On a problem of number partitioning

Abstract

Authors

T. Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Asupra unei probleme de partiție a numerelor, Studii și cercetări științifice (Cluj), 4 (1953) nos. 1-2, pp. 7-58 (in Romanian).

PDF

About this paper

Journal

Studii si Cercetari Stiintifice (Cluj)

Publisher Name

Academy of the Republic of S.R.

Print ISSN

1220-269X

Online ISSN

google scholar link

??

Paper (preprint) in HTML form

ON A PROBLEM OF PARTITION OF NUMBERS

by
TIBERIU POPOVICIU
(Cluj)
  1. 1.

    Let's consider equation
    (1)

a1x1+a2x2++amxm=na_{1}x_{1}+a_{2}x_{2}+\ldots+a_{m}x_{m}=n

wherea1,a2,,aa_{1},a_{2},\ldots,aarenngiven natural numbers. Assuming thatnnis a non-negative integer, we will denote it byN(n;a1,a2,,am)\mathrm{N}\left(n;a_{1},a_{2},\ldots,a_{m}\right)the number of solutions in non-negative integersx1,x2,,xmx_{1},x_{2},\ldots,x_{m}of equation (1). Fornnnegative integer we define the symbolN(n;a1,a2,,am)\mathrm{N}\left(n;a_{1},a_{2},\ldots,a_{m}\right)as being equal to(1)m(-1)^{m-}times the number of solutions in negative integersx1,x2,,xmx_{1},x_{2},\ldots,x_{m}of equation (1).N(n;a1,a2,,an)\mathrm{N}\left(n;a_{1},a_{2},\ldots,a_{n}\right)depends, apart fromnn, and the coefficientsa1,a2,,ama_{1},a_{2},\ldots,a_{m}It is clear that the functionN(n;a1,a2,,am)\mathrm{N}\left(n;a_{1},a_{2},\ldots,a_{m}\right)is symmetrical ina1,a2,,ama_{1},a_{2},\ldots,a_{m}for each value ofnn.

Ifnnis a positive integer, the number of solutions in positive integers of equation (1) is equal, based on the above, to(1)m1N(n;a1,a2,,am).)1\left.(-1)^{m-1}\mathrm{\penalty 10000\ N}\left(-n;a_{1},a_{2},\ldots,a_{m}\right).{}^{1}\right)

When there is no ambiguity about the coefficientsa1,a2,,ama_{1},a_{2},\ldots,a_{m},

0

Successive summations being extended to combinationsi1i_{1}MANY1,i1,i21,i_{1},i_{2}MANY2,,i1,i2,,im12,\ldots,i_{1},i_{2},\ldots,i_{m-1}MANYm1m-1of the indices1,2,,m1,2,\ldots,m, we deduce

N(n;a1,a2,,am)=SN(n;ai1)SN(n;ai1,a2)++\displaystyle\mathrm{N}\left(-n;a_{1},a_{2},\ldots,a_{m}\right)=\Sigma\mathrm{N}\left(n;a_{i_{1}}\right)-\Sigma\mathrm{N}\left(n;a_{i_{1}},a_{2}\right)+\ldots+
+(1)m2SN(n;ai1,ai2,,alm1)+(1)m1N(n;a1,a2,,am)\displaystyle\quad+(-1)^{m-2}\Sigma\mathrm{\penalty 10000\ N}\left(n;a_{i_{1}},a_{i_{2}},\ldots,a_{l_{m-1}}\right)+(-1)^{m-1}\mathrm{\penalty 10000\ N}\left(n;a_{1},a_{2},\ldots,a_{m}\right)

p\pibeing a natural number.
we will write it shorter withNn(n)\mathrm{N}_{n}(n), or even withN(n)\mathrm{N}(n), the number

N(n;a1,a2,,am)\mathrm{N}\left(n;a_{1},a_{2},\ldots,a_{m}\right)

Index notationmmwill be used especially when both equality (1) and the coefficients occur simultaneouslya1,a2,,ama_{1},a_{2},\ldots,a^{m}as well as analogous equations with less thanmmunknowns, having as coefficients the terms from the beginning of the seriesa1,a2,a_{1},a_{2},\ldotsE.g. cluesmmandm1m-1distinguish the respective cases when we simultaneously consider equation (1) and equationa1x1+a2x2++an1an1=na_{1}x_{1}+a_{2}x_{2}+\ldots+a_{n-1}a_{n-1}=nWe will use similar abbreviations for other functions as well.nnwhich also depend on the coefficients of equation (1). When necessary, we will always specify, for greater clarity, to which of equations (1) the abbreviated notations used refer.
2. - Based on Euler's research [1], the study of the number N(n) can be done using the generating functions

F(g)=1(1ga1)(1ga2)(1gam)=n=0N(n)gn\displaystyle\mathrm{F}(\zeta)=\frac{1}{\left(1-\zeta^{a_{1}}\right)\left(1-\zeta^{a_{2}}\right)\cdots\left(1-\zeta^{a_{m}}\right)}=\sum_{n=0}^{\infty}\mathrm{N}(n)\zeta^{n} (2)
F(g)=n=1N(n)1gn\displaystyle-\mathrm{F}(\zeta)=\sum_{n=1}^{\infty}\mathrm{N}(-n)\frac{1}{\zeta^{n}} (3)

which are obtained by developing the rational functionF(g)F(\zeta)once according to the increasing powers and once according to the decreasing powers ofg\zeta.

Euler's method, based on formula (2), has been further developed by various researchers, especially by JJ Sylvester [2a]. This method uses the properties of the rational functionF(g)F(\zeta)and, in particular, its decomposition into simple fractions, as well as various properties of roots of different orders of unity. However, the number N(n) can also be studied through elementary considerations of number theory, a method that works well, at least in not too complicated cases. This method was applied in particular by K. Wei hrauch[3a,3b][3a,3b]and, especially as regards the problems we are dealing with here, by Th. Skolem [4]. Both methods have their own advantages.
3. – In the present paper we propose to examine the following problem:

PROBLEM I. Given equation (1), find a polynomialP(n)\mathrm{P}(n)ofnnso thatN(n)\mathrm{N}(n)to be equal to the nearest whole numberP(n)\mathrm{P}(n), whatever it isnn.

This problem has been studied in particular cases

m=3,a1=1,a2=2,a3=3\displaystyle m=3,a_{1}=1,a_{2}=2,a_{3}=3
m=3,a1,=1,a2=3,a3=5\displaystyle m=3,a_{1},=1,a_{2}=3,a_{3}=5

by Sylvester [2a]. Th. Skolem [4] has also studied these cases

m=3,a1=1,a2=2,a3=5\displaystyle m=3,a_{1}=1,a_{2}=2,a_{3}=5
m=4,a1=1,a2=2,a3=3,a4=5\displaystyle m=4,a_{1}=1,a_{2}=2,a_{3}=3,a_{4}=5

In the following we will completely solve the problem form=2m=2andm=3m=3The casem=1m=1It is trivial and will be recalled in passing. We will also consider some more general cases.

Problem I (as well as the following problems II and II') allows, through certain simple particular solutions of it, the statement of some interesting properties on the number of solutions in non-negative integers or on the number of solutions in positive integers of equation (1).

Problem I is not always possible. In other words, givenmmand the coefficientsa1,a2,,ana_{1},a_{2},\ldots,a_{n}, so equation (1), there is not always a polynomialP(n)\mathrm{P}(n)so that the condition required by the problem is met. For a polynomialP(n)\mathrm{P}(n)to verify the required condition it is necessary and sufficient to have

12<P(n)N(n)<12|P(n)N(n)|<12\begin{gathered}-\frac{1}{2}<\mathrm{P}(n)-\mathrm{N}(n)<\frac{1}{2}\\ |\mathrm{P}(n)-\mathrm{N}(n)|<\frac{1}{2}\end{gathered}

whatevernnIf
in this case we know the value ofP(n)\mathrm{P}(n), we can always unambiguously deduce the value ofN(n)\mathrm{N}(n).
4. - Two other problems are closely related to problem I. One of these problems is the following:

PROBLEM II. - Given the equality (1), determine a polynomialQ(n)\mathrm{Q}(n)ofnnso thatN(n)\mathrm{N}(n)to be equal to the whole contained inQ(n)\mathrm{Q}(n)whatever it is.

In other words, to determine a polynomialQ(n)Q(n)so that we have

N(n)=[Q(n)]\mathrm{N}(n)=[Q(n)] (6)

whatevernn.
Equality (6) is equivalent to the inequalities

0Q(n)N(n)<10\leqq\mathrm{Q}(n)-\mathrm{N}(n)<1 (7)

whatevernnIn formula ( 6
) we have usually noted with [a\alpha] the entire contents ofa\alpha, or the whole part of ita\alpha, or the largest integera\leqq\alpha. Instead of [a\alpha] we can consider the whole that encompassesa\alpha, or the smallest integera\geqq\alphaThis number is equal to[a]-[-\alpha]We can then ask ourselves the question:

PROBLEM II'. - Given equation (1), determine a polynomialS(n)\mathrm{S}(n)ofnnjust like thatN(n)\mathrm{N}(n)to be equal to the whole that includesS(n)\mathrm{S}(n), whoever it may benn.

In other words, to determine a polynomialS(n)S(n)so that we have (8)

N(n)=[S(n)]\mathrm{N}(n)=-[-\mathrm{S}(n)]

whatevernn.

Equality (8) is equivalent to inequalities
(9)

0N(n)S(n)<1,0\leqq\mathrm{\penalty 10000\ N}(n)-\mathrm{S}(n)<1,

whatevernnIf
problem I has a solutionP(n)\mathrm{P}(n)and problems II and II' have a solution because it is enough to take thenQ(n)=P(n)+12,S(n)=P(n)12Q(n)=\mathrm{P}(n)+\frac{1}{2},\mathrm{\penalty 10000\ S}(n)=\mathrm{P}(n)-\frac{1}{2}so that inequalities (7) and (9) can be verified, since this follows simply from (4). We will see below that if one of the problems I, II, II' has a solution, the other two also have a solution, as well as what are the connections between the solutions of these problems.
5. - Finally, let us consider the more general problem:

PROBLEM III. - Given equation (1), determine a polynomialR(n)\mathrm{R}(n)ofnnso that the differenceR(n)(n)\mathrm{R}(n)-\mathbb{N}(n)to be uniformly bordered.

In other words, determine a polynomial R(n) such that we have (10)

|R(n)N(n)|<K|\mathrm{R}(n)-\mathrm{N}(n)|<\mathrm{K}

whatevernn, K being an independent number ofnn
From inequalities (5), (7), (9) it is then seen that
Condition (10) is necessary for problems I, II, II' to have - solution .

We will see below how the solutions to problems I, II, II', when they exist, can be deduced from the polynomialR(n)\mathrm{R}(n).
6. - In the following we use some elementary properties of polynomials. Some of these properties result implicitly from the important property that a given polynomial is completely determined by a finite number of its values. No difficulty or confusion arises from the fact that the variable only goes through integer values. We also use the following:

LEMMA 1. - If the difference of two polynomials innnis uniformly bounded, these polynomials differ by a constant.

We can accept this property here without proof.
From Lemma 1 it follows that any two solutions of one of the problems I, II, II' or III always differ by a constant. It can also be easily seen that the half-sum of two solutions is always a solution. So ifP(n)\mathrm{P}(n)is a solution to one of problems I, II, II' or III, all solutions of this problem are contained in the formulaP(n)+l\mathrm{P}(n)+\lambda, wherel\lambda, belongs to a certain interval. In the case of the problem, it is a bracket belonging to an axis III, the range of its variationl\lambdais, obviously, the entire real axis. These properties will be specified below.
7. - - An observation naturally arises. Namely whether problems I, II, II', III become more general if we constrainnnto take only nonnegative values ​​or only negative values. The answer is negative
, as follows from the following considerations. It is also clear that Lemma 1 also holds if we limit ourselves to only nonnegative values ​​or only negative values ​​ofnn.

§ 1.

  1. 8.

    – In this § we will deal with problem III. From the known results on equation (1) it can be deduced that for problem III to have a solution it is necessary and sufficient that the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}to be two primes between them. We will still give the proof of this property because, on the one hand, the necessity of the condition must be clearly shown, on the other hand, the proof of sufficiency leads to a direct procedure for calculating the polynomialR(n)\mathrm{R}(n), a procedure that should be specified.

We will first deal with the necessity of the condition. Here we will rely on the decomposition of the rational function (2) into simple fractions. In the casesm=2,3m=2,3we will also give direct demonstrations below.

We will assumem>1m>1, except unless otherwise specified.
9. - All roots of the denominator of the functionF(g)F(\zeta)are roots of unity and their order of multiplicity is, for each, at mostmmIn particular, the root 1 is of ordermmof multiplicity. We then have the decomposition into simple fractions

F(g)=i=1m(i)C(e,i)(1eig,iF(\zeta)=\sum_{i=1}^{m}\sum_{(i)}\frac{\Gamma(\varepsilon,i)}{\left(1-\varepsilon^{i}\zeta,i\right.} (11)

where the summation0\sum_{0}refers to all the different rootse\varepsilon, at least of the order ofiiof multiplicity, of the denominator of the fractionF(g)\mathrm{F}(\zeta)The constants Y (e;\varepsilon;i) are all different from zero, as follows from the fact that fraction (2) is irreducible and from the fact that the decomposition into simple fractions of a rational function is unique.

From (2) and (11) it follows that

N(n)=i=1mCi(n)(n+i1i1)\mathrm{N}(n)=\sum_{i=1}^{m}\mathrm{C}_{i}(n)\binom{n+i-1}{i-1} (12)

where

Cl(n)=(i)C(e;i)en,i=1,2,,mC_{l}(n)=\sum_{(i)}\Gamma(\varepsilon;i)\varepsilon^{n},\quad i=1,2,\ldots,m (13)

for anythingnnnonnegative.
For brevity we will put

d=a1a2am\delta=a_{1}a_{2}\ldots a_{m} (14)

We then haveen=en′′\varepsilon^{n^{\prime}}=\varepsilon^{n^{\prime\prime}}ifnn′′(againstd)n^{\prime}\equiv n^{\prime\prime}(\bmod\delta)for all rootse\varepsilonFrom (13) we then deduceCi(n)=Ci(n′′)\mathrm{C}_{i}\left(n^{\prime}\right)=\mathrm{C}_{i}\left(n^{\prime\prime}\right)fornn′′(againstd)n^{\prime}\equiv n^{\prime\prime}(\bmod\delta), i=1,2,,mi=1,2,\ldots,m,

Doubly infinite strings
{Ci(n)}\left\{C_{i}(n)\right\}

,Ci(1),Ci(0),Ci(1),i=1,2,,m\begin{gathered}\ldots,C_{i}(-1),C_{i}(0),C_{i}(1),\ldots\\ i=1,2,\ldots,m\end{gathered}

are therefore periodic with common periodd2\delta{}^{2})
In particular the numbersC(n),n=0,±1,±2,,i=1,2,,mC(n),n=0,\pm 1,\pm 2,\ldots,i=1,2,\ldots,mtake only a finite number of distinct values.
10. - We will now prove

LEMMA 2. - For problem III to have a solution it is necessary that for eachi=2,3,i=2,3,\ldots, m the numbersC1(n)\mathrm{C}_{1}(n)to take a single value.

Suppose that problem III has a solution but that the condition of the lemma is not satisfied. Then letrrhis greatest valueiifor which numbersCi(n)\mathrm{C}_{i}(n)take at least two different values. We then have2rm2\leqq r\leqq m. Either

Cr(x)Cr(x).C_{r}(x)\neq C_{r}(\xi). (15)

IfR(n)\mathrm{R}(n)is a solution to problem III, we have in particular

|R(a+ns)N(a+ns)|<K|\mathrm{R}(\alpha+ns)-\mathrm{N}(\alpha+ns)|<\mathrm{K}

for anythingnnwhole.
But

N(a+ns)=i=1mCi(a)(a+ns+i1i1)\mathrm{N}(\alpha+ns)=\sum_{i=1}^{m}\mathrm{C}_{i}(\alpha)\binom{\alpha+ns+i-1}{i-1}

is a polynomial innnand then, based on Lemma 1, we have

R(a+ns)=N(a+ns)+l\mathrm{R}(\alpha+ns)=\mathrm{N}(\alpha+ns)+\lambda

whatevern,ln,\lambdabeingtheoconstant.
It then follows that

R(n)=i=1mCi(With)(n+i1i1)+l\mathrm{R}(n)=\sum_{i=1}^{m}\mathrm{C}_{i}(z)\binom{n+i-1}{i-1}+\lambda (16)

Analogously we deduce
l\lambda^{\prime}being a constant.

R(n)=i=1mCi(b)(n+i1i1)+l\mathrm{R}(n)=\sum_{i=1}^{m}\mathrm{C}_{i}(\beta)\binom{n+i-1}{i-1}+\lambda^{\prime} (17)

From (16), (17) we deduce

i=1m[Ci(a)Cl(b)](n+i1i1)=i=1r[Ci(a)Ci(b)](n+i1i1)=ll\sum_{i=1}^{m}\left[C_{i}(\alpha)-C_{l}(\beta)\right]\binom{n+i-1}{i-1}=\sum_{i=1}^{r}\left[C_{i}(\alpha)-C_{i}(\beta)\right]\binom{n+i-1}{i-1}=\lambda^{\prime}-\lambda

for anythingnn.
2 ) Instead ofd\deltacan you take the cmmmc of the numbersa2,a2,,ama_{2},a_{2},\ldots,a_{m}.

However, this is impossible because, based on (15), the first term is a polynomial innnof effective degreer11r-1\geqq 1.
11. - We will now demonstrate

LEMMA 3. - For problem III to have a solution, it is necessary that the denominator of the fraction (2) does not have any multiple root different from 1.

Let us assume the opposite. Then there are at least two roots that are at least double and we have

C2(n)=C(i;2)+(i)e1C(e;2)enC_{2}(n)=\Gamma(i;2)+\sum_{\begin{subarray}{c}(i)\\ \varepsilon\neq 1\end{subarray}}\Gamma(\varepsilon;2)\varepsilon^{n}

for anythingnn, because one of the roots of e is equal to 1.
But, ife1\varepsilon\neq 1, we haven=0d1en=0\sum_{n=0}^{\delta-1}\varepsilon^{n}=0, so

n=Jd1C2(n)=dC(1;2)\sum_{n=J}^{\delta-1}C_{2}(n)=\delta\Gamma(1;2)

However, based on Lemma 2, the numbersG2(n)G_{2}(n)are all equal and then it resultsC2(n)=(1;2)\mathrm{C}_{2}(n)=(1;2)what would it bennWe deduce from this that

(j)e1T(e;)e=0,n=0,1,\sum_{\begin{subarray}{c}(j)\\ \varepsilon\neq 1\end{subarray}}\mathrm{\penalty 10000\ T}(\varepsilon;\swarrow)\varepsilon^{\prime}=0,\quad n=0,1,\ldots

which implies, based on a well-known property of systems of linear equations, thatC(e;2)=0\Gamma(\varepsilon;2)=0for all rootse1\varepsilon\neq 1. This is, however, impossible, based on an observation from No. 9. With this Lemma 3 is proven.
12. - The necessity of the sought condition is now proven because the fact that the denominator of the fractionF(g)F(\zeta)has no multiple root different from 1 is equivalent to the fact that the coefficientsa1,a2,,ama_{1},a_{2},\ldots,a_{m}There are two paths, two primes between them.

It should be noted that the sufficiency of the condition follows from the preceding. If the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}there are two paths two primes between them formula (12) reduces to
(18)
and can be taken

N(n)=i=2mT(1;n)(n+i1i1)+C1(n)\mathrm{N}(n)=\sum_{i=2}^{m}\mathrm{\penalty 10000\ T}(1;n)\binom{n+i-1}{i-1}+\mathrm{C}_{1}(n)

So finally we have

R(n)=i=2mT(1;i)(n+i1i1)\mathrm{R}(n)=\sum_{i=2}^{m}\mathrm{\penalty 10000\ T}(1;i)\binom{n+i-1}{i-1}

THEOREM 1. - The necessary and sufficient condition for problem III to have a solution is that the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}to be two primes between them.

A reasoning analogous to that of No. 11 made on himC2(n)\mathrm{C}_{2}(n), applied here toC1(n)\mathrm{C}_{1}(n), shows us that the numbersC1(n),n=0,±1,±2,\mathrm{C}_{1}(n),n=0,\pm 1,\pm 2,\ldotscannot all be equal to each other unless 1 is the only root of the denominator of the fraction (2). This is equivalent to the fact that the numbersa1,a2,,ama_{1},a_{2},\ldots,a^{m}are all equal to 1.

In the following we will give a direct proof of the sufficiency of the condition.

§ 2.

  1. 13.
    • Since we will be using variable functionsnnrelative to equations (1) withmmandm1m-1unknowns, we will use the abbreviated notations in the sense explained in No. 1. Thus,

Nm(n)=N(n;a1,a2,,am),Nm1(n)=N(n;a1,a2,,am1)\mathrm{N}_{m}(n)=\mathrm{N}\left(n;a_{1},a_{2},\ldots,a_{m}\right),\mathrm{N}_{m-1}(n)=\mathrm{N}\left(n;a_{1},a_{2},\ldots,a_{m-1}\right)

as well as other analogous notations that are self-explanatory.
We will first prove
LEMMA 4. - We have the formula

Nm(n+kam)Nm(n)=i=1kNm1(n+iam)\mathrm{N}_{m}\left(n+ka_{m}\right)-\mathrm{N}_{m}(n)=\sum_{i=1}^{k}\mathrm{\penalty 10000\ N}_{m-1}\left(n+ia_{m}\right) (19)

whatever the natural number iskk, the integer n and the natural numberm>1m>1.

The proof is done by counting the solutions of equation (1) in a well-determined way. We will distinguish three cases:
1.0n1^{\circ}.0\geqq n. Then the non-negative integer solutions of the equation

a1x1+a2x2++amxm=n+kama_{1}x_{1}+a_{2}x_{2}+\ldots+a_{m}x_{m}=n+ka_{m} (20)

are of two kinds. Some are obtained from the non-negative integer solutions of the equation

a1x1+a2x2++amxm=n,a_{1}x_{1}+a_{2}x_{2}+\ldots+a_{m}x_{m}=n, (21)

collectingkkthexmx_{m}The others are solutions in whichxm<kx_{m}<kFormula (19) is obtained by givingxmx_{m}in (20) successively the values0,1,2,,k10,1,2,\ldots,k-1.
22^{\circ}. - kamn<0ka_{m}\leqq n<0In this case there is a natural numberkkk^{\prime}\leqq kso that

kamn<(k1)am.-k^{\prime}a_{m}\leqq n<-\left(k^{\prime}-1\right)a_{m}.

The solutions in non-negative integers of equation (20) are obtained by givingxmx_{m}successive values0,1,,kk0,1,\ldots,k-k^{\prime}and it turns out that

Nm(n+kam)=i=kkNm1(n+iam).\mathrm{N}_{m}\left(n+ka_{m}\right)=\sum_{i=k^{\prime}}^{k}\mathrm{\penalty 10000\ N}_{m-1}\left(n+ia_{m}\right). (22)

Also, any solution in negative integers of equation (21) is obtained by givingxmx_{m}successive values1,2,,k+1-1,-2,\ldots,-k^{\prime}+1and it turns out that

(1)m1Nm(n)=(1)m2i=1k1Nm1(n+iam)(-1)^{m-1}\mathrm{\penalty 10000\ N}_{m}(n)=(-1)^{m-2}\sum_{i=1}^{k^{\prime}-1}\mathrm{\penalty 10000\ N}_{m-1}\left(n+ia_{m}\right)

or

Nm(n)=t=1k1Nm1(n+iam)-\mathrm{N}_{m}(n)=\sum_{t=1}^{k^{\prime}-1}\mathrm{\penalty 10000\ N}_{m-1}\left(n+ia_{m}\right) (23)

Adding equalities (22), (23) member by member, we deduce formula (19).

casek=1nink^{\prime}=1\mathrm{nu}is excluded because then we obviously haveNm(n)=0N_{m}(n)=0, (m>1)(m>1).
3.n<kam3^{\circ}.n<-ka_{m}In this case any solution in negative integers of equation (21) or is obtained from the solutions in negative integers of equation (20) by subtractingkkFROMxmx_{m}or is there a solution in whichxmkx_{m}\geqq-k. Giving in (21) toxmx_{m}successive values1,2,,k-1,-2,\ldots,-k, we deduce

(1)m1Nm(n)(1)m1Nm(n+kam)=(1)m2i=1kNm1(n+iam)(-1)^{m-1}\mathrm{\penalty 10000\ N}_{m}(n)-(-1)^{m-1}\mathrm{\penalty 10000\ N}_{m}\left(n+ka_{m}\right)=(-1)^{m-2}\sum_{i=1}^{k}\mathrm{\penalty 10000\ N}_{m-1}\left(n+ia_{m}\right)

which also returns to formula (19).
Lemma 4 is completely proven.
Important particular cases of formula (19) are
(24)

Nm(n+am1)Nm(n)=Nm1(n+am)\mathrm{N}_{m}\left(n+a_{m1}\right)-\mathrm{N}_{m}(n)=\mathrm{N}_{m-1}\left(n+a_{m}\right)

which is obtained by takingk=1k=1and

Nm(n+d)Nm(n)=i=1dNm1(n+iam)\mathrm{N}_{m}(n+\delta)-\mathrm{N}_{m}(n)=\sum_{i=1}^{\delta^{\prime}}\mathrm{N}_{m-1}\left(n+ia_{m}\right) (25)

whered\deltais defined by (14) and

d=a1a2am1,dam=d\delta^{\prime}=a_{1}a_{2}\ldots a_{m-1},\quad\delta^{\prime}a_{m}=\delta (26)

In what follows we will continue to use the abbreviated notations (14) and (26).
14. - We can now prove

LEMMA 5. - If the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}there are two primes between them we have, for anynnwhole

Nn(n)=Rn(n)+Gn(n),\mathrm{N}_{n}(n)=\mathrm{R}_{n}(n)+\mathrm{G}_{n}(n), (27)

whereR(n)=R(n;a1,a2,,am)\mathrm{R}(n)=\mathrm{R}\left(n;a_{1},a_{2},\ldots,a_{m}\right)is a polynomial of degreem1m-1 in nnandGm(n)=G(n;a1,a2,,am)\mathrm{G}_{m}(n)=\mathrm{G}\left(n;a_{1},a_{2},\ldots,a_{m}\right)forms an infinite double string{Gm(n)}\left\{\mathrm{G}_{m}(n)\right\}periodically from time to timed\delta.

The proof of the lemma is done by complete induction, based on formula (25).

We first observe that, under the conditions of the lemma, we have

SGm(n)=n=jd1Gm(n)=Hm(a1,a2,,am),\Sigma^{*}\mathrm{G}_{m}(n)=\sum_{n=j}^{\delta-1}\mathrm{G}_{m}(n)=\mathrm{H}_{m}\left(a_{1},a_{2},\ldots,a_{m}\right), (28)

whereS\Sigma^{*}extends to a system ofd\deltahis valuesnnforming a complete system of debris (moded\delta). The sum (28) is independent ofnn.

Let us now assume that the property is true in the case of equations (1) withm1m-1unknowns and let us show that it will also be true in the case of equations (1) with m unknowns. We then have

Nm1(n)=Rn1(n)+Gn1(n)\mathrm{N}_{m-1}(n)=\mathrm{R}_{n-1}(n)+\mathrm{G}_{n-1}(n) (29)

the two terms in the second member satisfying the conditions of the lemma.

Rm(n+d)Rm(n)=i=1dRn1(n+iam)+Hm1(a1,a2,,am1)\mathrm{R}_{m}(n+\delta)-\mathrm{R}_{m}(n)=\sum_{i=1}^{\delta^{\prime}}\mathrm{R}_{n-1}\left(n+ia_{m}\right)+\mathrm{H}_{m-1}\left(a_{1},a_{2},\ldots,a_{m-1}\right)
  1. 2.

    Taking into account (25) and (20) we deduce

Nm(n+d)Nm(n)=Rm(n+d)Rm(n)\mathrm{N}_{m}(n+\delta)-\mathrm{N}_{m}(n)=\mathrm{R}_{m}(n+\delta)-\mathrm{R}_{m}(n)

Putting the slides

Gm(n)=Nm(n)Rm(n)\mathrm{G}_{m}(n)=\mathrm{N}_{m}(n)-\mathrm{R}_{m}(n) (31)

the property is demonstrated.
Finally, form=1m=1the lemma is true. To see this it is enough to takeR(n;a1)=0\mathrm{R}\left(n;a_{1}\right)=0and we will then haveG(n;a1)=1\mathrm{G}\left(n;a_{1}\right)=1or 0 as appropriatea1a_{1}divide bynnor does not divide bynn.

During the demonstration that the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}are two primes between them, it occurs by applying formula (28). Namely the sumSGm1(n)\Sigma^{*}\mathrm{G}_{m-1}(n)extends here to the valuesn+ian,i=1,2,,dn+ia_{n},i=1,2,\ldots,\delta^{\prime}his/hersnn, values ​​that form a complete system of solutions (moded\delta^{\prime}) because the numbersam,a1a2am1a_{m},a_{1}a_{2}\ldots a_{m-1}are prime to each other. So the fact that the numbersa1,a2,,ana_{1},a_{2},\ldots,a_{n}are two by two primes between them is equivalent to the fact that the numbersai,a1a2ai1a_{i},a_{1}a_{2}\ldots a_{i-1}are prime among themselves, whatever they arei=2,3,,mi=2,3,\ldots,m.

With this the sufficiency of the condition of Theorem 1 is demonstrated.
15. - Let us suppose then that the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}are two primes among themselves. In formula (27) the polynomialRm2(n)\mathrm{R}_{m}^{2}(n)is determined only by some additive constant. Our considerations in the following §§ are not influenced by this indeterminacy of the termsRm(n)\mathrm{R}_{m}(n)andGm(n)\mathrm{G}_{m}(n), but the fact that we have this indeterminacy simplifies the exposition in certain cases.

To appreciate its structureNm(n)\mathrm{N}_{m}(n)and especially to calculateRm(n)\mathrm{R}_{m}(n)it is useful to conveniently fix the additive constant in this term. For this we will "normalize" the polynomial R (nn) through the condyle
(32)Rm(0)=R(0;a1,a2,,am)=0,(m1)\quad\mathrm{R}_{m}(0)=\mathrm{R}\left(0;a_{1},a_{2},\ldots,a_{m}\right)=0,\quad(m\geqq 1).

By this condition the polynomialRn(n)\mathrm{R}_{n}(n), so the periodic termGm(n)\mathrm{G}_{m}(n)from formula (27) are completely determined. Ifm>1m>1, the polynomial
Gm(n)\mathrm{G}_{m}(n)is of the form 3 )

Rm(n)=1dj=1m1Aj(n)n\mathrm{R}_{m}(n)=\frac{1}{\delta}\sum_{j=1}^{m-1}\mathrm{\penalty 10000\ A}_{j}^{(n)}n^{\prime}

where

Aj(m)=Aj(m),a1,a2,,an),j=1,2,,m1\left.\mathrm{A}_{j}^{(m)}=\mathrm{A}_{j}^{(m)},a_{1},a_{2},\ldots,a_{n}\right),j=1,2,\ldots,m-1

are independent coefficients ofnn
We will now prove LEMMA
6. - If the numbersa1,a2,,ana_{1},a_{2},\ldots,a_{n}are two primes between them, the coefficients of the polynomialRn(n)\mathrm{R}_{n}(n), assumed to be normalized by condition (32), as well asCm(n)\mathrm{C}_{m}(n)are symmetric functions ofa1,a2,,ama_{1},a_{2},\ldots,a_{m}for any value ofnn.

In what respects are the coefficients of the polynomialRm(n)\mathrm{R}_{m}(n)it is obvious enough to demonstrate thatAj(m),j=1,2,,m1\mathrm{A}_{j}^{(m)},j=1,2,\ldots,m-1are symmetric. The proof of the lemma is based on the observation thatNn(n)\mathrm{N}_{n}(n)is symmetrical with respect toa1,a2,,ana_{1},a_{2},\ldots,a_{n}.

From (27) we deduce, for annthat,

dNm(n+id)=j=1m1Aj(n)(n+id)c+dGm(n),i=0,1,m1\delta\mathrm{N}_{m}(n+i\delta)=\sum_{j=1}^{m-1}\mathrm{\penalty 10000\ A}_{j}^{(n)}(n+i\delta)^{\gamma}+\delta\mathrm{G}_{m}(n),\quad i=0,1\ldots,m-1 (33)

These relationships form a system ofmmlinear equations withmmunknownA1(m)A2(m),,Am1(m),Gm(n)\mathrm{A}_{1}^{(m)}A_{2}^{(m)},\ldots,\mathrm{A}_{m-1}^{(m)},\mathrm{G}_{m}(n)All coefficients of this system are symmetric functions ofa1,a2,,ama_{1},a_{2},\ldots,a_{m}and Lemma 6 results from solving the system. It is also easy to see that the determinant of the system is nonzero.

Referring to formula (28) we see that, if we have (32), the functionHn(a1,a2,,am)\mathrm{H}_{n}\left(a_{1},a_{2},\ldots,a_{m}\right)is also a symmetric function ofa1,a2,,ana_{1},a_{2},\ldots,a_{n}This property results, as we will see below, also directly from the symmetry of the coefficientsAj(m)\mathrm{A}_{j}^{(m)}.

System (33) allows us to calculate the coefficients of the polynomialRn(n)\mathrm{R}_{n}(n)according to the numbersNm(n)\mathrm{N}_{m}(n). It is unnecessary to write the corresponding formulas because they will not be used here. We will calculate these coefficients using formula (30). However, first it is necessary to establish some formulas used below.

§ 3.

  1. 16.
    • Bernoulli numbers are defined by the recurrence relations [5]

B0=1,in=js(sin)Bin=Bss=2,3,\mathrm{B}_{0}=1,\sum_{v=j}^{s}\binom{s}{v}\mathrm{\penalty 10000\ B}_{v}=\mathrm{B}_{s}s=2,3,\ldots (34)
  1. 3.

    Highlighting the factor1d=1a1a2am\frac{1}{\delta}=\frac{1}{a_{1}a_{2}\ldots a_{m}}simplifies the exposition, as we will see below.

From here we deduce and

B0=1,Bjj!=in=0j1Binin!(j+1in)!,j=1,2,\mathrm{B}_{0}=1,\frac{\mathrm{\penalty 10000\ B}_{j}}{j!}=-\sum_{v=0}^{j-1}\frac{\mathrm{\penalty 10000\ B}_{v}}{v!(j+1-v)!},\quad j=1,2,\ldots (35)

These formulas allow us to successively calculate the numbersBand\mathrm{B}_{y}We thus obtain

B0=1,B1=12,B2=16,B4=130,B6=142,B8=130,B_{0}=1,B_{1}=-\frac{1}{2},B_{2}=\frac{1}{6},B_{4}=-\frac{1}{30},B_{6}=\frac{1}{42},B_{8}=-\frac{1}{30},

It is known that all Bernoulli numbers with odd indices and>1>1are null, and those with even indices and>0>0are alternately positive and negative. More precisely

B4in2>0,B4in<0,in=1,2,\mathrm{B}_{4v-2}>0,\quad\mathrm{\penalty 10000\ B}_{4v}<0,\quad v=1,2,\ldots

Calculating the difference

in=0s1Binin|(sin)|sin=0sBinin|(s+1in)|,s2\sum_{v=0}^{s-1}\frac{B_{v}}{v|(s-v)|}-s\sum_{v=0}^{s}\frac{B_{v}}{v|(s+1-v)|},s\geqq 2

and taking into account (35) we deduce

1(s+1)!in=1s(in1)Binin!(s+1in)!=Bss!,s2\frac{1}{(s+1)!}-\sum_{v=1}^{s}\frac{(v-1)B_{v}}{v!(s+1-v)!}=\frac{B_{s}}{s!},\quad s\geqq 2 (36)

We will also need to evaluate the amounts

Is=in=1sBininlBsin(sin)!,s=0,1,\mathrm{I}_{s}=\sum_{v=1}^{s}\frac{\mathrm{\penalty 10000\ B}_{v}}{v\mathrm{l}}\cdot\frac{\mathrm{\penalty 10000\ B}_{s-v}}{(s-v)!},\quad s=0,1,\ldots

namely, they will demonstrate that

I0=1,in=0sBinin!Bsin(sin)!=Bs1(s1)!(s1)Bss!,s=1,2,\mathrm{I}_{0}=1,\sum_{v=0}^{s}\frac{\mathrm{\penalty 10000\ B}_{v}}{v!}\cdot\frac{\mathrm{B}_{s-v}}{(s-v)!}=-\frac{\mathrm{B}_{s-1}}{(s-1)!}-\frac{(s-1)\mathrm{B}_{s}}{s!},s=1,2,\ldots (37)

For this we observe that, if we take into account (35) and if we assumes>0s>0, we deduce

ls=in=0sBinin!Bsin(sin)!\displaystyle l_{s}=\sum_{v=0}^{s}\frac{\mathrm{\penalty 10000\ B}_{v}}{v!}\cdot\frac{\mathrm{B}_{s-v}}{(s-v)!} =Bss!in=0s1Binin![m=0sin1Bmm!(s+1inm)!]=\displaystyle=\frac{\mathrm{B}_{s}}{s!}-\sum_{v=0}^{s-1}\frac{\mathrm{\penalty 10000\ B}_{v}}{v!}\left[\sum_{\mu=0}^{s-v-1}\frac{\mathrm{\penalty 10000\ B}_{\mu}}{\mu!(s+1-v-\mu)!}\right]=
=Bss!j=1s1[in=0jBinin!Bjin(jin)!(sj+1)!]\displaystyle=\frac{\mathrm{B}_{s}}{s!}-\sum_{j=1}^{s-1}\left[\sum_{v=0}^{j}\frac{\mathrm{\penalty 10000\ B}_{v}}{v!}\cdot\frac{\mathrm{B}_{j-v}}{(j-v)!(s-j+1)!}\right]

from where

Is=Bss!j=0s1Ij(sj+1)!s=1,2,\mathrm{I}_{s}=\frac{\mathrm{B}_{s}}{s!}-\sum_{j=0}^{s-1}\frac{\mathrm{I}_{j}}{(s-j+1)!}\cdot s=1,2,\ldots (38)

Formula (37) is proved by complete induction. It is enough to assumes>1s>1, because fors=0,1s=0,1the formulas are verified directly immediately. Assuming that the formula is true forI0,I1,,Ic1I_{0},I_{1},\ldots,I_{c-1}I must show that it will be true forlsl_{s}This follows from formula (38), noting that

j=1s1lj(sj+1)!=1(s+1)!j=1s11(sj+1)![Bj1(ȷ1)!+(j1)Bjj!]\sum_{j=1}^{s-1}\frac{\mathrm{l}_{j}}{(s-j+1)!}=\frac{1}{(s+1)!}-\sum_{j=1}^{s-1}\frac{1}{(s-j+1)!}\left[\frac{\mathrm{B}_{j-1}}{(\jmath-1)!}+\frac{(-j1)\mathrm{B}_{j}}{j!}\right]

and taking into account formulas (35), (36).
17. - Let us now consider the polynomials intt

Fs=Fs(t)=in=0sBinin!tin,s=0,1,\Phi_{s}=\Phi_{s}(t)=\sum_{v=0}^{s}\frac{\mathrm{\penalty 10000\ B}_{v}}{v!}t^{v},s=0,1,\ldots

We propose to calculate the coefficient oftst^{s}in the polynomialFss+1\Phi_{s}^{s+1}, that is, the number of coefficients𝚽ss+1\boldsymbol{\Phi}_{s}^{s+1}, agreeing to note withcoefkF\operatorname{coef}_{k}\Phihis coefficienttkt^{k}in the polynomialF\Phioftt.

For this, let us also consider the polynomials

ANDs=ANDs(1)=in=0stinin!,s=0,1,\mathrm{E}_{s}=\mathrm{E}_{s}(1)=\sum_{v=0}^{s}\frac{t^{v}}{v!},\quad s=0,1,

If we observe itB1=12B_{1}=-\frac{1}{2}and if we take into account formulas (34) we have

FsANDsl+Fs(againstts+1)\Phi_{s}\mathrm{E}_{s}\equiv l+\Phi_{s}\quad\left(\bmod t^{s+1}\right) (39)

Where from
?

Fss+1tFss+Fss+1ANDs(againstts+1)\Phi_{\mathrm{s}}^{s+1}\equiv-t\Phi_{s}^{s}+\Phi_{s}^{s+1}\mathrm{E}_{s}\quad\left(\bmod t^{s+1}\right)

and we deduce

tFsstFs1s(againstts+1)t\Phi_{s}^{s}\equiv t\Phi_{s-1}^{s}\quad\left(\bmod t^{s+1}\right)

(40)

coefsFss+1=coefs1Fs1s+coefsFss+1ANDs\operatorname{coef}_{s}\Phi_{s}^{s+1}=-\operatorname{coef}_{s-1}\Phi_{s-1}^{s}+\operatorname{coef}_{s}\Phi_{s}^{s+1}E_{s}

Taking into account formulas (37) we deduce (Fs\Phi_{s}^{\prime}is the derivative ofFs\Phi_{s} )

tFsFs(1tFs)(againstts+1)t\Phi_{s}^{\prime}\equiv\Phi_{s}\left(1-t-\Phi_{s}\right)\quad\left(\bmod t^{s+1}\right)

and if we also take into account (35),
whence

tFsFsFs2ANDs(againstts+1)t\Phi_{s}^{\prime}-\Phi_{s}\equiv-\Phi_{s}^{2}E_{s}\quad\left(\bmod t^{s+1}\right)
iFsFss1FssFss+1ANDs(againstis+1)i\Phi_{s}^{\prime}\Phi_{s}^{s-1}-\Phi_{s}^{s}\equiv-\Phi_{s}^{s+1}E_{s}\quad\left(\bmod\iota^{s+1}\right)

We therefore have

coefs[tFsFss1Fss]=coefsFss+1ANDs\operatorname{coef}_{s}\left[t\Phi_{s}^{\prime}\Phi_{s}^{s-1}-\Phi_{s}^{s}\right]=-\operatorname{coef}_{s}\Phi_{s}^{s+1}\mathrm{E}_{s}

But the first member is null becausesFsFss1s\Phi_{s}^{\prime}\Phi_{s}^{s-1}is the derivative of the polynomialFss\Phi_{s}^{s}We therefore deduce from (40)

coefsFss+1=coefs1Fs1s\operatorname{coef}_{s}\Phi_{s}^{s+1}=-\operatorname{coef}_{s\rightarrow 1}\Phi_{s-1}^{s}

Where, after all,

coefsFss+1=(1)s,s=0,1,\operatorname{coef}_{s}\Phi_{s}^{s+1}=(-1)^{s},\quad s=0,1,\ldots (41)
  1. 18.
    • Let's note with[c1,c2,,cj]m\left[\gamma_{1},\gamma_{2},\ldots,\gamma_{j}\right]_{m}symmetric functionSa11in2c2ajcj\Sigma a_{1}{}^{1}\cdot u_{2}^{\gamma_{2}}\ldots a_{j}^{\gamma_{j}}relative to variablesa1,a2,,ama_{1},a_{2},\ldots,a_{m}So we have

[c1,c2,,cj]m=a1c1a2ccj\left[\gamma_{1},\gamma_{2},\ldots,\gamma_{j}\right]_{m}=\sum a_{1}^{\gamma_{1}}a_{2}^{\gamma}\cdots\gamma_{j} (42)

Here the exponentsc1,c2,,cj\gamma_{1},\gamma_{2},\ldots,\gamma_{j}are natural numbers(jm)(j\leqq m)and we can, for the sake of notation, always assumec1c2cj\gamma_{1}\leqq\gamma_{2}\leqq\leqq\ldots\leqq\gamma_{j}.

In the case where there is no ambiguity over the variables whose symmetric functions are considered, we can write it more simply with[c1,c2,,cj]\left[\gamma_{1},\gamma_{2},\ldots,\gamma_{j}\right]function[c1,c2,,cj]m\left[\gamma_{1},\gamma_{2},\ldots,\gamma_{j}\right]_{m}, suppressing the indexmm.

Let us consider the symmetric function

fs(l+1)(a1,c2,,am)=\displaystyle\varphi_{s}^{(l+1)}\left(a_{1},c_{2},\ldots,a_{m}\right)= (43)
=(s)(B11!)a1(B22!)a2(Bss!)as[1,1,,a11,2,2,,a22,,s,,sas]m\displaystyle=\sum_{(s)}\left(\frac{B_{1}}{1!}\right)^{a_{1}}\left(\frac{B_{2}}{2!}\right)^{a_{2}}\ldots\left(\frac{B_{s}}{s!}\right)^{a_{s}}[1,\underbrace{1,\ldots,}_{\alpha_{1}}1,\underbrace{2,2,\ldots,}_{\alpha_{2}}2,\ldots,\underbrace{s,\ldots,s}_{\alpha_{s}}]_{m}

where the summation(s)\sum_{(s)}refers to all solutions in non-negative integersa1,a2,,as\alpha_{1},\alpha_{2},\ldots,\alpha_{s}of the equationa1+2a2++sas=s\alpha_{1}+2\alpha_{2}+\ldots+s\alpha_{s}=sWe obviously also havea1+a2++asm\alpha_{1}+\alpha_{2}+\ldots+\alpha_{s}\leqq m. In particular

f0(m)(a1,a2,,am)=1\varphi_{0}^{(m)}\left(a_{1},a_{2},\ldots,a_{m}\right)=1

whatevermm.
Moreover, in our considerations only the functions (43) will be involved in whichs<ms<m.

The function (43) is a symmetric and homogeneous polynomial of degreess in a1,a2,,ama_{1},a_{2},\ldots,a_{m}We have the immediate formula

ψs(m)(a1,a2,,am)=in=0sBininlaminfsin(m1)(a1,a2,,am1)\psi_{s}^{(m)}\left(a_{1},a_{2},\ldots,a_{m}\right)=\sum_{v=0}^{s}\frac{B_{v}}{vl}a_{m}^{v}\varphi_{s-v}^{(m-1)}\left(a_{1},a_{2},\ldots,a_{m-1}\right) (44)

If there is no ambiguity about the variables whose symmetric functions are considered, we can write it more briefly with the functionfs(n)(a1,a2,,am)\varphi_{s}^{(n)}\left(a_{1},a_{2},\ldots,a_{m}\right)We can then write

fs=(s)(B111)a1(B221)a2(Bss1)as[1,1,,1a122,2,,2a2,,s,s,,sas]\varphi_{s}=\sum_{(s)}\left(\frac{B_{1}}{11}\right)^{\alpha_{1}}\left(\frac{B_{2}}{21}\right)^{\alpha_{2}}\ldots\left(\frac{B_{s}}{s1}\right)^{\alpha_{s}}[1,\underbrace{1,\ldots,1}_{\alpha_{1}}2\underbrace{2,2,\ldots,2}_{\alpha_{2}},\ldots,\underbrace{s,s,\ldots,s}_{\alpha_{s}}] (45)

Because𝐁in\mathbf{B}_{v}, is null forinvodd and>1>1, infs\varphi_{s}only the terms in which it actually appears areai=0\alpha_{i}=0foriiodd and>1>1It follows from this that ifssis odd infs\varphi_{s}actually only appear in terms in which we havea1>0\alpha_{1}>0.

From the structure of functions (45) a practical rule results, given by JJ Sylvester[2b][2b], for the formation of functionsfs\varphi_{s}from previous functionsf0,f1,,fs1\varphi_{0},\varphi_{1},\ldots,\varphi_{s-1}For this fromfl(0is1)\varphi_{l}(0\leqq i\leqq s-1)we only take the sum of the terms in which the brackets [] contain only numberssi\geq s-iWe complete with asis-ieach of these brackets and multiply the result byBsi(si)!\frac{\mathrm{B}_{s-i}}{(s-i)!}We thus obtain a sumfi\varphi_{i}^{*}. In particular f0=Bss![s]\varphi_{0}^{*}=\frac{\mathrm{B}s}{s!}[s]We then have

fs=i=0s1fi.\varphi_{s}=\sum_{i=0}^{s-1}\varphi_{i}^{*}.

If nowssit is odd we have obviouslyfi=0\varphi_{i}^{*}=0ifiieste par şı<s1<s-1But we also havefi=0\varphi_{i}^{*}=0ifiiis odd and<s1<s-1because then infi\varphi_{i}there is no term with a bracket [] in which all numbers aresi\geqq s-iIfssis odd so we have

fs=fs1.\varphi_{s}=\varphi_{s-1}^{*}.

Ifssit seems we have it obviousfi=0\varphi_{i}^{*}=0foriiodd and<s1<s-1We also havefi=0\varphi_{i}^{*}=0foriihair and<s2<\frac{s}{2}because then there is nofi\varphi_{i}no brackets [] where we only have numberssi\geqq s-iIn his casessso we have

fs=f0+i=[s14]+1s21f2i+fs1.\varphi_{s}=\varphi_{0}^{*}+\sum_{i=\left[\frac{s-1}{4}\right]+1}^{\frac{s}{2}-1}\varphi_{2i}^{*}+\varphi_{s-1}^{*}.

With the help of these rules we can successively construct the functionsfs\varphi_{s}We give below these functions fors9s\leqq 9.

f0=1,f1=12[1],f2=112([2]+3[1,1]),\displaystyle\varphi_{0}=1,\quad\varphi_{1}=-\frac{1}{2}[1],\quad\varphi_{2}=\frac{1}{12}([2]+3[1]),
f3=124([1,2]+3[1,1,1]),\displaystyle\varphi_{3}=-\frac{1}{24}([2]+3[11]),
f4=16!([4]+5[2,2]+15[1,1,2]+45[1,1,1,1]),\displaystyle\varphi_{4}=\frac{1}{6!}(-[4]+5[2]+5[12]+5[111]),
f5=12.6!([1,4]+5[1,2,2]+15[1,1,1,2]+45[1,1,1,1,1]),\displaystyle\varphi_{5}=-\frac{1}{2.6!}(-[4]+5[22]+5[112]+5[1111]),
f6=112.7!(2[6]7[2,4]21[1,1,4]+35[2,2,2]+105[1,1,2,2,]+\displaystyle\varphi_{6}=\frac{1}{12.7!}(2[6]-7[4]-1[14]+5[22]+05[122,]+
+315[1,1,1,1,2]+945[1,1,1,1,1,1]),\displaystyle+15[1112]+45[11111]),
f7=13.8!(2[1,6]7[1,2,4]21[1,1,1,4]+35[1,2,2,2]+\displaystyle\varphi_{7}=-\frac{1}{3.8!}(2[6]-7[24]-1[114]+5[222]+
+105[1,1,1,2,2]+315[1,1,1,1,1,2]+945[1,1,1,1,1,1,1])\displaystyle+05[1122]+15[11112]+45[111111])
f8=110!(3[8]+7[4,4]+10[2,6]35[2,2,4]+30[1,1,6]+\displaystyle\varphi_{8}=\frac{1}{10!}(-3[8]+7[4]+0[6]-5[24]+0[16]+
+175[2,2,2,2]105[1,1,2,4]315[1,1,1,1,4]+\displaystyle+75[222]-05[124]-15[1114]+
+525[1,1,2,2,2]+1575[1,1,1,1,2,2]+\displaystyle+25[1222]+575[11122]+
+4725[1,1,1,1,1,1,2]+14175[1,1,1,1,1,1,1,1])\displaystyle+725[111112]+4175[1111111])
f9=12.10!(3[1,8]+7[1,4,4]+10[1,2,6]35[1,2,2,4]+\displaystyle\varphi_{9}=-\frac{1}{2.10!}(-3[8]+7[44]+0[26]-5[224]+
+30[1,1,1,6]+175[1,2,2,2,2]105[1,1,1,2,4]\displaystyle+0[116]+75[2222]-05[1124]-
+315[1,1,1,1,1,4]+525[1,1,1,2,2,2]+\displaystyle+15[11114]+25[11222]+
+1575[1,1,1,1,1,2,2]+4725[1,1,1,1,1,1,1,2]+\displaystyle+575[111122]+725[1111112]+
+14175[1,1,1,1,1,1,1,1,1]).\displaystyle+4175[11111111]).

Using formula (42) all brackets [] can be expressed using symmetric functions of the variables on which the functions depend.fs\varphi_{s}If we doa1=a2==am=1a_{1}=a_{2}=\ldots=a_{m}=1, we have
[1,1,,a11,2,,2a2,,s,s,,sas]m=m!a1|a2|as!(m1a1a2as)[\underbrace{1,1,\ldots,}_{\alpha_{1}}1,\underbrace{2,\ldots,2}_{\alpha_{2}},\ldots,\underbrace{s,s,\ldots,s}_{\alpha_{s}}]_{m}=\frac{m!}{\alpha_{1}\left|\alpha_{2}\right|\ldots\alpha_{s}!\left(m_{1}-\alpha_{1}-\alpha_{2}-\ldots-\alpha_{s}\right)\mid}. and we deduce

ψs(m)(1,1,,1)=\psi_{s}^{(m)}(1,1,\ldots,1)=

=(s)(B11!)a1(B22!)a2(Bss!)asm!a1!a2!as!(ma1a2as)!=coefsFsm=\sum_{(s)}\left(\frac{B_{1}}{1!}\right)^{\alpha_{1}}\left(\frac{B_{2}}{2!}\right)^{\alpha_{2}}\ldots\left(\frac{B_{s}}{s!}\right)^{\alpha_{s}}\frac{m!}{\alpha_{1}!\alpha_{2}!\ldots\alpha_{s}!\left(m-\alpha_{1}-\alpha_{2}-\ldots-\alpha_{s}\right)!}=\operatorname{coef}_{s}\Phi_{s}^{m}
Taking into account (41) we have therefore
(46)

fm1(m)(1,1,,1)=(1)m1,m=1,2,\varphi_{m-1}^{(m)}(1,1,\ldots,1)=(-1)^{m-1},m=1,2,\ldots

formula that will be used below.

§4.\S 4.
  1. 19.
    • Let's return to calculating the coefficients of the polynomialRm(n)\mathrm{R}_{m}(n).

By a simple identification, we can establish, based on formulas (34), the following identity 4 )
4). We have

xj+1in(xaln)j+1in=m=0jin(1)jinm(j+1inm)xmamj+1inmx^{j+1-v}-\left(x-a_{ln}\right)^{j+1-v}=\sum_{\mu=0}^{j-v}(-1)^{j-v-\mu}\binom{j+1-v}{\mu}x^{\mu}a_{m}^{j+1-v-\mu}

and the second member of the formula is written

xj=in=0j(1)in(jin)Binamin1xj+1in(xam)i+1inj+1inx^{j}=\sum_{v=0}^{j}(-1)^{v}\binom{j}{v}_{\mathrm{B}_{v}a_{m}^{v-1}}\frac{x^{j+1-v}-\left(x-a_{m}\right)^{i+1-v}}{j+1-v}

Giving himxxsuccessive valuesn+iam,i=1,2,,dn+ia_{m},i=1,2,\ldots,\delta^{\prime}and adding term by term we deduce

i=1d(n+iam)j=in=0j(1)in(jin)Binamin1(n+d)i+1innj+1inj+1in\sum_{i=1}^{\delta^{\prime}}\left(n+ia_{m}\right)^{j}=\sum_{v=0}^{j}(-1)^{v}\binom{j}{v}\mathrm{\penalty 10000\ B}_{v}a_{m}^{v-1}\frac{(n+\delta)^{i+1-v}-n^{j+1-v}}{j+1-v}

where we use the abbreviation (26).

i=1dRm1(n+iam)=1dj=1m2Ai(m1)[ami=1d(n+iam)j]=\displaystyle\sum_{i=1}^{\delta^{\prime}}\mathrm{R}_{m-1}\left(n+ia_{m}\right)=\frac{1}{\delta}\sum_{j=1}^{m-2}\mathrm{\penalty 10000\ A}_{i}^{(m-1)}\left[a_{m}\sum_{i=1}^{\delta^{\prime}}\left(n+ia_{m}\right)^{j}\right]=
=1dj=1m2Aj(m1)|in=0j(1)n(jin)Binamin(n+d)j+1innnj+1inj+1in]=in=1m2(1)nBininminAin(m1)+\displaystyle\left.=\frac{1}{\delta}\sum_{j=1}^{m-2}\mathrm{\penalty 10000\ A}_{j}^{(m-1)}\left\lvert\,\sum_{v=0}^{j}(-1)^{\nu}\binom{j}{v}\mathrm{\penalty 10000\ B}_{v}a_{m}^{v}\frac{(n+\delta)^{j+1-v-n}-n^{j+1-v}}{j+1-v}\right.\right]=\sum_{v=1}^{m-2}(-1)^{\nu}\mathrm{B}_{v}v_{m}^{v}\mathrm{\penalty 10000\ A}_{v}^{(m-1)}+
+1dj=2m11j![in=0m1j(1)nBinn!amin(j+in1)!Aj+in11(m1)][(n+d)jnj].\displaystyle\quad+\frac{1}{\delta}\sum_{j=2}^{m-1}\frac{1}{j!}\left[\sum_{v=0}^{m-1-j}(-1)^{\nu}\frac{\mathrm{B}_{v}}{\nu!}a_{m}^{v}(j+v-1)!\mathrm{A}_{j+v^{-1}-1}^{(m-1)}\right]\left[(n+\delta)^{j}-n^{j}\right].

We then have

Rm(n+d)Rm(n)=1dj=1m1Aj(m)[(n+d)inj]\mathrm{R}_{m}(n+\delta)-\mathrm{R}_{m}(n)=\frac{1}{\delta}\sum_{j=1}^{m-1}\mathrm{\penalty 10000\ A}_{j}^{(m)}\left[(n+\delta)^{i}-n^{j}\right]

Identifying in identity (27) the coefficients of the polynomials(nx˙)jn,j=1,2,,m1(n-\dot{x})^{j}--n,j=1,2,\ldots,m-1, which forms an independent linear system, we have

A(m)=in=1m2(1)inBinaminAin(m1)+Hm1(a1,a2,,am1),\mathrm{A}^{(m)}=\sum_{v=1}^{m-2}(-1)^{v}\mathrm{\penalty 10000\ B}_{v}a_{m}^{v}\mathrm{\penalty 10000\ A}_{v}^{(m-1)}+\mathrm{H}_{m-1}\left(a_{1},a_{2},\ldots,a_{m-1}\right), (47)
Aj(m)=1j!in=0mj(1)inBinin!amin(j+in1)!Aj+in1(m1),j=2,3,,m1.\mathrm{A}_{j}^{(m)}=\frac{1}{j!}\sum_{v=0}^{m-j}\frac{(-1)^{v}\mathrm{\penalty 10000\ B}_{v}}{v!}a_{m}^{v}(j+v-1)!\mathrm{A}_{j+v-1}^{(m-1)},\quad j=2,3,\ldots,m-1. (48)

Ifm=2m=2formula (30) reduces to

in=0j1j+1in(1)in(jin)Binamin1[m=0jin(1)jinm(j+1inm)xmamj+1inm]==m=0j(1)imj!m!(j+1m)!xmamjm[in=0jm(j+1min)Bin]=xj\begin{gathered}\sum_{v=0}^{j}\frac{1}{j+1-v}(-1)^{v}\binom{j}{v}\mathrm{\penalty 10000\ B}_{v}a_{m}^{v-1}\left[\sum_{\mu=0}^{j-v}(-1)^{j-v-\mu}\binom{j+1-v}{\mu}x^{\mu}a_{m}^{j+1-v-\mu}\right]=\\ =\sum_{\mu=0}^{j}\frac{(-1)^{i-\mu}j!}{\mu!(j+1-\mu)!}x^{\mu}a_{m}^{j-\mu}\left[\sum_{v=0}^{j-\mu}\binom{j+1-\mu}{v}\mathrm{\penalty 10000\ B}_{v}\right]=x^{j}\end{gathered}

because, based on formula (34), the sumin=0jm(j+1min)Bin\sum_{v=0}^{j-\mu}\binom{j+1-\mu}{v}\mathrm{\penalty 10000\ B}_{v}is equal to 1 or 0 ifm=j\mu=j resp. m<j\mu<j.

R2(n+a1a2)R2(n)=H1(a1)\mathrm{R}_{2}\left(n+a_{1}a_{2}\right)-\mathrm{R}_{2}(n)=\mathrm{H}_{1}\left(a_{1}\right)

and formulas (47), (48) reduce to the single formula

A1(2)=H1(a1)\mathrm{A}_{1}^{(2)}=\mathrm{H}_{1}\left(a_{1}\right) (49)

It can now be seen that the symmetry ofHm1(a1,a2,,am1)H_{m-1}\left(a_{1},a_{2},\ldots,a_{m-1}\right)results from that of the coefficientsAj(m)\mathrm{A}_{j}^{(m)}Indeed, from (47) it follows

Hm1(a1,a2,,am1)=A1(m)(a1,a2,,am1,0)\mathrm{H}_{m-1}\left(a_{1},a_{2},\ldots,a_{m-1}\right)=\mathrm{A}_{1}^{(m)}\left(a_{1},a_{2},\ldots,a_{m-1},0\right) ((50(50)
  1. 20.
    • The final result of the coefficient calculationAj(n)\mathrm{A}_{j}^{(n)}and the functionHm1(a1,a2,,am1)\mathrm{H}_{m-1}\left(a_{1},a_{2},\ldots,a_{m-1}\right)it is stated thus

THEOREM 2. - FunctionsAj(m),j=1,2,,m1\mathrm{A}_{j}^{(m)},j=1,2,\ldots,m-1ofa1,a2,,ama_{1},a_{2},\ldots,a_{m}are symmetric and homogeneous polynomials of the respective degreesm1jm-1-j, j=1,2,,m1j=1,2,\ldots,m-1AlsoHor1(a1,a2,,am1)H_{\eta_{-1}}\left(a_{1},a_{2},\ldots,a_{m-1}\right)is a symmetric and homogeneous polynomial of degreem2m-2, We have

𝔸j(m)(a1,a2,,am)=(1)m119!qm11(m)(a1,a2,,am)\displaystyle\mathbb{A}_{j}^{(m)}\left(a_{1},a_{2},\ldots,a_{m}\right)=\frac{(-1)^{m-1-1}}{9!}q_{m-1-1}^{(m)}\left(a_{1},a_{2},\ldots,a_{m}\right) (51)
j=1,2,,m1\displaystyle j=1,2,\ldots,m-1
Hm1(a1,a2,,am1)=(1)m2qm2(m1)(a1,a2,,am1)\displaystyle\mathrm{H}_{m-1}\left(a_{1},a_{2},\ldots,a_{m-1}\right)=(-1)^{m-2}q_{m-2}^{(m-1)}\left(a_{1},a_{2},\ldots,a_{m-1}\right) (52)

The proof is done by complete induction based on the recurrence formulas (47), (48). For this we first observe that

Hm(1,1,,1)=1,m=1,2,\mathrm{H}_{m}(1,1,\ldots,1)=1,m=1,2,\ldots (53)

Indeed, in this case, from (28) it follows
(54)

Gm(0)=Hm(1,1,,1)\mathrm{G}_{m}(0)=\mathrm{H}_{m}(1,1,\ldots,1)

ButNm(0)=1,Rm(0)=0\mathrm{N}_{m}(0)=1,\mathrm{R}_{m}(0)=0and from (27) it follows thatGm(0)=1\mathrm{G}_{m}(0)=1Taking into account (54) we deduce formula (53).

From formula (49) we deduce thatH1(a1)H_{1}\left(a_{1}\right)is independent ofa1a_{1}, because it must be a symmetric function ofa1a_{1}anda2a_{2}. H3(a1)\mathrm{H}_{3}\left(a_{1}\right)therefore reduces to a constant which, based on formula (53), is equal to 1. We have

A1(2)(a1,a2)=1,H1(a1)=1\mathrm{A}_{1}^{(2)}\left(a_{1},a_{2}\right)=1,\mathrm{H}_{1}\left(a_{1}\right)=1

This means that formulas (51), (52) are verified form=2m=2.

Let us assume that the formulas are true forAj(ni),j=1,2\mathrm{A}_{j}^{(n-i)},j=1,2,,m2(m>2)\ldots,m-2(m>2)and show that they will also be true for Afsj=1,2,,m1,Hn1(a1,a2,,am1)j=1,2,\ldots,m-1,\mathrm{H}_{n-1}\left(a_{1},a_{2},\ldots,a_{m-1}\right).

By hypothesis we have

Aj(n1)(a1,a2,,am1)=(1)m2jj!ψm2j(n1)(a1,a2,,am1)\mathrm{A}_{j}^{(n-1)}\left(a_{1},a_{2},\ldots,a_{m-1}\right)=\frac{(-1)^{m-2-j}}{j!}\psi_{m-2-j}^{(n-1)}\left(a_{1},a_{2},\ldots,a_{m-1}\right)

Taking into account formulas (44), (48) we immediately deduce that formulas (51) are verified forj=2,3,,m1j=2,3,\ldots,m-1It remains to establish formula (51) forj=1j=1. We will establish this formula together with formula (52).
21. – For this we will use the following

LEMMA 7. - If the functionx(x1,x2,,xn1)\chi\left(x_{1},\mathrm{x}_{2},\ldots,x_{n-1}\right), depending only on the firstm1m-1variablex1,x2,xn1x_{1},x_{2},\ldots x_{n-1}, is a symmetric function of all themmvariablex1,x2,,xmx_{1},x_{2},\ldots,x_{m}, then it reduces to a constant.

First it is clear that the functionx(x1,x2,,xn)\chi\left(x_{1},x_{2},\ldots,x_{n-}\right)is symmetrical with respect to them1m-1variablex1,x2,,xm=1x_{1},x_{2},\ldots,x_{m=1}We then deduce, from the other symmetry conditions, that

x(x1,x2,,xm1)=x(x1,x2,,xm2,xm)\chi\left(x_{1},x_{2},\ldots,x_{m-1}\right)=\chi\left(x_{1},x_{2},\ldots,x_{m-2},x_{m}\right)

and doing herexm=ax_{m}=a,

x(x1,x2,,xm1)=x(x1,x2,,xm2,a),\chi\left(x_{1},x_{2},\ldots,x_{m-1}\right)=\chi\left(x_{1},x_{2},\ldots,x_{m-2},a\right), (55)

aabeing one of the values ​​that variables can takex1,x2,,xmx_{1},x_{2},\ldots,x_{m}.
Formula (55) shows us that the functionx\chiit only depends on the firstm2m-2variablex1,x2,,x..,2x_{1},x_{2},\ldots,x_{..,-2}. Repeating the reasoning, it is found that the functionx\chireduces to a conscious 5 ). We therefore have
(56)

x(x1,x2,,xn1)=x(a,a,,a).\chi\left(x_{1},x_{2},\ldots,x_{n-1}\right)=\chi(a,a,\ldots,a).

Returning to our problem, we note that, based on formula (44), we have
in=1m2(1)inBinaminAin(n1)=(1)m2[ψm2(m)(a1,a2,,am)ψm2(n1)(a1,a2,,am1)]\sum_{v=1}^{m-2}(-1)^{v}B_{v}a_{m}^{v}A_{v}^{(n-1)}=(-1)^{m-2}\left[\psi_{m-2}^{(m)}\left(a_{1},a_{2},\ldots,a_{m}\right)-\psi_{m-2}^{(n-1)}\left(a_{1},a_{2},\ldots,a_{m-1}\right)\right]
Formula (47) therefore gives us

A1(m)(a1,a2,,am)(1)m2qm2(n)(a1,a2,,am)=\displaystyle\mathrm{A}_{1}^{(m)}\left(a_{1},a_{2},\ldots,a_{m}\right)-(-1)^{m-2}q_{m-2}^{(n)}\left(a_{1},a_{2},\ldots,a_{m}\right)=
=Hm1(a1,a2,,im1)(1)m2ψm2(n1)(a1,a2,,am1)\displaystyle\quad=\mathrm{H}_{m-1}\left(a_{1},a_{2},\ldots,\iota_{m-1}\right)-(-1)^{m-2}\psi_{m-2}^{(n-1)}\left(a_{1},a_{2},\ldots,a_{m-1}\right)

Here the second term depends only on the variablesa1,a2,,am1a_{1},a_{2},\ldots,a_{m-1}. and the first term is a symmetric function ofa1,a2,,ana_{1},a_{2},\ldots,a_{n}. Applying Lemma 7 we see that both members reduce to the same constant. However, based on formulas (46), (53), this constant is equal to 0 . It follows that formula (51) forj=1j=1as well as formula (52) are true.
3). Thus: From (55) it is successively deduced

x(x1,x2,,xm2,a)=x(x1,x2,,xm3,a,a)\displaystyle\chi\left(x_{1},x_{2},\ldots,x_{m-2},a\right)=\chi\left(x_{1},x_{2},\ldots,x_{m-3},a,a\right)
x(x1,x2,,xm3,a,a)=x(x1,x2,,xm4,a,a,a)\displaystyle\chi\left(x_{1},x_{2},\ldots,x_{m-3},a,a\right)=\chi\left(x_{1},x_{2},\ldots,x_{m-4},a,a,a\right)
.\displaystyle\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.
x(x1,a,a,,a)=x(a,a,,a)\displaystyle\chi\left(x_{1},a,a,\ldots,a\right)=\chi(a,a,\ldots,a)

do aude formula (56).

With this, Theorem 2 is completely proven.
22. - Formulas (51) allow us to explicitly calculate the polynomialRm(n)R_{m}(n)We have

Rm(n)=(1)m1dj=1n1(1)j!fm1jnj\mathrm{R}_{m}(n)=\frac{(-1)^{m-1}}{\delta}\sum_{j=1}^{n-1}\frac{(-1)}{j!}\varphi_{m-1-j}n^{j} (57)

where it is clear which variables the functions depend onfm1j.With\varphi_{m-1-j}.\mathrm{Cu}using the table of values ​​given in No. 18, the polynomials can be explicitly formedR(n)\mathrm{R}(n)form=2,3,4,5,6,7,8,9,10,11m=2,3,4,5,6,7,8,9,10,11.

§ 5.

  1. 23.

    –. Let equation (1), to which the abbreviated notations will refer. We will assume that the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}are two primes between them. Let's take the formula (2T) again and put
    M=M(a1,a2,,am)=sup(n)G(n),M′′=M′′(a1,a2,,am)=inf(n)(n)\mathrm{M}^{\prime}=\mathrm{M}^{\prime}\left(a_{1},a_{2},\ldots,a_{m}\right)=\sup_{(n)}\mathrm{G}(n),\mathrm{M}^{\prime\prime}=\mathrm{M}^{\prime\prime}\left(a_{1},a_{2},\ldots,a_{m}\right)=\inf_{(n)}(n)sup and inf referring to all integer values ​​ofnnBased on the periodicity of the sequence{G(n)}\{\mathrm{G}(n)\}we have then
    M=maxG(n)=maxG(n),M′′=minG(n)=minG(n)M^{\prime}=\max\mathrm{G}(n)=\max\quad\mathrm{G}(n),M^{\prime\prime}=\min\mathrm{G}(n)=\min\mathrm{G}(n)
    max and min referring to a system ofd\deltahis valuesnnforming a complete system of debris (againstd\bmod\delta ).

We have
LEMMA 8. - We have the inequality
(58)

MM′′0M^{\prime}-M^{\prime\prime}\geqq 0

where equality holds if and only ifa1=a2==am=1a_{1}=a_{2}=\ldots=a_{m}=1.
Inequality (58) is a consequence of the definition of maximum and minimum. It remains to prove the property relative to equality.

The condition is obviously sufficient, because if it is fulfilled, we haved=1\delta=1and all the numbersG(n),n=0,±1,±2,\mathrm{G}(n),n=0,\pm 1,\pm 2,\ldotsare equal.

The condition is necessary. Indeed, from (18) it also follows

G(n)=i=2ml4(1;i)+C1(n)\mathrm{G}(n)=\sum_{i=2}^{m}\mathrm{l}^{4}(1;i)+\mathrm{C}_{1}(n)

fromM=M′′M^{\prime}=M^{\prime\prime}it turns out that the numbersG(n)\mathrm{G}(n), so the numbersC1(n),n=0,±1\mathrm{C}_{1}(n),n=0,\pm 1. ±2,\pm 2,\ldotsare all equal. Based on an observation made in No. 12, this is only possible ifa1=a2==am=1a_{1}=a_{2}=\ldots=a_{m}=1.

Lemma 8 is completely proven.

24. - We can now demonstrate

THEOREM 3. - The necessary and sufficient condition for problems I, II, II' to have a solution is that we have
(59)

MM′′<1M^{\prime}-M^{\prime\prime}<1

Let us prove the theorem for problem I.
The condition is necessary. Indeed, letP(n)\mathrm{P}(n)a solution to the problem. Then

P(n)=R(n)+l\mathrm{P}(n)=\mathrm{R}(n)+\lambda (60)

l\lambdabeing 0 constant.
From (4) and (27) we deduce

G(n)<l+12,G(n)<l+12\mathrm{G}(n)<\lambda+\frac{1}{2},-\mathrm{G}(n)<-\lambda+\frac{1}{2}

whatevernnBut
there are valuesn1,n2n_{1},n_{2}his/hersnnas long asM=G(n1)M′′=G(n2)M^{\prime}=G\left(n_{1}\right)M^{\prime\prime}=G\left(n_{2}\right)So we have

M<l+12,M′′<l+12\mathrm{M}^{\prime}<\lambda+\frac{1}{2},-\mathrm{M}^{\prime\prime}<-\lambda+\frac{1}{2}

Adding these inequalities term by term we find condition (59). The condition is sufficient. Indeed, if inequality (59) is verified, we can find a numberl\lambdaso that
(61)

M12<l<M′′+12M^{\prime}-\frac{1}{2}<\lambda<M^{\prime\prime}+\frac{1}{2}

It is then immediately verified that the polynomial (60) verifies the inequality (4). The theorem for problems II, II' is proved in the same way.
If we have (59), all solutions of problem I are contained in the formula
(60) where the constantl\lambdacheck the inequalities (61). Also if we have
(59) all the solutions of problem II are contained in the formula

 (62) Q(n)=R(n)+l1\text{ (62) }\quad Q(n)=\mathrm{R}(n)+\lambda_{1}

where the constantl1\lambda_{1}check inequalities

Ml1<M′′+1M^{\prime}\leqq\lambda_{1}<M^{\prime\prime}+1 (63)

and all solutions of problem II' are contained in the formula

S(n)=R(n)+ln\mathrm{S}(n)=\mathrm{R}(n)+\lambda_{n} (64)

where the constantl2\lambda_{2}check inequalities

M1<l2M′′M^{\prime}-1<\lambda_{2}\leqq M^{\prime\prime} (65)
  1. 25.

    – Any numberl\lambdawhich verifies inequalities (61) is of the form

i(M12)+(1i)(M′′+12)=M′′+12i(1M+M′′)\theta\left(M^{\prime}-\frac{1}{2}\right)+(1-\theta)\left(M^{\prime\prime}+\frac{1}{2}\right)=M^{\prime\prime}+\frac{1}{2}-\theta\left(1-M^{\prime}+M^{\prime\prime}\right)

or in the form of

(1i)(M12)+i(M′′+12)=M12+i(1M+Mn)(1-\theta)\left(M^{\prime}-\frac{1}{2}\right)+\theta\left(M^{\prime\prime}+\frac{1}{2}\right)=M^{\prime}-\frac{1}{2}+\theta\left(1-M^{\prime}+M^{n}\right)

wherei\thetais an arbitrary positive subunit number.
It follows that the general form of the solutions of problem I is (the polynomialR(n)\mathrm{R}(n)being assumed to be normalized by condition (32)),

P(n)=R(n)+M′′+12i(1M+M′′);(0<i<1)\mathrm{P}(n)=\mathrm{R}(n)+\mathrm{M}^{\prime\prime}+\frac{1}{2}-\theta\left(1-\mathrm{M}^{\prime}+\mathrm{M}^{\prime\prime}\right);\quad(0<\theta<1) (66)

or

P(n)=R(n)+M12+i(1M+M′′)(0<i<1)\mathrm{P}(n)=\mathrm{R}(n)+\mathrm{M}^{\prime}-\frac{1}{2}+\theta\left(1-\mathrm{M}^{\prime}+\mathrm{M}^{\prime\prime}\right)\quad(0<\theta<1) (c\gamma)

It is also seen that the general form of the solutions to problem II is

Q(n)=R(n)+M′′+1i1(1M+M′′),(0<i11)Q(n)=R(n)+M^{\prime\prime}+1-\theta_{1}\left(1-M^{\prime}+M^{\prime\prime}\right),\quad\left(0<\theta_{1}\leqq 1\right) (67)

or
(6767^{\prime} )

Q(n)=R(n)+M+i2(1M+M′′),(0i2<1)\mathrm{Q}(n)=\mathrm{R}(n)+\mathrm{M}^{\prime}+\theta_{2}\left(1-\mathrm{M}^{\prime}+\mathrm{M}^{\prime\prime}\right),\quad\left(0\leqq\theta_{2}<1\right)

and the general form of the solutions to problem II' is

S(n)=R(n)+M1+i1(1M+M′′),(0<i11)S(n)=R(n)+M^{\prime}-1+\theta_{1}\left(1-M^{\prime}+M^{\prime\prime}\right),\quad\left(0<\theta_{1}\leqq 1\right) (68)

or
(68')

S(n)=R(n)+M′′i2(1M+M′′),(0i2<1)S(n)=R(n)+M^{\prime\prime}-\theta_{2}\left(1-M^{\prime}+M^{\prime\prime}\right),\quad\left(0\leqq\theta_{2}<1\right)

It is seen that problems II and II' have exceptional solutions

Q(n)=R(n)+M,S(n)=R(n)+M′′\mathrm{Q}(n)=\mathrm{R}(n)+\mathrm{M}^{\prime},\quad\mathrm{S}(n)=\mathrm{R}(n)+\mathrm{M}^{\prime\prime}

Apart from these exceptional solutions, the other solutions of problems I, II, II' correspond two by two such that

Q(n)P(n)=12,P(n)S(n)=12Q(n)S(n)=1\mathrm{Q}(n)-\mathrm{P}(n)=\frac{1}{2},\mathrm{P}(n)-\mathrm{S}(n)=\frac{1}{2}\cdot\mathrm{Q}(n)-\mathrm{S}(n)=1 (69)

With this the connection between the solutions of the three problems is completely clarified.
26. -Theorem 3 allows us to easily find criteria for the impossibility of problems I, II II'.

Thus, for example, we have
LEMA 9. - If there are two valuesn,n′′n^{\prime},n^{\prime\prime}his/hersnnso that

|G(n)G(n′′)|1,\left|\mathrm{G}\left(n^{\prime}\right)-\mathrm{G}\left(n^{\prime\prime}\right)\right|\geqq 1,

problems I, II, II' have no solutions.
The proof is immediate because under the conditions of the lemma we have

1|G(n)G(n′′)|MM′′1\leqq\left|\mathrm{G}\left(n^{\prime}\right)-\mathrm{G}\left(n^{\prime\prime}\right)\right|\leqq\mathrm{M}^{\prime}-\mathrm{M}^{\prime\prime}

and it is enough to apply Theorem 3.

We will give several applications of this lemma. For now we will make a first application here. Assuming that the polynomialR(n)\mathrm{R}(n)is normalized by condition (30), we always haveN(0)=1,R(0)=0\mathrm{N}(0)=1,\mathrm{R}(0)=0, soG(0)=1\mathrm{G}(0)=1If the numbersa1,a2,,ama_{1},a_{2},\ldots,a_{m}they are all>1>1we obviously have andN(1)=0\mathrm{N}(1)=0, soG(1)=(1)\mathrm{G}(1)=-\mathbb{R}(1)ThereforeG(0)G(1)=1+R(1)\mathrm{G}(0)-\mathrm{G}(1)=1+\mathrm{R}(1)It follows that ifR(1)0\mathrm{R}(1)\geq 0problems I, II, II' have no solution.

ButR(1)\mathrm{R}(1)is equal to the sum of the coefficients of the polynomialR(n)\mathrm{R}(n)and, based on formula (57) and the formulas of No. 18, these coefficients are certainly all positive form=1,2,3,4,5m=1,2,3,4,5So we have

THEOREM 4. – Ifm=1,2,3,4m=1,2,3,4or 5 and if the numbersa1,a2a_{1},a_{2}, . . , ama_{m}they are all>1>1, problems I, II, II have no solutions.

This property is probably also true form>5m>5The previous proof is no longer valid, however, because the coefficient

Am5(m)=1(m1)!q4(n)(a1,a2,,am)\mathrm{A}_{m-5}^{(m)}=\frac{1}{(m-1)!}q_{4}^{(n)}\left(a_{1},a_{2},\ldots,a_{m}\right)

can also take negative values).

§ 6.

  1. 27.
    • Let's consider the equation

cx=n,cx=n, (70)

ccbeing a natural number. We are therefore in the casem=1m=1and then we haveN(n;c)=1\mathrm{N}(n;c)=1or 0 as appropriatenndivides or does not divide withccTo express the numberN(n;c)N(n;c)in a convenient form we will generally denote by(nq|p)\left(\left.\frac{n}{q}\right\rvert\,p\right)the solution, between 0 andp1p-1, of congruence

qxn(againstp)qx\equiv n\quad(\bmod p)
  • We will always assume thatppandqqare prime to each other. Then the number(nq|p)\left(\left.\frac{n}{q}\right\rvert\,p\right)is uniquely and well-determined.

In particular (np)(n\mid p)is equal to the minimum nonnegative remainder ofn(againstp)n(\bmod p)We have obviously

(nq|p)=(n′′q|p), if nn′′(againstp)\left(\left.\frac{n^{\prime}}{q}\right\rvert\,p\right)=\left(\left.\frac{n^{\prime\prime}}{q}\right\rvert\,p\right),\quad\text{ dacă }n^{\prime}\equiv n^{\prime\prime}(\bmod p) (71)

We then have
Lemma 10. - The number N(n;cn;c) is given by the formula

N(n;c)=1c+1c{(ninin|c)(nin|c)}\mathrm{N}(n;c)=\frac{1}{c}+\frac{1}{c}\left\{\left(\left.\frac{n-u}{u}\right\rvert\,c\right)-\left(\left.\frac{n}{u}\right\rvert\,c\right)\right\} (72)

whatever integer u is prime to c.

00footnotetext: {}^{\text{9 }} Aceasta nu înseamă că pentru anumite valori particulare ale coeficientilor a/ rationamentul să nu rămână valabile.

Indeed, from

(ninin|c)innin(againstc),(nin|c)inn(againstc),\left(\left.\frac{n-u}{u}\right\rvert\,c\right)u\equiv n-u(\bmod c),\quad\left(\left.\frac{n}{u}\right\rvert\,c\right)u\equiv n\quad(\bmod c),

under the conditions of the lemma, it immediately follows that

(ninin|c)(nin|c)=1 or c1.\left(\left.\frac{n-u}{u}\right\rvert\,c\right)-\left(\left.\frac{n}{u}\right\rvert\,c\right)=-1\text{ sau }c-1.

The second case occurs if and only if orc=1c=1orc>1c>1and(nin|c)=0\left(\left.\frac{n}{u}\right\rvert\,c\right)=0, so only ifnndivides bycc.

The lemma follows immediately.
The results established so far apply to equation (70) and problems I, II, II' can be completely solved in this case. The results are good and it is unnecessary to detail them. We haveN(n;1)=1\mathrm{N}(n;1)=1, whatever it isnn,
28. - Let us now consider equation
(73)

bx+cand=nbx+cy=n

whereb,cb,care two natural numbers prime between them. We are here in the casem=2m=2Abbreviated notations will refer to equation (73).

We will prove the following
LEMMA 11. - If b, c are prime to each other, we have

N(n)=nbc1b(nc|b)1c(nb|c)+1\mathrm{N}(n)=\frac{n}{bc}-\frac{1}{b}\left(\left.\frac{n}{c}\right\rvert\,b\right)-\frac{1}{c}\left(\left.\frac{n}{b}\right\rvert\,c\right)+1 (74)

whatever the whole number isnn
In other words we have

R(n)=nbc,G(n)=1b(nc|b)1c(nb|c)+1.\mathrm{R}(n)=\frac{n}{bc},\mathrm{G}(n)=-\frac{1}{b}\left(\left.\frac{n}{c}\right\rvert\,b\right)-\frac{1}{c}\left(\left.\frac{n}{b}\right\rvert\,c\right)+1.

The first formula was also found in another way.
Based on formulas (24), (72), we have

N(n+b)N(n)=N(n+b;c)=1c+1c{(nb|c)(n+bb|c)}\mathrm{N}(n+b)-\mathrm{N}(n)=\mathrm{N}(n+b;c)=\frac{1}{c}+\frac{1}{c}\left\{\left(\left.\frac{n}{b}\right\rvert\,c\right)-\left(\left.\frac{n+b}{b}\right\rvert\,c\right)\right\}

If in this formula we successively replacennwithn+b,n+2b,n+b,n+2b,\ldotsthen withnb,n2b,n-b,n-2b,\ldotswe deduce, adding member by member,

N(n+ab)N(n)=ac+1c{(nb|c)(n+ahb|c)}\mathrm{N}(n+\alpha b)-\mathrm{N}(n)=\frac{\alpha}{c}+\frac{1}{c}\left\{\left(\left.\frac{n}{b}\right\rvert\,c\right)-\left(\left.\frac{n+\alpha h}{b}\right\rvert\,c\right)\right\} (75)

whatever the whole numbers arennanda\alpha
Based on formula (71), we deduce from (75) ,

N(n+ab+bc)N(n+bc)=N(n+ab)N(n)\mathrm{N}(n+\alpha b+\beta c)-\mathrm{N}(n+\beta c)=\mathrm{N}(n+\alpha b)-\mathrm{N}(n)

whatever the integers aren,a,bn,\alpha,\beta. Doingn=0n=0we deduce from here
(76)N(ab+bc)=[N(ab)N(0)]+[N(bc)N(0)]+N(0)N(\alpha b+\beta c)=[N(\alpha b)-N(0)]+[N(\beta c)-N(0)]+N(0),

But from (75) we deduce, makingn=0n=0,

N(a,b)N(0)=ac1c(xc)\mathrm{N}(\alpha,b)-\mathrm{N}(0)=\frac{\alpha}{c}-\frac{1}{c}(x\mid c) (77)

Analogously we have

N(bc)N(0)=bb1b(bb)\mathrm{N}(\beta c)-\mathrm{N}(0)=\frac{\beta}{b}-\frac{1}{b}(\beta\mid b) (78)

Be it nownnan arbitrary integer and determine the integersa,b\alpha,\betaso that we have

n=ab+bcn=\alpha b+\beta c

Then fromnab(againstc),nbc(againstb)n\equiv\alpha b(\bmod c),n\equiv\beta c(\bmod b)it results that(a,c)==(nb|c),(bb)=(nc|b)(\alpha,c)==\left(\left.\frac{n}{b}\right\rvert\,c\right),(\beta\mid b)=\left(\left.\frac{n}{c}\right\rvert\,b\right).

Taking into accountN(0)=1\mathrm{N}(0)=1and from formulas (76), (77), (78), we deduce formula (74).

Lemma 11 is therefore proven.
29. - In the case of equation (73) we can easily calculate the numbersM,M′′\mathrm{M}^{\prime},\mathrm{M}^{\prime\prime}We have

M=1,M′′=1b+1c1\mathrm{M}^{\prime}=1,\mathrm{M}^{\prime\prime}=\frac{1}{b}+\frac{1}{c}-1

the maximum being reached whenn0(againstbc)n\equiv 0(\bmod bc), and the minimum whennbc(againstbc)n\equiv-b-c(\bmod bc).

It is immediately verified that for inequality (59) to be satisfied it is necessary and sufficient that at least one of the numbersb,cb,cto be equal to1.71.{}^{7} )

So be it.b=1b=1We then haveR(n)=nc\mathrm{R}(n)=\frac{n}{c}andMM′′=c1c<1\mathrm{M}^{\prime}-\mathrm{M}^{\prime\prime}=\frac{c-1}{c}<1so the results of the previous § allow us to state

THEOREM 5. - NumberN(n)N(n)relative to the equationx+cand=nx+cy=nis equal to whatever integer n is, with:
I. The integer closest to the number2n+c+2i2c,(0<i<1)\frac{2n+c+2\theta}{2c},(0<\theta<1).
II. The whole contained in the numbern+c+i2c,(0i2<1)\frac{n+c+\theta_{2}}{c},\left(0\leqq\theta_{2}<1\right).

II'. The integer that contains the numbern+i1c,(0<i11)\frac{n+\theta_{1}}{c},\left(0<\theta_{1}\leqq 1\right).

00footnotetext: 7. Inegalitatea (59) révine la 1<1b+1c1<\frac{1}{b}+\frac{1}{c} care úu poate fi satisfăcută pentru b,o2b,o\geqq 2.

A simple particular statement is the following:
The numberN(n)\mathrm{N}(n)relative to the equationx+cand=nx+cy=nis equal to the integer that contains the number2n+12c\frac{2n+1}{2c}, whatever the integer n.
30. - In the casem=2m=2we can easily directly demonstrate the necessity of the condition of Theorem 1. Suppose that in equation (73)bbandccare any two natural numbers. Letddcmmdc of these numbers. Thenb=db1,c=dc1b=db_{1},c=dc_{1}, whereb1,c1b_{1},c_{1}are two natural numbers that are prime to each other. If we assumed>1d>1HAVE

N(dn+1)=0,N(dn)=N(n;b1,c1)\mathrm{N}(dn+1)=0,\mathrm{\penalty 10000\ N}(dn)=\mathrm{N}\left(n;b_{1},c_{1}\right) (79)

whatever the whole number isnn
The first equality results from the fact that bx+candbx+cydivides byddwhatever the whole numbers arex,andx,y, anddn+1dn+1is prime withddThe second equality (79) results from the fact that any solution of the equationbx+cand=d(b1x+c1and)==dnbx+cy=d\left(b_{1}x+c_{1}y\right)==dnis a solution to the equationb1x+c1and=nb_{1}x+c_{1}y=nand reciprocally.

Let us now assume that problem III has a solution R(n).
The first formula (79) then shows us that

R(dn+1)=l\mathrm{R}(dn+1)=\lambda (80)

l\lambdabeing a constant and whatever it isnn
The second formula (79), together with (74), shows us that
l\lambda^{\prime}being a constant, whatever it isnn.
But from (80) it follows thatR(n)=l\mathrm{R}(n)=\lambdaand from (81) it follows thatR(n)==ndb1c1+l\mathrm{R}(n)==\frac{n}{db_{1}c_{1}}+\lambda^{\prime}, whatever it isnnWe should have

l=ndb1c1+l\lambda=\frac{n}{db_{1}c_{1}}+\lambda^{\prime}

whatevernn, which is clearly impossible. The property is therefore proven.

§7.

  1. 31.
    • Let us now consider the casem=3m=3and therefore let equation
      (82) be

ax+band+cWith=nax+by+cz=n

a,b,ca,b,c, being three natural numbers two by two prime to each other. The abbreviated notations will now refer to this equation.

To express the numberN(n)N(n)we will introduce the following function

(n;qp)=1p2i=0n1i(nqip)(n;q\mid p)=\frac{1}{p^{2}}\sum_{i=0}^{n-1}i(n-qi\mid p) (83)

wherep,qp,qare two natural numbers that are prime to each other.

It is easy to see that we have
(84)(n;q|p=(n′′;q′′p)\left(n^{\prime};q^{\prime}|p\rangle=\left(n^{\prime\prime};q^{\prime\prime}\mid p\right)\right., ifnn′′,qq′′(againstp)n^{\prime}\equiv n^{\prime\prime},q^{\prime}\equiv q^{\prime\prime}(\bmod p)

We also have the formula

(n+1;qp)(n;qp)=p12p1n(n+1q|p)(n+1;q\mid p)-(n;q\mid p)=\frac{p-1}{2p}-\frac{1}{n}\left(\left.\frac{n+1}{q}\right\rvert\,p\right) (85)

whose proof is made by observing that the first member is equal to

1p2i=0p1i[(n+1qip)(nqip)]\frac{1}{p^{2}}\sum_{i=0}^{p-1}i[(n+1-qi\mid p)-(n-qi\mid p)]

and that we have

(n+1qip)(nqip)={1, if qin+1(againstp)p+1, if qin+1(againstp)(n+1-qi\mid p)-(n-qi\mid p)=\begin{cases}1,&\text{ dacă }qi\neq n+1\quad(\bmod p)\\ -p+1,&\text{ dacă }qi\equiv n+1\quad(\bmod p)\end{cases}

because the numbersnqi,i=0,1,,p1n-qi,i=0,1,\ldots,p-1forms a complete system of debris (againstp\bmod p ).

Formula (83) can also be written

(n;qp)=1x2i=0n1i(nqiqp)(n;q\mid p)=\frac{1}{x^{2}}\sum_{i=0}^{n-1}i\left(nq^{\prime}-iq^{\prime}\mid p\right)

whereq=(1q|p)q^{\prime}=\left(\left.\frac{1}{q}\right\rvert\,p\right)This follows from the fact that ifnqji(againstp)n-qj\equiv i(\bmod p)we will also havejnqiq(againstp)j\equiv nq^{\prime}-iq^{\prime}(\bmod p).

It follows that we have
(86)(n;qp)=(n1;qp)\quad(n;q\mid p)=\left(n_{1};q^{\prime}\mid p\right), ifqq1,n1nq(againstp)qq^{\prime}\equiv 1,n_{1}\equiv nq^{\prime}\quad(\bmod p).

Finally, we also observe that

(n;q;1)=0(n;q;1)=0

whatevernnandqq.
32. - We will now demonstrate

LEMMA 12, - Ifa,b,ca,b,care two prime numbers between them, the numberN(n)\mathrm{N}(n), corresponding to equation (82), is given by formula
(88)
where
(89)
(90)

R(n)=n(n+a+b+c)2abcG(n)=(nc;cba)(0;cba)+(na;acb)(0;acb)++(nb;bac)(0;bac)+1a=(1a|b),b=(1b|c),c=(1c|a)8)\begin{gathered}\mathrm{R}(n)=\frac{n(n+a+b+c)}{2abc}\\ \mathrm{G}(n)=\left(nc^{\prime};c^{\prime}b\mid a\right)-\left(0;c^{\prime}b\mid a\right)+\left(na^{\prime};a^{\prime}c\mid b\right)-\left(0;a^{\prime}c\mid b\right)+\\ +\left(nb^{\prime};b^{\prime}a\mid c\right)-\left(0;b^{\prime}a\mid c\right)+1\\ \left.a^{\prime}=\left(\left.\frac{1}{a}\right\rvert\,b\right),b^{\prime}=\left(\left.\frac{1}{b}\right\rvert\,c\right),c^{\prime}=\left(\left.\frac{1}{c}\right\rvert\,a\right)^{8}\right)\end{gathered}
00footnotetext: 8. Nu respective.

For demonstration we will also put

a′′=(1a|c)b′′=(1b|a),c′′=(1c|b)a^{\prime\prime}=\left(\left.\frac{1}{a}\right\rvert\,c\right)\cdot b^{\prime\prime}=\left(\left.\frac{1}{b}\right\rvert\,a\right),c^{\prime\prime}=\left(\left.\frac{1}{c}\right\rvert\,b\right)

Pe baza formulator (24), (74), avem
N(n+c)N(n)=N(n+c;a,b)=n+cab1a(n+cb|a(1b(n+ca|b)+1\mathrm{N}(n+c)-\mathrm{N}(n)=\mathrm{N}(n+c;a,b)=\frac{n+c}{ab}-\frac{1}{a}\left(\frac{n+c}{b}\left\lvert\,a\left(-\frac{1}{b}\left(\left.\frac{n+c}{a}\right\rvert\,b\right)+1\right.\right.\right.
But

(n+cb|a)=(cn+1cb|a),(n+ca|b)=(c′′n+1c′′a|b)\left(\left.\frac{n+c}{b}\right\rvert\,a\right)=\left(\left.\frac{c^{\prime}n+1}{c^{\prime}b}\right\rvert\,a\right),\left(\left.\frac{n+c}{a}\right\rvert\,b\right)=\left(\left.\frac{c^{\prime\prime}n+1}{c^{\prime\prime}a}\right\rvert\,b\right)

and taking into account formula (85) we then deduce

N(n+c)N(n)=2n+2c+a+b2ab+(c′′n+1;cba)(cn;cba)\mathrm{N}(n+c)-\mathrm{N}(n)=\frac{2n+2c+a+b}{2ab}+\left(c^{\prime\prime}n+1;c^{\prime}b\mid a\right)-\left(c^{\prime}n;c^{\prime}b\mid a\right)

If in this equality we replacennsuccessively withn,n+c.n+2cn,n+c.n+2c ; \ldotsand then successively withnc,n2c,n-c,n-2c,\ldots, if we observe thatiibeing an arbitrary integer,

c(n+ic)cn+i(againsta),c′′(n+ic)c′′n+i(againstb)c^{\prime}(n+ic)\equiv c^{\prime}n+i(\bmod a),c^{\prime\prime}(n+ic)\equiv c^{\prime\prime}n+i(\bmod b)

and finally if we add the equalities thus obtained member by member, we deduce

N(n+mc)N(n)=m2n+mc+a+b+c2ab+(cn+m;cba)(cn;cba)+(c′′n+m;c′′ab)(c′′n;c′′ab)\begin{gathered}\mathrm{N}(n+\mu c)-\mathrm{N}(n)=\mu\frac{2n+\mu c+a+b+c}{2ab}+\left(c^{\prime}n+\mu;c^{\prime}b\mid a\right)-\\ -\left(c^{\prime}n;c^{\prime}b\mid a\right)+\left(c^{\prime\prime}n+\mu;c^{\prime\prime}a\mid b\right)-\left(c^{\prime\prime}n;c^{\prime\prime}a\mid b\right)\end{gathered}

whatever the integers arennandm\muPutting
m=ab\mu=\alpha b, wherea\alphais an integer and taking into account (84), we deduce

N(n+abc)N(n)=a2n+abc+a+b+and2a+(cn+ab;cba)\mathrm{N}(n+\alpha bc)-\mathrm{N}(n)=\alpha\frac{2n+\alpha bc+a+b+e}{2a}+\left(c^{\prime}n+ab;c^{\prime}b\mid a\right)- (91)

whatever the numbers arennanda\alphaIf
in this formula we replacennwithn+bacn+\beta acand taking into account (84) again, we deduce
(92)N(n+abc+bca)N(n+abc)N(n+bca)+N(n)=abc\mathrm{N}(n+\alpha bc+\beta ca)-\mathrm{N}(n+\alpha bc)-\mathrm{N}(n+\beta ca)+\mathrm{N}(n)=\alpha\beta c, whatever the integers aren,a.bn,\alpha.\beta.

Doing heren=0n=0, we obtain
(93)N(abc+bca)N(abc)N(bca)+N(0)=abc\mathrm{N}(\alpha bc+\beta ca)-\mathrm{N}(\alpha bc)-\mathrm{N}(\beta ca)+\mathrm{N}(0)=\alpha\beta cand analogously we deduce
(93'){N(bca+cab)N(bca)N(cab)+N(0)=bca,N(cab+abc)N(cab)N(abc)+N(0)=cab,\left\{\begin{array}[]{l}\mathrm{N}(\beta ca+\gamma ab)-\mathrm{N}(\beta ca)-\mathrm{N}(\gamma ab)+\mathrm{N}(0)=\beta\gamma a,\\ \mathrm{\penalty 10000\ N}(\gamma ab+\alpha bc)-\mathrm{N}(\gamma ab)-\mathrm{N}(\alpha bc)+\mathrm{N}(0)=\gamma\alpha b,\end{array}\right.
whatever the whole numbers area,b,c\alpha,\beta,\gamma.

The first member of formula (92) being independent ofnnwe deduce, equating the values ​​of this expression forn=0n=0andn=cabn=\gamma ab,
(94) N(abc+bca+cab)=[N(bca+cab)N(bca)N(cab)+N(0)]+\mathrm{N}(\alpha bc+\beta ca+\gamma ab)=[\mathrm{N}(\beta ca+\gamma ab)-\mathrm{N}(\beta ca)-\mathrm{N}(\gamma ab)+\mathrm{N}(0)]+

+[N(cab+abc)N(cab)N(abc)+N(0)]++[N(abc+bca)N(abc)N(bca)+N(0)]++[N(abc)N(0)]+[N(bca)N(0)]+[N(cab)N(0)]+N(0).\begin{gathered}+[\mathrm{N}(\gamma ab+\alpha bc)-\mathrm{N}(\gamma ab)-\mathrm{N}(\alpha bc)+\mathrm{N}(0)]+\\ +[\mathrm{N}(\alpha bc+\beta ca)-\mathrm{N}(\alpha bc)-\mathrm{N}(\beta ca)+\mathrm{N}(0)]+\\ +[\mathrm{N}(\alpha bc)-\mathrm{N}(0)]+[\mathrm{N}(\beta ca)-\mathrm{N}(0)]+[\mathrm{N}(\gamma ab)-\mathrm{N}(0)]+\mathrm{N}(0).\end{gathered}

From (91), makingn=0n=0, we deduce
(95)N(abc)N(0)=aabc+a+b+c2a+(ab;cba)(0;cba)\mathrm{N}(\alpha bc)-\mathrm{N}(0)=\alpha\frac{\alpha bc+a+b+c}{2a}+\left(\alpha b;c^{\prime}b\mid a\right)-\left(0;c^{\prime}b\mid a\right)
and similarly we obtain
(95){N(bca)N(0)=bbca+a+b+c2b+(bc;acb)(0;acb),N(cab)N(0)=ccab+a+b+c2c+(ca;bac)(0;bac).\left(95^{\prime}\right)\left\{\begin{array}[]{l}\mathrm{N}(\beta ca)-\mathrm{N}(0)=\beta\frac{\beta ca+a+b+c}{2b}+\left(\beta c;a^{\prime}c\mid b\right)-\left(0;a^{\prime}c\mid b\right),\\ \mathrm{N}(\gamma ab)-\mathrm{N}(0)=\gamma\frac{\gamma ab+a+b+c}{2c}+\left(\gamma a;b^{\prime}a\mid c\right)-\left(0;b^{\prime}a\mid c\right).\end{array}\right.
Considering the formulas(93),(93),(95),(95)(93),\left(93^{\prime}\right),(95),\left(95^{\prime}\right)and noting thatN(0)=1\mathrm{N}(0)=1, formula (94) becomes
N(abc+bca+cab)=(abc+bca+cab)2+(a+b+c)(abc+bca+cab)2abc+\mathrm{N}(\alpha bc+\beta ca+\gamma ab)=\frac{(\alpha bc+\beta ca+\gamma ab)^{2}+(a+b+c)(\alpha bc+\beta ca+\gamma ab)}{2abc}+
+(ab;cba)(0;cba)+(c;acb)(0;acb)++\left(\alpha b;c^{\prime}b\mid a\right)-\left(0;c^{\prime}b\mid a\right)+\left(c;a^{\prime}c\mid b\right)-\left(0;a^{\prime}c\mid b\right)+
(ca;bac)(0;bac)+1\left(\gamma a;b^{\prime}a\mid c\right)-\left(0;b^{\prime}a\mid c\right)+1
Butnnbeing an integer, and the numbersbc,ca,abbc,ca,ab, being prime among themselves, we can always find the integersa,b,c\alpha,\beta,\gammaso that

abc+bca+cab=n.\alpha bc+\beta ca+\gamma ab=n.

We then have

abnc(againsta),bcna(againstb),canb(againstc)\alpha b\equiv nc^{\prime}(\bmod a),\beta c\equiv na^{\prime}(\bmod b),\gamma a\equiv nb^{\prime}(\bmod c)

and it is immediately seen that Lemma 12 follows.
Ifa=1a=1, we also havea=a′′=1a^{\prime}=a^{\prime\prime}=1If we also observe that based on formula (86) we have

(nb;bac)=(na′′;a′′bc)\left(nb^{\prime};b^{\prime}a\mid c\right)=\left(na^{\prime\prime};a^{\prime\prime}b\mid c\right)

deduce

𝐑(n;1,b,c)=n(n+b+c+1)2bc\mathbf{R}(n;1,b,c)=\frac{n(n+b+c+1)}{2bc}

G(n;1,b,c)=(n;cb)(0;cb)+(n;bc)(0;bc)+1\mathrm{G}(n;1,b,c)=(n;c\mid b)-(0;c\mid b)+(n;b\mid c)-(0;b\mid c)+1
Finally fora=b=1a=b=1we will have

R(n;1,1,c)=n(n+c+2)2c\displaystyle\mathrm{R}(n;1,c)=\frac{n(n+c+2)}{2c}
G(n;1,1,c)=(n;1c)(0;1c)+1\displaystyle\mathrm{G}(n;1,c)=(n;1\mid c)-(0;1\mid c)+1
  1. 33.
    • Before going further, we will establish the following property of sums (83):

LEMMA 13. - We have the formula

(n1q;qp)=(n;qp)(-n-1-q;q\mid p)=(n;q\mid p)

whatever the integer n is.
To prove the lemma let us put

Tn=(n;qp)(n1q;qp).\mathrm{T}_{n}=(n;q\mid p)-(-n-1-q;q\mid p).

Based on formula (85) we then have

Tn+1Tn=p1p1p[(n+1q|p)+(n1qq|p)]\mathrm{T}_{n+1}-\mathrm{T}_{n}=\frac{p-1}{p}-\frac{1}{p}\left[\left(\left.\frac{n+1}{q}\right\rvert\,p\right)+\left(\left.\frac{-n-1-q}{q}\right\rvert\,p\right)\right]

But from

(n+1q|p)qn+1,(n1qq|p)qn1q(againstp)\left(\left.\frac{n+1}{q}\right\rvert\,p\right)q\equiv n+1,\left(\left.\frac{-n-1-q}{q}\right\rvert\,p\right)q\equiv-n-1-q(\bmod p)

deduce

(n+1q|p)+(n1qq|p)1(againstp)\left(\left.\frac{n+1}{q}\right\rvert\,p\right)+\left(\left.\frac{-n-1-q}{q}\right\rvert\,p\right)\equiv-1(\bmod p)

from where

(n+1q|p)+(n1qq|p)=p1.\left(\left.\frac{n+1}{q}\right\rvert\,p\right)+\left(\left.\frac{-n-1-q}{q}\right\rvert\,p\right)=p-1.

We therefore haveTn+1=Tn\mathrm{T}_{n+1}=\mathrm{T}_{n}whatevernnand it follows from this that (96)

Tn=T0\mathrm{T}_{n}=\mathrm{T}_{0}

We will now show that
(97)

T0=0\mathrm{T}_{0}=0

For this we have, taking into account (85),

T0=(0;qp)(1q;qp)=(0;qp)(q;qp)+[(q;qp)(1q;qp)]=(0;qp)(q;qp)+p12p1p(qq|p)==(0;qp)(q;qp)p12p\begin{gathered}\mathrm{T}_{0}=(0;q\mid p)-(-1-q;q\mid p)=(0;q\mid p)-(-q;q\mid p)+[(-q;q\mid p)-\\ -(-1-q;q\mid p)]=(0;q\mid p)-(-q;q\mid p)+\frac{p-1}{2p}-\frac{1}{p}\left(\left.\frac{-q}{q}\right\rvert\,p\right)=\\ \quad=(0;q\mid p)-(-q;q\mid p)-\frac{p-1}{2p}\end{gathered}
(0;qp)(q;qp)\displaystyle(0;q\mid p)-(-q;q\mid p) =1p2i=0p1i(qip)1p2i=0p1i(q(i+1)p)=\displaystyle=\frac{1}{p^{2}}\sum_{i=0}^{p-1}i(-qi\mid p)-\frac{1}{p^{2}}\sum_{i=0}^{p-1}i(-q(i+1)\mid p)=
=1p2i=inp1(qip)=p12p\displaystyle=\frac{1}{p^{2}}\sum_{i=u}^{p-1}(-qi\mid p)=\frac{p-1}{2p}

forqi,i=0,1,,p1-qi,i=0,1,\ldots,p-1forms a complete waste system(againstp)(\bmod p).

Formula (97) results, and from (96) it then follows thatTn=0\mathrm{T}_{n}=0, whatever it isnnand Lemma 13 is proven.
34. - Let's return to our problem. We will prove the following

THEOREM 6. - The function G(n), periodic and of period abc, is symmetric about the center of symmetry -a+b+c92\frac{a+b+c^{9}}{2} ).

Of course the functionG(n)\mathrm{G}(n)has, due to periodicity, an infinity of symmetry centers.

The theorem is expressed by the equality

Q(abc+1k)=Q(k1),\mathrm{Q}(-a-b-c+1-k)=\mathrm{Q}(k-1),

whatever the whole number iskk, or by other analogous equalities.
Based on formula (90) it is enough to prove the property for each of the functions
(98)

(nc;cba),(na;acb),(nb;bac).\left(nc^{\prime};c^{\prime}b\mid a\right),\quad\left(na^{\prime};a^{\prime}c\mid b\right),\quad\left(nb^{\prime};b^{\prime}a\mid c\right).

For the first of these functions the property returns to the equality

(c(k1);cba)=(c(k1)1cb;cba)\left(c^{\prime}(k-1);c^{\prime}b\mid a\right)=\left(-c^{\prime}(k-1)-1-c^{\prime}b;c^{\prime}b\mid a\right)

which is true based on Lemma 13. The property for the other two functions (98) is proven in the same way.

Theorem 6 is therefore proven.
35. The previous results can still be specified.

If a function is periodic by periodd\deltaand if it has a center of symmetryn0n_{0}, any point congruent withn0(againstd2)n_{0}\left(\bmod\frac{\delta}{2}\right)is a center of symmetry.

It follows from Theorem 6 that for the functionG(I^)\mathrm{G}(\hat{\imath})pointand=abcabc2y=\frac{abc-a-b-c}{2}is a center of symmetry. The numbersa,b,ca,b,cbeing two primes between them, at most one of them is even so that the numberinvis always whole.

It turns out that we have

G(in+k)=G(ink)\mathrm{G}(v+k)=\mathrm{G}(v-k)

whatever the whole number iskk.
Formula (89) however gives us

R(n+k)R(nk)=k.\mathrm{R}(\nu+k)-\mathrm{R}(\nu-k)=k.
00footnotetext: 9) funcția f(x)f(x) este simetrică faţă de centrul de simetrie vo dacă revem, pentru orice xx, f(x0+x)=f(x0x)f\left(x_{0}+x\right)=f\left(x_{0}-x\right)

So we have
(99)

N(in+k)N(ink)=k.\mathrm{N}(v+k)-\mathrm{N}(v-k)=k.

whatever the whole number iskkIf
nnis negative and>abc>-a-b-cHAVEN(n)=0\mathrm{N}(n)=0, as follows from the definition of the numberN(n)N(n). From (99) it follows that

N(2in+i)=in+i,i=1,2,,a+b+c1.\mathrm{N}(2v+i)=v+i,\quad i=1,2,\ldots,a+b+c-1.

Taking into account formulas (88) and (89) and doing the calculations we find

G(2n+i)=i(a+b+ci)2abc,i=1,2,,a+b+c1.\mathrm{G}(2\nu+i)=\frac{i(a+b+c-i)}{2abc},i=1,2,\ldots,a+b+c-1. (100)

row

G(0),G(1),,G(abc1)\mathrm{G}(0),\mathrm{G}(1),\ldots,\mathrm{G}(abc-1)

which forms a period of the sequence{G(n)}\{G(n)\}so it is divided into two sections

G(0),G(1),,G(2in),\mathrm{G}(0),\cdot\mathrm{G}(1),\ldots,\mathrm{G}(2v), (101)
G(2in+1),G(2in+2),,G(abc1)\mathrm{G}(2v+1),\mathrm{G}(2v+2),\ldots,\mathrm{G}(abc-1) (102)

each being symmetric in the sense that terms equidistant from the extremes are equal. Furthermore, formula (100) shows us that the sequence (102) is constituted by the values ​​of a polynomial of the second degree (its third difference is zero).

In the particular case2in<02v<0, which occurs if and only if at least two of the numbersa,b,ca,b,care equal to1101^{10}), the string (101) disappears and only the symmetric string (102) remains. In this case, by the wayand=1y=-1.
36. - To conclude this § we will give a direct demonstration of the necessity of the condition in Theorem 1 in the particular casem=3m=3.

We will now assume that in equation (82)a,b,ca,b,care three arbitrary natural numbers.

It is known that the numbersa,b,ca,b,c, can always be written in the form [6]

a=db1c1a2,b=dc1a1b2,c=da1b1c2,a=db_{1}c_{1}a_{2},\quad b=dc_{1}a_{1}b_{2},\quad c=da_{1}b_{1}c_{2},

whered,a1,b1,c1,a2,b2,c2d,a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}there are 7 natural numbers such that:
1a1,b1,c11^{\circ}a_{1},b_{1},c_{1}there are two prime numbers between them,
2a2,b2,c22^{\circ}a_{2},b_{2},c_{2}there are two primes between them,
between them the pairsa1,a2;b1,b2;c1,c2a_{1},a_{2};b_{1},b_{2};c_{1},c_{2}are groups of two prime numbers
I
respectddis the gcdc of numbersa,b,ca,b,canddc1,da1,db1dc_{1},da_{1},db_{1}
iv cmmde of groups of two numbersa,b;b,c;c,aa,b;b,c;c,a.
10) Inequality2n<02\nu<0returns to (*)1<1ab+1bc+1ca1<\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}If at least two numbers area,b,ca,b,care>1>1we have, conveniently fixing the notations,a1,b2,c3a\geqq 1,b\geqq 2,c\geqq 3, from where1ab+1a+1a61\frac{1}{ab}+\frac{1}{a}+\frac{1}{a^{6}}\leqslant 1, which contradicts the inequality (%).

The necessary and sufficient condition that the numbersa,b,ca,b,cto be two primes between each other is to haved=a1=b1=c1=1d=a_{1}=b_{1}=c_{1}=1.

Let's assume that this condition is not met but that
there is a solutionR(n)\mathrm{R}(n)of problem III. We then distinguish two cases:1.d>11^{\circ}.d>1In this case, as in No. 30, it is seen that

N(da1b1c1n+1)=0\mathrm{N}\left(da_{1}b_{1}c_{1}n+1\right)=0 (103)
  • whatevernn.

But we also have
(104)

N(da1b1c1n)=N(n;a2,b2,c2).\mathrm{N}\left(da_{1}b_{1}c_{1}n\right)=\mathrm{N}\left(n;a_{2},b_{2},c_{2}\right).

Indeed, any solution to the equation

ax+band+cWith=d(b1c1a2x+c1a1b2and+a1b1c2With)=da1b1c1nax+by+cz=d\left(b_{1}c_{1}a_{2}x+c_{1}a_{1}b_{2}y+a_{1}b_{1}c_{2}z\right)=da_{1}b_{1}c_{1}n

is a solution to the equation

b1c1a2x+c1a1b2and+a1b1c2With=a1b1c1nb_{1}c_{1}a_{2}x+c_{1}a_{1}b_{2}y+a_{1}b_{1}c_{2}z=a_{1}b_{1}c_{1}n (105)

and vice versa. Avernus therefore
(106)

N(da1b1c1n)=N(a1b1c1n;b1c1a2,c1a1b2,a1b1c2).\mathrm{N}\left(da_{1}b_{1}c_{1}n\right)=\mathrm{N}\left(a_{1}b_{1}c_{1}n;b_{1}c_{1}a_{2},c_{1}a_{1}b_{2},a_{1}b_{1}c_{2}\right).

But if we have (105), the integersx,and,Withx,y,zare respectively divisible bya1,b1,c1a_{1},b_{1},c_{1}, based on the reported properties of numbersa1,b1,c1,a2,b2,c2a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}It follows that the solutions of the equation

b1c1a2x+c1a1b2and+a1b1c2With=a1b1c1(a2x+b2and+c2With)=a1b1c1nb_{1}c_{1}a_{2}x+c_{1}a_{1}b_{2}y+a_{1}b_{1}c_{2}z=a_{1}b_{1}c_{1}\left(a_{2}x^{\prime}+b_{2}y^{\prime}+c_{2}z^{\prime}\right)=a_{1}b_{1}c_{1}n

correspond one-to-one with the solutions of the equationa2x+b2and+c2With=na_{2}x+b_{2}y+c_{2}z=nWe have by reinforcement
(107)

N(a1b1c1n;b1c1a2,c1a1b2,a1b1c2)=N(n;a2,b2,c2)\mathrm{N}\left(a_{1}b_{1}c_{1}n;b_{1}c_{1}a_{2},c_{1}a_{1}b_{2},a_{1}b_{1}c_{2}\right)=\mathrm{N}\left(n;a_{2},b_{2},c_{2}\right)

Formula (104) results from (106) and (107).
From formulas (103) and (104) we deduce respectively

R(da1b1c1n+1)=l\displaystyle\mathrm{R}\left(da_{1}b_{1}c_{1}n+1\right)=\lambda (108)
R(da1b1c1n)=n(n+a2+b2+c2)2a2b2c2+l\displaystyle\mathrm{R}\left(da_{1}b_{1}c_{1}n\right)=\frac{n\left(n+a_{2}+b_{2}+c_{2}\right)}{2a_{2}b_{2}c_{2}}+\lambda^{\prime} (109)

whatevernn, andl,l\lambda,\lambda^{\prime}being constants.
But from (108) it followsR(n)=l\mathrm{R}(n)=\lambdaand from (109) it followsR(n)==dn(n+aa1+bb1+cc1)2abc+l\mathrm{R}(n)==\frac{dn\left(n+aa_{1}+bb_{1}+cc_{1}\right)}{2abc}+\lambda^{\prime}. So we should have

l=an(n+aa1+bb1+cc1)2abc+l\lambda=\frac{an\left(n+aa_{1}+bb_{1}+cc_{1}\right)}{2abc}+\lambda^{\prime}

whatever it is of what is visibly impossible.
20.d=1d=1In this case at least one of the mummersa1,b1,c1a_{1},b_{1},c_{1}
is>1>1Either, for fixing the notations,c1>1c_{1}>1To simplify the discussion we can assumennpositive.

A reasoning analogous to the one above shows us that

N(a1b1c1n1,a1b1c2)=N(nc1+c2;c1a2,c1b2,c2)\mathrm{N}\left(a_{1}b_{1}c_{1}n-1,a_{1}b_{1}c_{2}\right)=\mathrm{N}\left(nc_{1}+c_{2};c_{1}a_{2},c_{1}b_{2},c_{2}\right)

But if we have

c1a2x+c1b2and+c2With=c1n+c2c_{1}a_{2}x+c_{1}b_{2}y+c_{2}z=c_{1}n+c_{2}

it must beWith1z-1to divide withc1c_{1}, becausec1,c2c_{1},c_{2}are prime to each other.
Suppose that

With=1+c1tz=1+c_{1}t (110)

then

a2x+b2and+c2t=na_{2}x+b_{2}y+c_{2}t=n

Becausec1>1c_{1}>1, from (110) it is seen that the numbersWith,tz,tare always both positive or zero. It follows by simple reasoning that

N(nc1+c2;c1a2,c1b2,c2)=N(n;a2,b2,c2)\mathrm{N}\left(nc_{1}+c_{2};c_{1}a_{2},c_{1}b_{2},c_{2}\right)=\mathrm{N}\left(n;a_{2},b_{2},c_{2}\right)

So finally
(111)

N(a1b1c1n+a1b1c2)=N(n;a2,b2,c2)\mathrm{N}\left(a_{1}b_{1}c_{1}n+a_{1}b_{1}c_{2}\right)=\mathrm{N}\left(n;a_{2},b_{2},c_{2}\right)

From formulas (104) (d=1d=1) and (111) we deduce

R(a1b1c1n+a1b1c2)=n(n+a2+b2+c2)2a2b2c2+l\displaystyle\mathrm{R}\left(a_{1}b_{1}c_{1}n+a_{1}b_{1}c_{2}\right)=\frac{n\left(n+a_{2}+b_{2}+c_{2}\right)}{2a_{2}b_{2}c_{2}}+\lambda
R(a1b1c1n)=n(n+a2+b2+c2)2a2b3c2+l\displaystyle\mathrm{R}\left(a_{1}b_{1}c_{1}n\right)=\frac{n\left(n+a_{2}+b_{2}+c_{2}\right)}{2a_{2}b_{3}c_{2}}+\lambda^{\prime}

so

R(n)=(nc)(nc+aa1+bb1+cc1)2abc+l\displaystyle\mathrm{R}(n)=\frac{(n-c)\left(n-c+aa_{1}+bb_{1}+cc_{1}\right)}{2abc}+\lambda
R(n)=n(n+aa1+bb1+cc1)2abc+l\displaystyle\mathrm{R}(n)=\frac{n\left(n+aa_{1}+bb_{1}+cc_{1}\right)}{2abc}+\lambda^{\prime}

therefore

n(n+aa1+bb1+cc1)2abc+l=(nc)(nc+aa1+bb1+cc1)2abc+l\frac{n\left(n+aa_{1}+bb_{1}+cc_{1}\right)}{2abc}+\lambda^{\prime}=\frac{(n-c)\left(n-c+aa_{1}+bb_{1}+cc_{1}\right)}{2abc}+\lambda

whatevernnandl;l\lambda;\lambda^{\prime}being constants. It is easy to see that this is impossible.

With this the intended property is completely demonstrated.

§ 8.

  1. 37.
    • We will now deal with solving problems I, II, II' in the casem=3m=3We have seen that it is sufficient to assume that one of the coefficients is equal to 1. So let equation
      (112) be

x+band+cWith=nx+by+cz=n

where, as we have seen, we can assume the numbersb,cb,cprimes between them. For the purpose of fixing the notations we will assumebcb\leq c. Then we have orb=c=1b=c=1ort<ct<c. The abbreviated notations will now refer to equation (112) of
38. - Let us first assume thatb=1b=1Based on what has been established above, we then have

M=maxi=0,1,,cM^{\prime}=\max_{i=0,1,\ldots,c-}

The calculation of M' and M” is easy by observing that G (n) for the considered values ​​ofnnis a second degree polynomial and that a second degree polynomial is a convex or concave function symmetric with respect to its relative extremum point as the center of symmetry. Such a calculation will be repeated several times in the following.

Doing the calculations we find

𝐌={(c+2)28c, for c about (c+1)(c+3)8c, for c odd\displaystyle\mathbf{M}^{\prime}=
𝐌′′=c+12c\displaystyle\mathbf{M}^{\prime\prime}=\frac{c+1}{2c}

so

MM′′={c8, for c about c218c, for c odd M^{\prime}-M^{\prime\prime}=\begin{cases}\frac{c}{8},&\text{ pentru }c\text{ par }\\ \frac{c^{2}-1}{8c},&\text{ pentru }c\text{ impar }\end{cases}

It is seen that problems I, II, II' have solutions if and only ifc=1,2,3,4,5,6,7c=1,2,3,4,5,6,7.

The final result will be stated below.
39. - Let us now suppose thatb>1b>1. We then necessarily haveb<cb<candn0\nu\geqq 0.

If we put

M1=maxi=0,1,,in{G(i)}\mathrm{M}_{1}^{\prime}=\max_{i=0,1,\ldots,v}\{\mathrm{G}(i)\}, M1′′=\mathrm{M}_{1}^{\prime\prime}= mini=0,1,,in{G(i)}\min_{i=0,1,\ldots,v}\{\mathrm{G}(i)\}
M2=maxi=1,2,,b+c{G(2in+i)}\mathrm{M}_{2}^{\prime}=\max_{i=1,2,\ldots,b+c}\{\mathrm{G}(2v+i)\} M2′′=mini=1,2,,b+c{G(2in+i)}\mathrm{M}_{2}^{\prime\prime}=\min_{i=1,2,\ldots,b+c}\{\mathrm{G}(2v+i)\}

we will have
(113)

M=max{M1M2},M′′=min{M1′′,M2′′}M^{\prime}=\max\left\{M_{1}^{\prime}\cdot M_{2}^{\prime}\right\},\quad M^{\prime\prime}=\min\left\{M_{1}^{\prime\prime},M_{2}^{\prime\prime}\right\}

We thus obtained some formulas that will serve to effectively calculate the extremesM,M′′\mathrm{M}^{\prime},\mathrm{M}^{\prime\prime}.

The numbersM2,M2′′M_{2}^{\prime},M_{2}^{\prime\prime}is calculated as in No. 38, using formula (100), in which we puta=1a=1.

A simple calculation gives us

M2={(b+c+1)28bc, if b,c are of different parity, (b+c)(b+c+2)8bc, if b,c they are both odd M2′′=b+c2bcM_{2}^{\prime}=\begin{cases}\frac{(b+c+1)^{2}}{8bc},&\text{ dacă }b,c\text{ sunt de paritate diferită, }\\ \frac{(b+c)(b+c+2)}{8bc},&\text{ dacă }b,c\text{ sunt ambele impare }\\ M_{2}^{\prime\prime}=\frac{b+c}{2bc}&\end{cases}

Calculating numbersM1,M1′′M_{1}^{\prime},M_{1}^{\prime\prime}can be simplified based on the following LEMMA 14. - If0n<bc0\leqq n<bc, we have0N(n;b,c)10\leqq\mathrm{\penalty 10000\ N}(n;b,c)\leqq 1.
The first inequality is obvious. It is therefore sufficient to prove the second inequality. This inequality means that the equationbx+cand=nbx+cy=n, for0n<bc0\leqq n<bchas at most one solution in nonnegative integers. Suppose the opposite and then letx,and;x,andx,y;x^{\prime},y^{\prime}two solutions of this equation. We havebx+cand=bx+cand<bcbx+cy=bx^{\prime}+cy^{\prime}<bcfrom where

0x,x<c,0and,and<bxx(againstc),andand(againstb)\begin{array}[]{ll}0\leqq x,x^{\prime}<c,&0\leqq y,y^{\prime}<b\\ x\equiv x^{\prime}(\bmod c),&y\equiv y^{\prime}\quad(\bmod b)\end{array}

which attractsx=x,and=andx=x^{\prime},y=y^{\prime}.
Lemma 14 is therefore proven.
If we now take into account:
11^{\circ}Inequalityin<bc1v<bc-1,
22^{\circ}. Lemma 14,
33^{\circ}. Formula
(115)

N(n+1)N(n)=N(n+1;b,c)\mathrm{N}(n+1)-\mathrm{N}(n)=\mathrm{N}(n+1;b,c)
  1. 4.

    The fact that the polynomialR(n)=n(n+b+c+1)2bc\mathrm{R}(n)=\frac{n(n+b+c+1)}{2bc}is growing forn0n\geqq 0,
    we immediately find
    (116)M1=maxthebx+candn{G(bx+cand)},M1′′=minthebx+cand1n{G(bx+cand1)}\mathrm{M}_{1}^{\prime}=\max_{o\leqq bx+cy\leqq\nu}\{\mathrm{G}(bx+cy)\},\mathrm{M}_{1}^{\prime\prime}=\min_{o\leqq bx+cy-1\leqq\nu}\{\mathrm{G}(bx+cy-1)\}wherex,andx,ygoes through all possible non-negative integer values.

In applications.G(n)\mathrm{G}(n)is calculated from the formulaG(n)=N(n)R(n)\mathrm{G}(n)=\mathrm{N}(n)-\mathrm{R}(n), directly evaluating theN(n)\mathrm{N}(n). We will make such applications below.
40. - Letsshow much andrrthe remainder of his divisionccbybb. Soc=sb+rc=sb+r, 0<s,0<r<b0<s,0<r<bandrris prime withbb.

If0n<c0\leqq n<c, equation (112) can only be satisfied forWith=0z=0, and the unknownandythen take the values0,1,,nb\left.0,1,\ldots,\frac{n}{b}\right\rfloor. Result - therefore that

N(n;=N(n:1,b),daca0n<c.N(n;=N(n:1,b),\operatorname{dac}a0\leqq n<c.

or

But
(117)
whatever it isnn.

N(n;1,b)=[nin]+1\mathrm{N}(n;1,b)=\left[\frac{n}{v}\right]+1

We therefore have

N(n)=nb+1, if 0n<c\mathrm{N}(n)=\left\lceil\frac{n}{b}\right\rceil+1,\text{ dacă }0\leqq n<c (118)

From this formula it follows thatN((s1)b)=N(sb1)=s\mathrm{N}((s-1)b)=\mathrm{N}(sb-1)=sand an elementary calculation shows us that

MM′′G((s1)b)G(sb1)=R(sb1)R((s1)b)==3sb(b1)+r(b1)2b(sb+r)\begin{gathered}\mathrm{M}^{\prime}-\mathrm{M}^{\prime\prime}\geqq\mathrm{G}((s-1)b)-\mathrm{G}(sb-1)=\mathrm{R}(sb-1)-\mathrm{R}((s-1)\mathrm{b})=\\ =-\frac{3sb(b-1)+r(b-1)}{2b(sb+r)}\end{gathered}

Problems I, II, II' will have no solution if this ratio is1.0\geq 1.0A necessary condition for these problems to have a solution is therefore that this report be<1<1, condition that can be written in the form. sb(b3)r(b+1)<0b(b-3)-r(b+1)<0or

sb(b3)b+1<r\frac{sb(b-3)}{b+1}<r (119))

To find another delimitation let's taken=(s+1)bn=(s+1)bIn this case equation (112) cannot be satisfied unlessWith=0z=0or 1. It follows, taking into account (117), that

N((s+1)b)=N((s+1)b;1,b)+N(br;1,b)=s+3\mathrm{N}((s+1)b)=\mathrm{N}((s+1)b;1,b)+\mathrm{N}(b-r;1,b)=s+3

We then have

MG((s+1)b)=s+3(s+1)b[2(s+1)b+r+1]2b(sb+r)\mathrm{M}^{\prime}\geqq\mathrm{G}((s+1)b)=s+3-\frac{(s+1)b[2(s+1)b+r+1]}{2b(sb+r)}

On the other hand, based on formulas (113) and (114), we have

It follows that

M′′M2′′=(s+1)b+r2b(sb+r)\mathrm{M}^{\prime\prime}\leqq\mathrm{M}_{2}^{\prime\prime}=\frac{(s+1)b+r}{2b(sb+r)}
MM′′2b[(s1)bs+1]+r[(s+5)b1]2b(sb+r)M^{\prime}-M^{\prime\prime}\geq\frac{2b[(s-1)b-s+1]+r[(s+5)b-1]}{2b(sb+r)}

from which, proceeding as above, a second necessary condition for the possibility of problems I, II, II' is deduced, a condition which is written

2b(b+s+1)+r[(s+3)b1]<0-2b(b+s+1)+r[(s+3)b-1]<0
r<2b(b+s+1)(s+3)b1r<\frac{2b(b+s+1)}{(s+3)b-1} (120)

From incrality (119), (120); having regard to the values ​​peculiar to
himb,rb,randssits values ​​are deducedb,cb,cwhich satisfy both of these inequalities. Only in these cases can problems I, II, II' have solutions.

Making this discussion, which presents no difficulty, we find that problems I, II, II' can have solutions only in the following 9 cases:

We will discuss these 9 cases further. This discussion is based on the actual determination of the numbersM,M′′\mathrm{M}^{\prime},\mathrm{M}^{\prime\prime}.
41. 1. - Case I. We havein=s1,sv=s-1,sbeing a natural number. Based on formulas (116) we have
(121)

M1=maxi=0,1,,[s12]{G(2i)},M1′′=mini=1,2,,[s2]{G(2i1)}M_{1}^{\prime}=\max_{i=0,1,\ldots,\left[\frac{s-1}{2}\right]}\{G(2i)\},M_{1}^{\prime\prime}=\min_{i=1,2,\ldots,\left[\frac{s}{2}\right]}\{G(2i-1)\}

Taking into account (118) we find
G(2i)=i+12(i+s+2)2s+1=i(s1i)+2s+12s+1,i=0,1,,[s12]\mathrm{G}(2i)=i+1-\frac{2(i+s+2)}{2s+1}=\frac{i(s-1-i)+2s+1}{2s+1},i=0,1,\ldots,\left[\frac{s-1}{2}\right]
G(2i1)=i(2i1)(2i+2s+3)4(2s+1)=4i(si)+2s+34(2s+1),i=1,2,,s2\left.\mathrm{G}(2i-1)=i-\frac{(2i-1)(2i+2s+3)}{4(2s+1)}=\frac{4i(s-i)+2s+3}{4(2s+1)},i=1,2,\ldots,\frac{s}{2}\right\rfloor
A direct calculation then gives us

𝐌1={s2+6s+54(2s+1), for s odd s2+6s+44(2s+1), for s about,\displaystyle\mathbf{M}_{1}^{\prime}=\left\{\begin{array}[]{l}\frac{s^{2}+6s+5}{4(2s+1)},\quad\text{ pentru }s\text{ impar }\\ \frac{s^{2}+6s+4}{4(2s+1)},\end{array}\text{ pentru }s\right.\text{ par, }
𝐌1′′=6s14(2s+1).\displaystyle\mathbf{M}_{1}^{\prime\prime}=\frac{6s-1}{4(2s+1)}.

Based on formulas (114) we have

M2=(s+2)24(2s+1),M2′′=2s+34(2s+1)M_{2}^{\prime}=\frac{(s+2)^{2}}{4(2s+1)},\quad M_{2}^{\prime\prime}=\frac{2s+3}{4(2s+1)}

M′′=M2′′M^{\prime\prime}=M_{2}^{\prime\prime}It is easy to
see thatM1>M2,M1′′M2′′M_{1}^{\prime}>M_{2}^{\prime},\quad M_{1}^{\prime\prime}\geq M_{2}^{\prime\prime}It therefore followsM=M1′′M^{\prime}=M_{1}^{\prime\prime},
It is worth noting that this result remains valid fors=1s=1although in this case the second formula (121) does not exist. However, ifs=1s=1, we haveM=M1′′=G(0)=1M^{\prime}=M_{1}^{\prime\prime}=G(0)=1.

Finally

MM′′={s2+4s+24(2s+1), if s is odd, s2+4s+14(2s+1), if s it is even. M^{\prime}-M^{\prime\prime}=\left\{\begin{array}[]{l}\frac{s^{2}+4s+2}{4(2s+1)},\text{ dacă }s\text{ este impar, }\\ \frac{s^{2}+4s+1}{4(2s+1)},\text{ dacă }s\text{ este par. }\end{array}\right.

It is immediately verified that problems I, II, II' have solutions if and only ifs=1,2,3,4s=1,2,3,4.
41. 2. - Case II. We havein=3s1v=3s-1. Proceeding as above we have
M1=maxi=0,1,,s1{G(3i)},M1′′=mini=1,2,,s{G(3i1)}\mathrm{M}_{1}^{\prime}=\max_{i=0,1,\ldots,s-1}\{\mathrm{G}(3i)\},\quad\mathrm{M}_{1}^{\prime\prime}=\min_{i=1,2,\ldots,s}\{\mathrm{G}(3i-1)\}where
G(3i)=i+1i(3i+3s+5)2(3s+1)=3i(s1i)+2(3s+1)2(3s+1),i=0,1,,s1\mathrm{G}(3i)=i+1-\frac{i(3i+3s+5)}{2(3s+1)}=\frac{3i(s-1-i)+2(3s+1)}{2(3s+1)},i=0,1,\ldots,s-1,G(3i1)=i(3i1)(3i+3s+4)6(3s+1)=3i(3s13i)+3s+46(3s+1),i=1,2,,s\mathrm{G}(3i-1)=i-\frac{(3i-1)(3i+3s+4)}{6(3s+1)}=\frac{3i(3s-1-3i)+3s+4}{6(3s+1)},i=1,2,\ldots,s, from where

𝐌1={3s2+18s+118(3s+1), if s is odd, 3s2+18s+88(3s+1), if s it is hair,\displaystyle\mathbf{M}_{1}^{\prime}=
𝐌1′′=23(3s+1)\displaystyle\mathbf{M}_{1}^{\prime\prime}=\frac{2}{3(3s+1)}

We also have

𝐌2={(3s+5)224(3s+1), if s is odd, (s+2)(3s+4)8(3s+1), if s it is hair,\displaystyle\mathbf{M}_{2}^{\prime}=
𝐌2′′=3s+46(3s+1)\displaystyle\mathbf{M}_{2}^{\prime\prime}=\frac{3s+4}{6(3s+1)}

It is easy to see thatM1>M2,M2′′>M1′′M_{1}^{\prime}>M_{2}^{\prime},M_{2}^{\prime\prime}>M_{1}^{\prime\prime}so thatM=M1,M′′=M1′′M^{\prime}=M_{1}^{\prime},M^{\prime\prime}=M_{1}^{\prime\prime}and we deduce

MM′′={9s2+54s+1724(3s+1), if s it is odd 9s2+54s+824(3s+1), if s it is hair M^{\prime}-M^{\prime\prime}=\begin{cases}\frac{9s^{2}+54s+17}{24(3s+1)},&\text{ dacă }s\text{ este impar }\\ \frac{9s^{2}+54s+8}{24(3s+1)},&\text{ dacă }s\text{ este par }\end{cases}

Problems I, II, II' have solutions if and only ifs=1,2s=1,2.
41. 3. - Case III. We havein=3sv=3sand proceeding as in case II,
𝐌𝟏=max{G(3i)},𝐌𝟏′′=min{G(3i1)}\mathbf{M}_{\mathbf{1}}^{\prime}=\max\quad\{\mathrm{G}(3i)\},\mathbf{M}_{\mathbf{1}}^{\prime\prime}=\min\quad\{\mathrm{G}(3i-1)\}
Spirit
(3i)=i+13i(i+s+2)2(3s+2)=i(3s23i)+2(3s+2)2(3s+2),i=0,1,,s\square(3i)=i+1-\frac{3i(i+s+2)}{2(3s+2)}=\frac{i(3s-2-3i)+2(3s+2)}{2(3s+2)},\quad i=0,1,\ldots,s, G(3i1)=i(3i1)(3i+3s+5)6(3s+2)=9i(si)+3s+56(3s+2),i=1,2,,snG(3i-1)=i-\frac{(3i-1)(3i+3s+5)}{6(3s+2)}=\frac{9i(s-i)+3s+5}{6(3s+2)},\quad i=1,2,\ldots,s_{n}

We deduce from here

𝐌1={3s2+20s+168(3s+2), if s it is hair ,3s2+20s+178(3s+2), if s is odd, \displaystyle\mathbf{M}_{1}^{\prime}=\left\{\begin{array}[]{l}\frac{3s^{2}+20s+16}{8(3s+2)},\quad\text{ dacă }s\text{ este par },\\ \frac{3s^{2}+20s+17}{8(3s+2)},\quad\text{ dacă }s\text{ este impar, }\end{array}\right.
𝐌1′′=3s+56(3s+2).\displaystyle\mathbf{M}_{1}^{\prime\prime}=\frac{3s+5}{6(3s+2)}.

We also have

𝐌2={3(s+2)28(3s+2), say s it is hair, (3s+5)(3s+7)24(3s+2), if s is odd, \displaystyle\mathbf{M}_{2}=\left\{\begin{array}[]{l}\frac{3(s+2)^{2}}{8(3s+2)},\quad\text{ dică }s\text{ este par, }\\ \frac{(3s+5)(3s+7)}{24(3s+2)},\quad\text{ dacă }s\text{ este impar, }\end{array}\right.
𝐌2=3s+56(3s+2)\displaystyle\mathbf{M}_{2}=\frac{3s+5}{6(3s+2)}

It is seen thatM1>M2,M1′′=M2′′M_{1}^{\prime}>M_{2}^{\prime},\quad M_{1}^{\prime\prime}=M_{2}^{\prime\prime}, soM=M1,M′′=M1M^{\prime}=M_{1}^{\prime},M^{\prime\prime}=M_{1}and debuchern
𝐌𝐌′′={9s2+48s+2824(3s+2), if s it is hair, 9s2+48s+3124(3s+2) if s is odd, \mathbf{M}^{\prime}-\mathbf{M}^{\prime\prime}=\begin{cases}\frac{9s^{2}+48s+28}{24(3s+2)},&\text{ dacă }s\text{ este par, }\\ \frac{9s^{2}+48s+31}{24(3s+2)}&\text{ dacă }s\text{ este impar, }\end{cases}
Problems I, II, II' have solutions if and only ifs=1,2,3s=1,2,3.
41. 4.-Cases IV-IX. We can treat these 6 cases together.. Calculating onM1M1′′\mathrm{M}_{1}^{\prime}\mathrm{M}_{1}^{\prime\prime}we find the following values

To show how this table is obtained, it will be sufficient to perform the calculations in one of the cases. We will choose case IX for this. We then havein=41v=41andR(n)=n(n+22)208\mathrm{R}(n)=\frac{n(n+22)}{208}. For calculating numbersM1,M1′′M_{1}^{\prime},M_{1}^{\prime\prime}we use the formulas (116). Nonnegative integers of the form8x+13and8x+13ywhich checks inequalities08x+13and410\leqq 8x+13y\leqq 41are

0,8,13,16,21,24,26,29,32,34,37,39,40.0,8,13,16,21,24,26,29,32,34,37,39,40.

Based on Lemma 14 and formula (115), the values ​​ofN(n)N(n)for these successive values ​​ofnnare the consecutive natural numbers from 1 to 13 inclusive. Based on the formulaG(n)=N(n)R(n)\mathrm{G}(n)=\mathrm{N}(n)-\mathrm{R}(n)we obtain the values ​​ofG(n)G(n)for his valuesnnwhich intervene in its determinationM1M_{1}^{\prime}We thus obtain the following

Table 1: Table 3.
nn 0 8 13 16 21 24 26 29 32 34 37 39 40
N(n)\mathrm{\penalty 10000\ N}(n) 1 2 3 4 5 6 7 8 9 10 11 12 13
Rn)\left.\mathrm{R}^{\prime}n\right) 0 1513\frac{15}{13} 3516\frac{35}{16} 3813\frac{38}{13} 903208\frac{903}{208} 6913\frac{69}{13} 6 1479208\frac{1479}{208} 10813\frac{108}{13} 11913\frac{119}{13} 2183208\frac{2183}{208} 18316\frac{183}{16} 15513\frac{155}{13}
G(n)\mathrm{G}(n) 1 1113\frac{11}{13} 1316\frac{13}{16} 1413\frac{14}{13} 137208\frac{137}{208} 913\frac{9}{13} 1 185208\frac{185}{208} 913\frac{9}{13} 1113\frac{11}{13} 105208\frac{105}{208} 916\frac{9}{16} 1413\frac{14}{13}

It follows from this thatM1=1413\mathrm{M}_{1}=\frac{14}{13}
To determine the M1′′\mathrm{M}_{1}^{\prime\prime}we observe that non-negative integers of the form8x+13and18x+13y-1which checks inequalities08x+13and1410\leqq 8x+13y-1\leqq 41are

7,12,15,20,23,25,28,31,33,36,38,39,41.7,12,15,20,23,25,28,31,33,36,38,39,41.

For the same reasons as above, the values ​​ofN(n)N(n)for these successive values ​​ofnnare the consecutive natural numbers from 1 to 13 inclusive. We thus obtain

Table 2: Table 4.
nn 7 12 15 20 23 25 28 31 33 36 38 39 41
N(n)\mathrm{N}(\mathrm{n}) 1 2 3 4 5 6 7 8 9 10 11 12 13
R(n)\mathrm{R}(n) 203 51 555 105 1035 1175 175 1643 1815 261 285 183 2583
208 26 208 26 208 20” 26 208 208 26 26 16 208
G(n)\mathrm{G}(n) 5208\frac{5}{208} 126\frac{1}{26} 69288\frac{69}{288} 126-\frac{1}{26} 5208\frac{5}{208} 73208\frac{73}{208} 726\frac{7}{26} 21208\frac{21}{208} 57208\frac{57}{208} 126-\frac{1}{26} 126\frac{1}{26} 916\frac{9}{16} 121208\frac{121}{208}

It follows from this that𝐌1′′=126\mathbf{M}_{1}^{\prime\prime}=-\frac{1}{26}
Returning to table 1, we see that in cases IV, V, VIII, IX we have . M1M1′′>1M_{1}^{\prime}-M_{1}^{\prime\prime}>1and therefore all the more soMM′′>1M^{\prime}-M^{\prime\prime}>1In these cases, problems I, II, II' have no solution.

Cases VI and VII still remain to be examined further. Formulas (114) give us

Table 3: Table 5.
case M2M_{2}^{\prime} M2′′M_{2}^{\prime\prime}
WE 35\frac{3}{5} 635\frac{6}{35}
VII 4980\frac{49}{80} 1380\frac{13}{80}

It follows, comparing with table 1, that
in case VI:M=1,M′′=135,MM′′=3435<1M^{\prime}=1,M^{\prime\prime}=\frac{1}{35},\quad M^{\prime}-M^{\prime\prime}=\frac{34}{35}<1,
in case VII:M=1,M′′=110,MM′′=910<1\mathrm{M}^{\prime}=1,\mathrm{M}^{\prime\prime}=\frac{1}{10},\quad\mathrm{M}^{\prime}-\mathrm{M}^{\prime\prime}=\frac{9}{10}<1.
In these cases, problems I, II, II' therefore have solutions.
In short, we have:
THEOREM 7. -In the casem=3m=3problems I, II, II' have solutions in and only in the following 18 cases, numbered from11^{\circ}the1818^{\circ}.

Table 4: Table 6.
case 11^{\circ} 22^{\circ} 33^{\circ} 44^{\circ} 55^{\circ} 66^{\circ} 77^{\circ} 88^{\circ} 99^{\circ}
bbandcc 1,1 1,2 1,3 1,4 1,5 1,6 1,7 2,3 2,5
case 1010^{\circ} 1111^{\circ} 1212^{\circ} 1313^{\circ} 1414^{\circ} 1515^{\circ} 1616^{\circ} 1717^{\circ} 1818^{\circ}
bbandcc 2,7 2,9 3,4 3,7 3,5 3,8 3,11 5,7 5,8

In all cases at least one of the coefficients of equation (1) is equal to 1, and the other two coefficients b and c are given in the accompanying table 6.
42. - We will also give the solutions to problems I, II, II' in the 18 cases1181^{\circ}-18^{\circ}highlighted.

The following table shows the values ​​ofM,M′′,MM′′M^{\prime},M^{\prime\prime},M^{\prime}-M^{\prime\prime}and of the polynomialR(n)\mathrm{R}(n)in the form ofn(n+b+c+1)2bc\frac{n(n+b+c+1)}{2bc}PolynomialsP(n),Q(n),S(n)\mathrm{P}(n),\mathrm{Q}(n),\mathrm{S}(n)can be obtained in the formR(n)+l2bcR(n)+\frac{\lambda}{2bc}and in the table the range of variation is givenl\lambdafor the three polynomials.

Table 5: Table 7.
case M\mathrm{M}^{\prime} M′′M^{\prime\prime} MM′′M^{\prime}-M^{\prime\prime} R (n) summer interview ofl\lambdafor
P(n)\mathrm{P}(n) Q(n) S (n)
11^{\circ} 1 1 0 n(n+3)2\frac{n(n+3)}{2} (1,3)(1,3) [2,4) (0,2](0,2]
22^{\circ} 1 34\frac{3}{4} 14\frac{1}{4} n(n+4)4\frac{n(n+4)}{4} (2,5)(2,5) [4,7)[4,7) (0,3]
33^{\circ} 1 23\frac{2}{3} 13\frac{1}{3} n(n+5)6\frac{n(n+5)}{6} (3,7)(3,7) [6,10)[6,10) (0,4](0,4]
44^{\circ} 98\frac{9}{8} 58\frac{5}{8} 12\frac{1}{2} (n+6)c\frac{"(n+6)}{\gamma} (5,9)(5,9) [9,13)[9,13) (1,5](1,5]
55^{\circ} 65\frac{6}{5} 30\frac{3}{0} 35\frac{3}{5} n(n+7)10\frac{n(n+7)}{10} (7,11)(7,11) [12,16)[12,16) (2,6]
66^{\circ} 43\frac{4}{3} 712\frac{7}{12} 34\frac{3}{4} n(n+8)12\frac{n(n+8)}{12} (10,13)(10,13) [16,19 ; (4,7](4,7]
77^{\circ} 107\frac{10}{7} 47\frac{4}{7} 67\frac{6}{7} n(n+9)1+\frac{n(n+9)}{1+} (13,15)(13,15) [20,22)[20,22) (6,8]
88^{\circ} 1 512\frac{5}{12} 712\frac{7}{12} n(n+6)12\frac{n(n+6)}{12} (6,11)(6,11) [12,17)[12,17) (0,5](0,5]
99^{\circ} 1 720\frac{7}{20} 1320\frac{13}{20} n(n+3)20\frac{n(n+3)}{20} (10,17)(10,17) [20,27)[20,27) (0,7]
1010^{\circ} 81\frac{8}{1} 928\frac{9}{28} 2528\frac{25}{28} n(n+10)28\frac{n(n+10)}{28} (18,23)(18,23) [32,37)[32,37) (4,9](4,9]
1111^{\circ} 109\frac{10}{9} 1136\frac{11}{36} 2936\frac{29}{36} n(n+12)36\frac{n(n+12)}{36} (22,29)(22,29) [40,47)[40,47) (4,11]
1212^{\circ} 1 16\frac{1}{6} 56\frac{5}{6} n(n+8)24\frac{n(n+8)}{24} (12,16)(12,16) [24,28)[24,28) (0,4]
1313^{\circ} 1 421\frac{4}{21} 1921\frac{19}{21} n(n+11)42\frac{n(n+11)}{42} (21,25)(21,25) [42,46 (0,4
1414^{\circ} 1 4 10 1110\frac{11}{10} n(n+930\frac{n(n+9}{30} (15,23)(15,23) [30,38)[30,38) (0,8
case MM^{\prime} M" MM′′\mathrm{M}^{\prime}-\mathrm{M}^{\prime\prime} R (n) interv. . is his/her var.l\lambdafor
P(n)\mathrm{P}(n) Q(n) S (n)
1515^{\circ} 1716\frac{17}{16} 114×\frac{11}{4\times} 56\frac{5}{6} n(n+12)48\frac{n(n+12)}{48} (27,35) [51,59)[51,59) (3,11]
1616^{\circ} 1311\frac{13}{11} 733\frac{7}{33} 3233\frac{32}{33} n(n+15)66\frac{n(n+15)}{66} (45,47)(45,47) [(8,80) (12,14]
1717^{\circ} 1 135\frac{1}{35} 3435\frac{34}{35} n(n+13)70\frac{n(n+13)}{70} (35,37)(35,37) [70,72)[70,72) (0,2]
1818^{\circ} 1 110\frac{1}{10} 910\frac{9}{10} n(n+14)80\frac{n(n+14)}{80} (40,48)(40,48) [80,88)[80,88) (0,8](0,8]

Based on the forms (69) the interval relative to the polynomialQ(n)Q(n)is deduced from the interval relative to the polynomialP(n)\mathrm{P}(n)by a translation equal tobcbcand the interval relative to the polynomial S(n) by a translation equal to - bc. The interval relative toQ(n)Q(n)is closed on the left, and the relative one onS(n)S(n)is closed on the right, the respective extremities corresponding to the exceptional solutions defined in No. 25.

The exceptional solutions of problems II, II' are given in the following table.

Table 6: Table 8.
case
In Q(n)
ener
S (n)
11^{\circ}
(n+1)(n+2)(n+1)(n+2)
2
(n+1)(n+2)(n+1)(n+2)
2
22^{\circ}
(n+2)2(n+2)^{2}
4
(n+1)(n+3)(n+1)(n+3)
4
33^{\circ} (n+2)(n+3)6\frac{(n+2)(n+3)}{6}
(n+1)(n+4)(n+1)(n+4)
6
44^{\circ} (n+3)28\frac{(n+3)^{2}}{8}
(n+1)(n+5)(n+1)(n+5)
8
55^{\circ}
(n+3)(n+4)(n+3)(n+4)
10
(n+1)(n+6)(n+1)(n+6)
10
66^{\circ} (n+4)212\frac{(n+4)^{2}}{12}
(n+1)(n+7)(n+1)(n+7)
12
77^{\circ} (n+4)(n+5)14\frac{(n+4)(n+5)}{14}
(n+1)(n+8)(n+1)(n+8)
14
88^{\circ} n2+6n+1212\frac{n^{2}+6n+12}{12}
(n+1)(n+5)(n+1)(n+5)
12
99^{\circ}
n2+8n+20n^{2}+8n+20
20
(n+1)(n+7)(n+1)(n+7)
20
  1. 43.
    • Interesting particular solutions are those in which e.g. the polynomialP(n),Q(n)\mathrm{P}(n),\mathrm{Q}(n)orS(n)\mathrm{S}(n)decomposes into the product of two linear factors with rational coefficients. From Table 7 it can be deduced that there are an infinity of such polynomialsP(n)\mathrm{P}(n)and an infinity of such polynomialsS(n)\mathrm{S}(n)in all 18 cases. There are an infinity of such polynomials Q(n) in the cases1,3,5,71^{\circ},3^{\circ},5^{\circ},7^{\circ}, there is a sure one (which is obviously the exceptional solution) in the cases2,4,62^{\circ},4^{\circ},6^{\circ}and there is none in the other 11 cases.

To prove these statements, it is sufficient to first observe that the polynomialn(n+b+c+1)+ln(n+b+c+1)+\lambdacan be decomposed into two first-degree factors with rational coefficients only if
(b+c+1)24l0(b+c+1)^{2}-4\lambda\geqq 0We now find, on the
one hand, that we have an infinity, one or no polynomialP(n),Q(n)\mathrm{P}(n),\mathrm{Q}(n)orS(n)\mathrm{S}(n)of the sought-after form as the range of variation ofl\lambdacorresponding to the interval
(,(b+c+1)24]the\left(-\infty,\frac{(b+c+1)^{2}}{4}\right]oinfinity, one or no common point. On the other hand, the values ​​of(b+c+1)24\frac{(b+c+1)^{2}}{4}for the 18 cases are successively equal to94,4,254,9,494,16,814,9,16,25,36,16,1214,814,36,2254\frac{9}{4},4,\frac{25}{4},9,\frac{49}{4},16,\frac{81}{4},9,16,25,36,16,\frac{121}{4},\frac{81}{4},36,\frac{225}{4}, 1694,49\frac{169}{4},49.
44. - To highlight some of these solutions we will examine three particular forms.
I. Let's look for the polynomialP(n),Q(n)\mathrm{P}(n),\mathrm{Q}(n)orS(n)\mathrm{S}(n)where the difference of the roots is an integer. The polynomial sought is then of the form(n+in)(n+in+in)2bc\frac{(n+u)(n+u+v)}{2bc}, whereinuis a rational number, andinvan integer that can be assumed to be non-negative.

It follows from this that we must have
somewhere to start.

2in+in=b+c+1,in(in+in)=l2u+v=b+c+1,\quad u(u+v)=\lambda
(b+c+1)2in2=4l(b+c+1)^{2}-v^{2}=4\lambda

We immediately see that we have a finite number of solutions,l\lambda7 must appear within the range given in table 7.

By doing all the calculations, we find the solutions contained in the following table.

Table 7: Table 9.
case P (n) Q (n) S (n)
11^{\circ} (2n+3)28,(n+1)(n+2)2,(2n+1)(2n+5)8\begin{aligned} &\frac{(2n+3)^{2}}{8},\frac{(n+1)(n+2)}{2},\\ &\frac{(2n+1)(2n+5)}{8}\end{aligned} (2n+3)28,(n+1)(n+2)2\begin{aligned} &\frac{(2n+3)^{2}}{8},\\ &\frac{(n+1)(n+2)}{2}-\end{aligned} (n+1)(n+2)2(2n+1)(2n+5)8\begin{aligned} &\frac{(n+1)(n+2)}{2}\\ &\frac{(2n+1)(2n+5)}{8}\end{aligned}
22^{\circ} (n+22)4,(2n+3)(2n+5)10,(n+1)(n+3)4\begin{aligned} &\frac{\left(n+2^{2}\right)}{4},\frac{(2n+3)(2n+5)}{10},\\ &\frac{(n+1)(n+3)}{4}\end{aligned} (n+2)24\frac{(n+2)^{2}}{4} (n+1)(n+3)4(2n+1)(2n+7)16\begin{aligned} &\frac{(n+1)(n+3)}{4}\\ &\frac{(2n+1)(2n+7)}{16}\end{aligned}
33^{\circ} (2n+5)224,(n+2)(n+3)6,(2n+3)(2n+7)24,(n+1)(n+4)6\begin{aligned} &\frac{(2n+5)^{2}}{24},\frac{(n+2)(n+3)}{6},\\ &\frac{(2n+3)(2n+7)}{24},\frac{(n+1)(n+4)}{6}\end{aligned} (2n+5)224,(n+2)(n+3)6\begin{aligned} &\frac{(2n+5)^{2}}{24},\\ &\frac{(n+2)(n+3)}{6}\end{aligned} (n+1)(n+4)6,(2n+1)(2n+9)24\begin{aligned} &\frac{(n+1)(n+4)}{6},\\ &\frac{(2n+1)(2n+9)}{24}\end{aligned}
44^{\circ} (2n+5)(2n+7)32,(n+2)(n+4)8,(2n+3)(2n+9)32\begin{aligned} &\frac{(2n+5)(2n+7)}{32},\frac{(n+2)(n+4)}{8},\\ &\frac{(2n+3)(2n+9)}{32}\end{aligned} (n+3)28\frac{(n+3)^{2}}{8}
(n+1)(n+5)8,2n+1)(2n+11)\begin{aligned} &\frac{(n+1)(n+5)}{8},\\ &2n+1)(2n+11)\end{aligned}
32
55^{\circ} (n+2)(n+5)10,(2n+3)(2n+11)40\begin{gathered}\frac{(n+2)(n+5)}{10},\\ \frac{(2n+3)(2n+11)}{40}\end{gathered} (2n+7)240,(n+3)(n+4)10\begin{aligned} &\frac{(2n+7)^{2}}{40},\\ &\frac{(n+3)(n+4)}{10}\end{aligned}
(n+1)(n+6)10\frac{(n+1)(n+6)}{10}
(2n+1)(2n+13)(2n+1)(2n+13)
40
66^{\circ} (n+2)(n+6)12\frac{(n+2)(n+6)}{12} (n+4)212\frac{(n+4)^{2}}{12} (n+1)(n+7)12\frac{(n+1)(n+7)}{12}
77^{\circ} (n+2)(n+7)14\frac{(n+2)(n+7)}{14} (2n+9)256(n+4)(n+5)14\begin{aligned} &\frac{(2n+9)^{2}}{56}\\ &\frac{(n+4)(n+5)}{14}\end{aligned} (n+1)(n+8)14\frac{(n+1)(n+8)}{14}
88^{\circ} (n+3)212,(2n+5)(2n+7)48(n+2)(n+4)12,(2n+3)(2n+9)48\begin{aligned} &\frac{(n+3)^{2}}{12},\frac{(2n+5)(2n+7)}{48}\\ &\frac{(n+2)(n+4)}{12},\frac{(2n+3)(2n+9)}{48}\end{aligned} - (n+1)(n+5)12(2n+1)(2n+11)48\begin{aligned} &\frac{(n+1)(n+5)}{12}\\ &\frac{(2n+1)(2n+11)}{48}\end{aligned}
99^{\circ} (n+4)220,(2n+7)(2n+9)80,(n+3)(n+5)20,(2n+5)(2n+11)80,(n+2)(n+6)20\begin{aligned} &\frac{(n+4)^{2}}{20},\frac{(2n+7)(2n+9)}{80},\\ &\frac{(n+3)(n+5)}{20},\frac{(2n+5)(2n+11)}{80},\\ &\frac{(n+2)(n+6)}{20}-\end{aligned} - (n+1)(n+7)20(2n+1)(2n+15)80\begin{aligned} &\frac{(n+1)(n+7)}{20}\\ &\frac{(2n+1)(2n+15)}{80}\end{aligned}
Table 8: Table 9 (continued)
case P (n) Q(n) S (n)
1010^{\circ} (2n+7)(2n+13)112,(n+3)(n+7)28,(2n+5)(2n+15)112\begin{aligned} &\frac{(2n+7)(2n+13)}{112},\frac{(n+3)(n+7)}{28},\\ &\frac{(2n+5)(2n+15)}{112}\end{aligned} - (n+1)(n+9)28(2n+1)(2n+19)112\begin{aligned} &\frac{(n+1)(n+9)}{28}\\ &\frac{(2n+1)(2n+19)}{112}\end{aligned}
1111^{\circ} (n+3)(n+9)36,(2n+5)(2n+19)144\begin{aligned} &\frac{(n+3)(n+9)}{36},\\ &\frac{(2n+5)(2n+19)}{144}\end{aligned} - (n+1)(n+11)36,(2n+1)(2n+23)144\begin{gathered}\frac{(n+1)(n+11)}{36},\\ \frac{(2n+1)(2n+23)}{144}\end{gathered}
1212^{\circ} (2n+7)(2n+9)96,(n+3)(n+5)24(2n+5)(2n+11)96\begin{aligned} &\frac{(2n+7)(2n+9)}{96},\frac{(n+3)(n+5)}{24}\\ &\frac{(2n+5)(2n+11)}{96}\end{aligned} - (2n+1)(2n+15)96\frac{(2n+1)(2n+15)}{96}
1313^{\circ} (n+3)(n+8)42,(2n+5)(2n+17)168\frac{(n+3)(n+8)}{42},\frac{(2n+5)(2n+17)}{168} - -
1414^{\circ} (2n+9)2120,(n+4)(n+5)30,(2n+7)(2n+11)120,(n+3)(n+6)30,(2n+5)(2n+13)120\begin{aligned} &\frac{(2n+9)^{2}}{120},\frac{(n+4)(n+5)}{30},\\ &\frac{(2n+7)(2n+11)}{120},\frac{(n+3)(n+6)}{30},\\ &\frac{(2n+5)(2n+13)}{120}\end{aligned} - (n+1)(n+8)30,(2n+1)(2n+17)120\begin{aligned} &\frac{(n+1)(n+8)}{30},\\ &\frac{(2n+1)(2n+17)}{120}\end{aligned}
1515^{\circ} (2n+9)(2n+15)192,(n+4)(n+8)4c(2n+7)(2n+17)192\begin{aligned} &\frac{(2n+9)(2n+15)}{192},\frac{(n+4)(n+8)}{4\gamma}\\ &\frac{(2n+7)(2n+17)}{192}\end{aligned} - (n+1)(n+11)48(2n+1)(2n+23)192\begin{aligned} &\frac{(n+1)(n+11)}{48}\\ &\frac{(2n+1)(2n+23)}{192}\end{aligned}
1616^{\circ} - - (n+1)(n+14)66\frac{(n+1)(n+14)}{66}
1717^{\circ} (n+4)(n+9)70\frac{(n+4)(n+9)}{70} - -
1818^{\circ} (2n+11)(2n+17)320,(n+5)(n+9)80,(2n+9)(2n+19)320\begin{aligned} &\frac{(2n+11)(2n+17)}{320},\frac{(n+5)(n+9)}{80},\\ &\frac{(2n+9)(2n+19)}{320}\end{aligned} - (2n+1)(2n+27)32in\frac{(2n+1)(2n+27)}{32v}

This table contains in particular all the solutions in which the polynomialsP(n),Q(n),S(n)\mathrm{P}(n),\mathrm{Q}(n),\mathrm{S}(n)are perfect squares.
II. Let's look for the solutions in which the polynomialP(n),Q(n)\mathrm{P}(n),\mathrm{Q}(n)orS(n)\mathrm{S}(n)is, apart from an (obviously) rational factor, a product of two consecutive integers, whatever they may benn.

The polynomial sought is then of the form(inn+in)(inn+in+1)(un+v)(un+v+1), whereinuis a natural number,invan integer andInwa rational number. By identification we find

in2In=12bc,in(2in+1)In=b+c+12bc,in(in+1)In=l2bc.\frac{u^{2}}{w}=\frac{1}{2bc},\quad\frac{u(2v+1)}{w}=\frac{b+c+1}{2bc},\quad\frac{v(v+1)}{w}=\frac{\lambda}{2bc}.

From here it followsIn=2bcin2w=2bcu^{2}, soInwis a natural number. We still have

in(b+c+1)=2in+1,l=(b+c+1)2in214in2u(b+c+1)=2v+1,\quad\lambda=\frac{(b+c+1)^{2}u^{2}-1}{4u^{2}} (122)

From the first of these formulas it follows thatinuandb+c+1b+c+1must be odd numbers. It follows then thatinvis a natural number. It also follows that we can only have solutions in the cases1,3,5,7,13,14,16,171^{\circ},3^{\circ},5^{\circ},7^{\circ},13^{\circ},14^{\circ},16^{\circ},17^{\circ}.

The variation interval of the second member of the second formula (122) is

((b+c)(b+c+2)4,(b+c+1)24).\left(\frac{(b+c)(b+c+2)}{4},\frac{(b+c+1)^{2}}{4}\right). (123)

We will have as many solutions as the values ​​of the second member of the second formula (112) fall within the variation interval ofl\lambdafor that polynomialP(n),Q(n),S(n)\mathrm{P}(n),Q(n),\mathrm{S}(n).
III. Let us also look for solutions in which the polynomialP(n),Q(n)\mathrm{P}(n),\mathrm{Q}(n)orS(n)\mathrm{S}(n)is, apart from an (obviously) rational factor, the product of two consecutive integers of the same parity.

The polynomial sought is then of the form(inn+in)(inn+in+2)(un+v)(un+v+2)whereinuis a natural number,invan integer andInwa rational number. We now have

in2In=12bc,2in(in+1)In=b+c+12bc,in(in+2)In=l2bc\frac{u^{2}}{w}=\frac{1}{2bc},\frac{2u(v+1)}{w}=\frac{b+c+1}{2bc},\quad\frac{v(v+2)}{w}=\frac{\lambda}{2bc}

and it is deduced againIn=2bcin2w=2bcu^{2}as well as

in(b+c+1)=2(in+1),l=(b+c+1)2in244in2u(b+c+1)=2(v+1),\lambda=\frac{(b+c+1)^{2}u^{2}-4}{4u^{2}} (124)

It is seen again thatinvis a natural number. However, we must distinguish two cases. Ifb+c+1b+c+1is odd, so in the cases1,3,5,7,131^{\circ},3^{\circ},5^{\circ},7^{\circ},13^{\circ}, 14,16,17,in14^{\circ},16^{\circ},17^{\circ},umust be even (2\geq 2) and the range of variation of the second member of the second formula (124) is still (123). However, ifb+c+1b+c+1is even, so in the other 10 cases,inucan be
any mature number and the range of variation of the second member of the second formula (124) is
(125)

((b+c1)(b+c+3)4,(b+c+1)24)\left(\frac{(b+c-1)(b+c+3)}{4},\quad\frac{(b+c+1)^{2}}{4}\right)

The effective solutions are determined as in case II.
To find the solutions in cases II. III, first form the table of intervals (123), (125).

Table 9: Table 10.
case 11^{\circ} 22^{\circ} 33^{\circ} 44^{\circ} 55^{\circ} 66^{\circ}
interval (123) [2,94)\left[2,\frac{9}{4}\right) (6,254)\left(6,\frac{25}{4}\right) 12,494)\left.\mid 12,\frac{49}{4}\right)
interval (125) [3,4)[3,4) [8,9)[8,9) [15,16)[15,16)
case 77^{\circ} 88^{\circ} 99^{\circ} 1010^{\circ} 1111^{\circ} 1212^{\circ}
interval (123) [0,814)\left[\angle 0,\frac{81}{4}\right)
interval (125) [8,9)[8,9) [15,16)[15,16) [24,25)[24,25) [35,36)[35,36) [15,16)[15,16)
case 1313^{\circ} 1414^{\circ} 1515^{\circ} 1616^{\circ} 1111^{\circ} 1818^{\circ}
interval (123) (30,1214)\left(30,\frac{121}{4}\right) 20,814)\left.20,\frac{81}{4}\right) 56,2254)\left.56,\frac{225}{4}\right) 42,1694)\left.42,\frac{169}{4}\right)
interval (125) [35,3)[35,3) [48,49)[48,49)

From examining this table and taking into account the range of variation ofl\lambdagiven in table 7, it follows that in case II there are an infinity of polynomialsP(n)\mathrm{P}(n)of this kind in cases1,31^{\circ},3^{\circ}and1414^{\circ}an infinity of polynomialsQ(n)Q(n)of this kind in cases1,3,5,71^{\circ},3^{\circ},5^{\circ},7^{\circ}and a single polynomialS(n)\mathrm{S}(n)similarly in the case11^{\circ}.

In case III there are an infinity of polynomialsP(n)\mathrm{P}(n)of this kind in cases1,2,3,4,8,9,12,14,01^{\circ},2^{\circ},3^{\circ},4^{\circ},8^{\circ},9^{\circ},12^{\circ},14^{\circ},0infinity of polynomialsQ(n)Q(n)of this kind in cases1,3,5,71^{\circ},3^{\circ},5^{\circ},7^{\circ}and a single polynomialS(n)S(n)thus in cases1,21^{\circ},2^{\circ}. Not all of these solutions are different from those found in case II. Namely those in whichinuandinvare both even, they obviously reduce,
by simplification by 4, to the solutions found in case II. Conversely, amplicisantos) by 4, from any solution of case II a solution of case III is deduced.

The distinct solutions in cases II, III are included in the following table

Table 10: Table 11.
case P(n) Q (n) S (n)
11^{\circ} (2n+5)2t218t2\frac{(2n+5)^{2}t^{2}-1}{8t^{2}} (2n+3)2t218t2\frac{(2n+3)^{2}t^{2}-1}{8t^{2}} (n+1)(n+2)2\frac{(n+1)(n+2)}{2}
22^{\circ} (n+2)2t214t2\frac{(n+2)^{2}t^{2}-1}{4t^{2}} - (n+1)(n+3)4\frac{(n+1)(n+3)}{4}
33^{\circ} (2n+5)2t2124t2\frac{(2n+5)^{2}t^{2}-1}{24t^{2}} (2n+5)2t2124t2\frac{(2n+5)^{2}t^{2}-1}{24t^{2}} -
44^{\circ} (n+3)2t218t2\frac{(n+3)^{2}t^{2}-1}{8t^{2}} - -
55^{\circ} - (2n+7)2t2140t2\frac{(2n+7)^{2}t^{2}-1}{40t^{2}} -
77^{\circ} - (2n+9)2t2156t2\frac{(2n+9)^{2}t^{2}-1}{56t^{2}} -
88^{\circ} (n+3)2t2112t2\frac{(n+3)^{2}t^{2}-1}{12t^{2}} - -
99^{\circ} (n+4)2t2120t2\frac{(n+4)^{2}t^{2}-1}{20t^{2}} - -
1212^{\circ} (n+4)2t2124t2\frac{(n+4)^{2}t^{2}-1}{24t^{2}} - -
1414^{\circ} (2n+9)2t21120t2\frac{(2n+9)^{2}t^{2}-1}{120t^{2}} - -

wherettis an arbitrary natural number.
Various particular properties can be stated on which it is useless to insist.

Faculty of Mathematics and Physics of the "V. Babes" University of Chuj

BIBLIOGRAPHY

  1. 1.

    Euler L., Introduction to the Analysis of Infinites or Opera Omnia, S. 1, T. 8.

Sylvester J. J., Outlines of seven leotures on the partitions of numbers. Proc. Londor Math. Soc., 28, 33-96 (1897).
2b. Sylvester J. 2, discovery in the partition of mumbers , Quarterly J. of Math., 3a W. Wrol

Coefficients, Zeitsch number of solutions of dophantic equations with coprime coefficients, Zeîtsch, für Math. u Ph., 20, 97–111(1875).

3b. Weihrauch K., On the expressionsS\Sigmafn (m) and the transformations of the formula for solution numbers, … ibid., 20, 111-117 (1875)
4. Skolem Th., Nota 14 la cartea Lehrbuch der Combinatorik de Dr. E. Netto, ed. II. 1927.
5. Gelfond AO, Iscislevie konecinîh ramostei, Moskva-Leningrad, 1952.
6. Dedekind R., On the decomposition of numbers by their greatest common divisors. Works, II, 103-147, (1931).

1953

Related Posts