Navier-Stokes equations, Cambridge University Press, 1995.
[13] Emb ree, M., Trefethen, L.N., Generalizing Eigenvalue Theorems to Pseudospectra Theorems,  SIAM J. Sci. Comput. vol. 23, no.2, pp. 583-590 (2001).
[14] Gelfand, I.M., Lecții de Algebră Liniară, Ed. Tehnică, București, 1953 (traducere din limba rusă)
[15] Georgescu, A., Moroianu, M., Oprea, I., Teoria bifurcației. Principii și aplicații, Seria Mat. Apl. și Ind., 1, Ed. Univ. Pitești, 2002
[16] Gheorghiu, C.I., A constructive Introduction to Finite Elements Method, Qvo-Vadis, Cluj-Napoca, 1999
[17] Gheorghiu, C.I., Mureșan, A., On the Significance of Integral Properties of Orbits in some Superlinear Fixed-Period Problems, Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, 223-230 (2003)
[18] Gheorghiu, C.I., On some One-Step Implicit Methods as Dynamical Systems,  Revue d’Analyse Numerique et de la Theorie de l’Aproximation, Tome 32, no. 2, 2003, pp. 171-175.
[19] Gheorghiu, C.I., On the scalar measure of non-normality of matrices, General Mathematics, U L B Sibiu, 2003.
[20] Gheorghiu, C.I., Trif, D.,  On the Bifurcation and Variational Approximation of the Positive Solution of a Nonlinear Reaction-Diffusion Problem, Studia Univ.„Babeș-Bolyai”, Mathematica, Vol.XLV, No,3, seot, 2000.
[21] Gheorghiu, C.I., Trif, D., The Numerical Approximation to Positive Solution for some Reaction-Diffusion Problems, Pure Math. Appl., Vol. 11, No.2, May 2001, pp. 243-253, MR2002d:35103
[22] Gheorghiu, C.I., Trif, D., Direct and Indirect Approximations to Positive Solution for a Nonlinear Reaction-Diffusion Problem, Part. II Indirect Approximation,  Revue d’Analyse Numerique ef de Theorie de l’Approximation, Vol. 31, No.2, 2002, pp. 171-178.
[23] Grindrod, P., The Theory and Applicaitons of Reaction-Diffusion Equations:Patterns and Waves, Second Edition, Clarendon Press-Oxford, 1996
[24] Guckenheimer, J. Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, Springer-Verlag, 1983.
[25] Hairer, E., Lubich, C., Wanner, G., Geometric Numerical Integration-Structure Preserving Algorithms for Ordinary Differential Equaitons, Springer Series for Ordinary Differential Equations, 2002.
[26] Halanay, A., Introducere în teoria calitativă a ecuațiilor diferențiale, Ed. Tehnică, București, 1956.
[27]Hale, J., Kocak, H., Dynamics and Bifurcations, Springer-Verlag, 1991
[28] Hartman, Ph., A Lemma in the Theory of Structural Stability of Differential Equations, Proceedings of A M S, vol. 11, no.4, 1960, pp.610-620
[29] Hartman, Ph., Ordinary Differential Equations, John-Wiley & Sons., Inc., New York, London, Sydney, 1964.
[30] Henon, M., Numerical study of quadratic area-preserving mappings, Quarterly of Applied Mathematics, vol. XXVII, No.3, 1969, pp. 291-312.
[31] Henrici, P., Discrete Variable Methods in Ordinary Differential Equations,  John Wiley & Sons, 1962.
[32] Henrici, P., Bounds for iterates, inverse, spectral variation  and fields of values of non-normal matrices, Numer. Math., 4:24-40, 1962.
[33] Hirsch, M.W., Smale, S., Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, London, 1974.
[34] Hirsch, M.W., The Dynamical Systems Approach to Differential Equations, Bull. (New Series) of the A M A, vol. 11, No.1, July 1984, pp. 1-64.
[35] Ionescu, D.V., Ecuații diferențiale și integrale,  Editura Didactică și Pedagogică, București, 1972.
[36] Iserles, A.,  Stability and dynamics of numeircal methods for nonlinear ordinary differential equations, IMA J. Numer Anal., 10:1-30, 1990.
[37] Iserles, A., A First Course in the Numerical Analysis of Differential Equations,  Cambridge University  Press, 1996.
[38] Iserles, A., Zanna, A., Preserving algebraic invariants with Runge-Kutta methods,  Elsevier Preprint, 22 September, 1999.
[39]  Jordan, D.W., Smith, P., Nonlinear Ordinary Differential Equations, Clarendon Press, Oxford, 1987.
[40] Kantorivich, L.V., Akilov, G.P., Analiza funcțională, Editura Științifică și Enciclopedică, București, 1986 (traducere din limba rusă).
[41] Kletenik, D., Problemes de Geometrie Analytique, Ed. Mir, Moscou, 1969 (traducere din limba rusă)
[42] Larsson, S., Numerical Analysis of Semilinear Parabolic Problems, SIAM J. Numer. Anal. 26:348-365, 1989.
[43] Larsson, S., Sanz-Serna, J.M., The behaviour of finite element solutions of semilinear parabolic problems near stationary points,   SIMA J. Numer. Anal., 31(1994), pp. 1000-1018.\\
[44] Levine, H.A.,  The Role of Critical Exponents in Blowup Theorems, SIAM Review, Vol. 32, No.2, pp. 262-288, 1990.
[45] Li, T.Y., Yirke, J.A.,  Period three implies chaos, Amer. Math. Monthly, 82, (1975), 985-992.
[46] Lupaș, L., Lupaș, A., Probleme de Algebră, Ed. Gil. Zalău, 2002.
[47] Lyubich, M., The Quadratic Family as a Qualitatively Solvable Model of Chaos, Notices of the A M S, Vol. 47, No. 9, 2000, pp. 1042-1052.
[48] Mikhlin, S.G., Error Analysis In Numerical Processes, John-Wiley & Sons Limited, 1991.
[49] Micula, Gh., Pavel, P., Ecuații diferențiale și integrale prin metode și exerciții, Editura Dacia, Cluj-Napoca, 1989.
[50] Moler, C., van Loan, C., Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Rewiev , Vol. 45., n0. 1, pp. 3-49
[51] Morton, K.W., Numerical Solution of Ordinary Differential Equations, Oxford University Computing Lab oratory, U.K.
[52] O’Neil, P.V., Advanced Engineering Mathematics, (3rd. edition), International Student Edition, Chapman & Hall, 1991.
[53] Perko, L., Differential Equations and Dynamical Systems,  Springer Texts in Applied Mathematics 7, 1991.
[54] Petrila, T., Trif, D., Metode numerice și computationale în mecanica fluidelo, Editura Digital Data, Cluj-Napoca, 2002.
[55] Petrovski, I.G., Prelegeri asupra teoriei ecuațiilor diferențiale ordinare,  Editura Tehnică, București, 1952 (traducere din limba rusă).
[56] Plaat, O., Ordinary Differential Equations, Holden Day, Inc., 1971.
[57] Puu, T., Nonlinear Economic Dynamics, 4th Edition, Springer-Verlag, 1991.
[58] Quateroni, A., Saleri, F., Scientific Computing with MATLAB, Springer Texts in Computational Science and Engineering 2, Springer-Verlag, 2003.
[59] O’Reagan, D., Precup, R., Theorems of Leray-Schauder Type and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.
[60] Rus, A.I., Generalized contractions and applications, Cluj University Press, 2001.
[61] Rus, A.I., Pavel, P., Ecuații diferențiale, Editura Didactică și Pedagogică, București, 1982.
[62] Sanz-Serna, J.M., Calvo, M.P., Numerical Hamiltonian Problems,  Chapman&Hall, 1994.
[63] Siretchi, Gh., Calcul Diferențial și Integral, Vol.I, Noțiuni fundamentale, Vol. II, Probleme și exerciții, Editura Științifică și Enciclopedică, București, 1985.
[64] Stepanov, V.V., Curs de ecuații diferențiale, Editura Tehnică, București, 1955 (traducere din limba rusă).
[65] Strang, G., Introduction to Applied Mathematics,  Wellesley-Cambridge Press, Wellesley, Massachusetts, 1986.
[66] Strang, G., Linear  Algebra and its Applications, Academic Press, 1976.
[67] Stuart, A.M., Humphries, A.R., Dynamical Systems and Numerical Algebra, Cambridge University Press, 1996.
[68] E. Suli and D. Mayers,  Numerical Computation, I and II, Oxford University Computing Lab oratory, Oxford University, 1995.
[69] Thom, F., Structural Stability, Catastrophe Theory, and Applied Mathematics, SIAM Review, Vol. 19, No.2, April 1977, pp. 189-201
[70] Trefethen, L.N., Bau, D., III,  Numerical Linear Algebra, S I A M 1997.
[71] Trefethen, L.N., Computation of  pseudospectra, Acta  Numerica, pp. 247-295, 1999.
[72] Trif, D., Metode Numerice pentru Ecuații diferențiale și Sisteme dinamice, Transilvania Press, Cluj 1977.
[73] Ungureanu, L.E., Stabilitate structurală și bifurcație în câteva modele matematice de dinamica economică, Teza Doctorat, Univ. Pitești, 2002.
[74] Verhulst, F., Nonlinear Differential Equations and Dynamical systems, Springer Universitext, 1985.
[75] Viana, M., What’s New on Lorenz Strange Attractors? The Mathematical Intelligencer, Vol. 22, No.3, 2000, pp. 6-19.
[76] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos,  Springer-Verlag, 1990.

2004

Related Posts