[1] Agratini, O., Binomial polynomials and their applications in approximation theory, Conf. Semin. Mat. Univ. Bari, no. 281 (2001), 1-22
[2] Altomare, F. and Campiti, M., Korovkin-tupe approximation theory and its applications. Appendix A by Michael Pannenberg and Apendix B by Ferdinand Beckhoff. de Gruyter Studies in Mathematics, 17. Walter de Gruyter ^ Co., Berlin, 1994.
[3] Crăciun, M., Approximation operators constructed by means of Sheffer sequences, Rev. Anal. Numer. Theor. Approx. 30, no.2, pp. 135-150, 2001.
[4] Crăciun, M., On an approximating operator and its Lipschitz constant, Rev. Anal. Numer. Theor. Approx., 31, no. 1, pp. 55-60, 2002
[5] Crăciun, M., On compound operators constructed with binomial and Sheffer sequences, Rev. Anal. Numer. Theor. Approx., 32, no. 2, pp. 135-144, 2003
[6] Di Bucchianico, A., Probabilistic and Analytical Aspects of the Umbral Calculus, CWI Tract 119, 1997, 148 pp.
[7] Di Buchianico, A. and Loeb, D.E., A selected survey of umbral calculus. Electron. J. Combin. 2 (1995), Dynamic Survey 3, 28 pp.
[8] Gonska, H.H. and Kovacheva, R.K., The second order modulus revisited: remarks, applications, problems, Conferenze del Seminario di Matematica Univ. Bari 257 (1994), 1-32
[9] Gonska, H.H. and Meier, J., Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo 21 (1984), no. 4, 317-335
[10] Lupaș, L. and Lupaș, A., Polinomials of binomial type and approximation operators, Studia Univ. Babeș-Bolyai, Mathematica, 32, 4 (1987), 61-69
[11] Lupaș, A., Approximation operators of binomial type, Proc. IDoMAT 98, International Series of Numerical Mathematics, ISNM vol. 132, Birkhäuser Verlag, Basel, 1999, 175-198
[12] Manole, C., Expansions in series of generalized Appell polynomials with applications to the approximation of functions, PhD Thesis, ”Babeș-Bolyai” University, Cluj-Napoca, 1984 (in Romanian).
[13] Manole, D., Approximation operators of binomial type, Univ. of Cluj-Napoca, Research Seminars, Seminar on numerical and statistical calcujlus, Preprint nr. 9, 1987, 93-98
[14] Mihesan, V., Lipschitz constant for operators of binomial type of a Lipschitz continuous function. RoGer 2000-Brasov, 81-87, Schr. reihe Fachbereichs Math. Gerhard Mercator Univ., 485, Gerhard-Mercator-Univ., Duisburg, 2000.
[15] Mullin, R. and Rota, G.C., On the foundations of combinatorial theory III, Theory of binomial enumeration, Graph Theory and its Applications, Academic Press, New York, 1970, 167-213.
[16] Popoviciu, T., Remarques sur les poynomes binomiaux, Bul. Soc. Știinte Cluj, 6 (1931), 146-148
[17] Roman, S., The theory of the umbral calculus, J. Math. Anal. Appl. 87 (1982), no. 1, 58-115.
[18] Roman, S., The umbral calculus. Pure and Applied Mathematics, 111. Academic Press, Inc., New York, 1984.x+193 pp.
[19] Rota, G.C., Kahaner, D. and Odlyzko, A., Finite Operator Calculus, J. Math. Anal. Appl. 42 (1973), 685-760
[20] Sab lonniere, P., Positive Bernstein-Sheffer Operators, J. Approx. Theory 83 (1995), 330-341
[21] Schurer, F., Linear positive operators in approximation theory. Math. Inst. Techn. Univ. Delft, Report, 1962
[22] Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60, pp. 1196-2000, 1968
[23] Stancu, D.D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures. et Appl. 13, pp. 1173-1194, 1968
[24] Stancu, D.D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20, no. 2, pp. 211-229, 1983.
[25] Stancu, D.D., Generalized Bernstein approximating operators, Itinerant seminar on functional equations, approximation and convexity
(Cluj-Napoca, 1984), pp. 185-192, Preprint, 84-6, Univ. ”Babeș-Bolyai”, Cluj-Napoca, 1984
[26] Stancu, D.D., Bivariate approximation by some Bernstein-type operators, Proc. Colloq. Approx. Optim., Cluj-Napoca, pp. 25-34, 1984
[27] Stancu, D.D., Representation of remainders in approximation formulae by some discrete type linear positive operators, Redinconti del Circolo Matematico di Palermo, Suppl. 52 (1998), pp. 781-791
[28] Stancu, D.D., A note on the remainder in a polynomial approximation formula. Studia Univ. Babeș-Bolyai Math., 41, no. 2, pp. 95-101, 1996
[29] Stancu, D.D., Approximation properties of a class of multiparameter positive linear operators. Approximation and optimization, Vol. I (Cluj-Napoca, 1996), 107-120, Transilvania, Cluj-Napoca, 1997.
[30] Stancu, D.D., On the approximation of functions by means of the operators of binomial type of Tiberiu Popoviciu, Rev. Anal. Numer. Theor. Ap;prox. 30 (2001), no. 1, 95-105
[31] Stancu, D.D., On approximation of functions by means of compund poweroid operators, Mathematical Analysis and Approximation Theory, Proceedings of ROGER 2002-Sibiu, pp. 259-272
[32] Stancu, D.D., and Drane, J.W., Approximation of functions by means of the poweroid operators S_{m,r,s,}^{α}, Trends in approximation theory (Nashville, TN, 2000), pp. 401-405, Innov. Appl. Math., Vanderbilt Univ. Press. Nashville, TN, 2001
[33] Stancu, D.D., and Occorsio, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numer. Theor. Approx. 27 (1998), no. 1, 167-181
[34] Stancu, D.D., and Vernescu, A., Approximation of bivariate functions by means of a class of operators of Tiberiu Popoviciu type, Mathematical Reports, București, (1) 51 (1999), no. 3, 411-419
[35] Stancu, D.D. and Simoncelli, A. C., Compound poweroid operators of approximation, Redinconti del Circolo Matematico di Palermo, Suppl. 68 (2002), pp. 845-854
[36] Vlaic, G., Approximation properties of a class of bivariate operators of D.D. Stancu, Studia Universitatis Babeș-Bolyai, Mathematica, 42, no. 2, pp. 109-115, 1997