On the best approximation in metric spaces

Abstract

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical analysis, Romanian Academy, Romania

Keywords

Paper coordinates

C. Mustăţa, On the best approximation in metric spaces, Anal. Numér. Théor. Approx., 4 (1975) 1, 45-50.

PDF

About this paper

Journal

Mathematica-Revue d’Analyse Numer. Theor.Approx.

Publisher Name

Romanian Academy

Print ISSN
Online ISSN

MR # 82c: 46052

google scholar link

[1] Dunford, N. and Schwartz, J. T., Linear Operators. I. New York (1958)
[2] Johnson, J.A., Banach Spaces of Lipschitz functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. soc., 148, 147-169 (1970).
[3] Michael, E., A short prof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc., 15, 415-416 (1964).
[4] Pantelidis, G., Approximationstheorie fur metrische lineare Raume, Math. Ann., 184, 30-48 (1969).
[5] Singer, I., Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale. Ed. Acad. București, 1967.
[6] Vlasov, L.P., Approximationye svojstva mnojestv v linejnyh normirovannyh prostranstvah, Uspechi Mat. Nauk., 18, 6, 4-66 (1973).

Paper (preprint) in HTML form

1975-Mustata-On the best approximation in metric spaces-Jnaat

ON THE BEST APPROXIMATION IN METRIC SPACES

byCOSTICĂ MUSTĂTA(Cluj-Napoca)

Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a metric space and x 0 x 0 x_(0)x_{0}x0 a fixed point in X X XXX. The set
(1) X 0 = { f : X R , sup x y x , y X | f ( x ) f ( y ) | d ( x , y ) < , f ( x 0 ) = 0 } , (1) X 0 = f : X R , sup x y x , y X | f ( x ) f ( y ) | d ( x , y ) < , f x 0 = 0 , {:(1)X_(0)^(‡‡)={f:X rarr R,s u p_({:[x!=y],[x","y in X]:})(|f(x)-f(y)|)/(d(x,y)) < oo,f(x_(0))=0}",":}\begin{equation*} X_{0}^{\ddagger \ddagger}=\left\{f: X \rightarrow R, \sup _{\substack{x \neq y \\ x, y \in X}} \frac{|f(x)-f(y)|}{d(x, y)}<\infty, f\left(x_{0}\right)=0\right\}, \tag{1} \end{equation*}(1)X0={f:XR,supxyx,yX|f(x)f(y)|d(x,y)<,f(x0)=0},
with the usual operation of addition and multiplication by real scalars, normed by
(2) f X = sup x y x , y X | f ( x ) f ( y ) | d ( x , y ) , f X 0 # (2) f X = sup x y x , y X | f ( x ) f ( y ) | d ( x , y ) , f X 0 # {:(2)||f||_(X)=s u p_({:[x!=y],[x","y in X]:})(|f(x)-f(y)|)/(d(x,y))","f inX_(0)^(#):}\begin{equation*} \|f\|_{X}=\sup _{\substack{x \neq y \\ x, y \in X}} \frac{|f(x)-f(y)|}{d(x, y)}, f \in X_{0}^{\#} \tag{2} \end{equation*}(2)fX=supxyx,yX|f(x)f(y)|d(x,y),fX0#
is a Banach space (even a conjugate Banach space [2]).
The space X 0 # X 0 # X_(0)^(#)X_{0}^{\#}X0# plays, with respect to X X XXX, in many ways, the same role as the conjugate E E E^(**)E^{*}E of a normed linear space E E EEE, with respect to E E EEE. In this paper we give further details in this direction.
For Y X Y X O/!=Y sube X\emptyset \neq Y \subseteq XYX and x X x X x in Xx \in XxX we denote by d ( x , Y ) d ( x , Y ) d(x,Y)d(x, Y)d(x,Y) the distance from x x xxx to Y Y YYY, i.e.
(3) d ( x , Y ) = inf y Y d ( x , y ) (3) d ( x , Y ) = inf y Y d ( x , y ) {:(3)d(x","Y)=i n f_(y in Y)d(x","y):}\begin{equation*} d(x, Y)=\inf _{y \in Y} d(x, y) \tag{3} \end{equation*}(3)d(x,Y)=infyYd(x,y)
Proposition 1. Let Y X , x 0 Y Y X , x 0 Y Y sub X,x_(0)in YY \subset X, x_{0} \in YYX,x0Y and x 1 X Y x 1 X Y x_(1)in X-Yx_{1} \in X-Yx1XY such that
(4) d ( x 1 , Y ) = q > 0 (4) d x 1 , Y = q > 0 {:(4)d(x_(1),Y)=q > 0:}\begin{equation*} d\left(x_{1}, Y\right)=q>0 \tag{4} \end{equation*}(4)d(x1,Y)=q>0
Proof. For every y f ( 1 ) ( 0 ) y f ( 1 ) ( 0 ) y inf^((-1))(0)y \in f^{(-1)}(0)yf(1)(0) and x X , | f ( x ) | = | f ( x ) f ( y ) | x X , | f ( x ) | = | f ( x ) f ( y ) | x in X,|f(x)|=|f(x)-f(y)| <=x \in X,|f(x)|=|f(x)-f(y)| \leqqxX,|f(x)|=|f(x)f(y)|
Then there is f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# such that
(5) f | Y = 0 , f ( x 1 ) = 1 , f X = 1 q (5) f Y = 0 , f x 1 = 1 , f X = 1 q {:(5)f|_(Y)=0","f(x_(1))=1","||f||_(X)=(1)/(q):}\begin{equation*} \left.f\right|_{Y}=0, f\left(x_{1}\right)=1,\|f\|_{X}=\frac{1}{q} \tag{5} \end{equation*}(5)f|Y=0,f(x1)=1,fX=1q
Proof. We will show that a function with the required properties is given by
(6) f ( x ) = 1 q d ( x , Y ) (6) f ( x ) = 1 q d ( x , Y ) {:(6)f(x)=(1)/(q)d(x","Y):}\begin{equation*} f(x)=\frac{1}{q} d(x, Y) \tag{6} \end{equation*}(6)f(x)=1qd(x,Y)
Indeed, f ( x 0 ) = 0 f x 0 = 0 f(x_(0))=0f\left(x_{0}\right)=0f(x0)=0, because x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y. For x , z X x , z X x,z in Xx, z \in Xx,zX we have
| d ( x , Y ) d ( z , Y ) | d ( x , z ) | d ( x , Y ) d ( z , Y ) | d ( x , z ) |d(x,Y)-d(z,Y)| <= d(x,z)|d(x, Y)-d(z, Y)| \leqslant d(x, z)|d(x,Y)d(z,Y)|d(x,z)
and by the definition of f f fff, it follows that
(7) f X 1 q < (7) f X 1 q < {:(7)||f||_(X) <= (1)/(q) < oo:}\begin{equation*} \|f\|_{X} \leqq \frac{1}{q}<\infty \tag{7} \end{equation*}(7)fX1q<
This means that f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0#.
Evidently, f | Y = 0 f Y = 0 f|_(Y)=0\left.f\right|_{Y}=0f|Y=0 and f ( x 1 ) = 1 f x 1 = 1 f(x_(1))=1f\left(x_{1}\right)=1f(x1)=1. Since d ( x 1 , Y ) = q > 0 d x 1 , Y = q > 0 d(x_(1),Y)=q > 0d\left(x_{1}, Y\right)=q>0d(x1,Y)=q>0, then there is a sequence ( y n ) n N Y y n n N Y (y_(n))_(n in N)sub Y\left(y_{n}\right)_{n \in N} \subset Y(yn)nNY such that d ( x 1 , y n ) d ( x 1 , Y ) d x 1 , y n d x 1 , Y d(x_(1),y_(n))rarr d(x_(1),Y)d\left(x_{1}, y_{n}\right) \rightarrow d\left(x_{1}, Y\right)d(x1,yn)d(x1,Y) when y y y rarr ooy \rightarrow \inftyy, It follows that we can find an increasing sequence of natural numbers { n k } n k {n_(k)}\left\{n_{k}\right\}{nk}. such that d ( x 1 , y n h ) d ( x 1 , Y ) + 1 k d x 1 , y n h d x 1 , Y + 1 k d(x_(1),y_(n_(h))) <= d(x_(1),Y)+(1)/(k)d\left(x_{1}, y_{n_{h}}\right) \leqq d\left(x_{1}, Y\right)+\frac{1}{k}d(x1,ynh)d(x1,Y)+1k. Then
| d ( y n k , Y ) d ( x 1 , Y ) | d ( y n k ! x 1 ) = d ( x 1 , Y ) d ( y 1 k , x 1 ) d ( x 1 , y n k ) 1 k d ( x 1 , y n k ) 1 d y n k , Y d x 1 , Y d y n k ! x 1 = d x 1 , Y d y 1 k , x 1 d x 1 , y n k 1 k d x 1 , y n k 1 (|d(y_(n_(k^('))),Y)-d(x_(1),Y)|)/(d(y_(n_(k^(')))!x_(1)))=(d(x_(1),Y))/(d(y_(1_(k^('))),x_(1))) >= (d(x_(1),y_(n_(k)))-(1)/(k))/(d(x_(1),y_(n_(k))))rarr1\frac{\left|d\left(y_{n_{k^{\prime}}}, Y\right)-d\left(x_{1}, Y\right)\right|}{d\left(y_{n_{k^{\prime}}}!x_{1}\right)}=\frac{d\left(x_{1}, Y\right)}{d\left(y_{1_{k^{\prime}}}, x_{1}\right)} \geqq \frac{d\left(x_{1}, y_{n_{k}}\right)-\frac{1}{k}}{d\left(x_{1}, y_{n_{k}}\right)} \rightarrow 1|d(ynk,Y)d(x1,Y)|d(ynk!x1)=d(x1,Y)d(y1k,x1)d(x1,ynk)1kd(x1,ynk)1
From the above inequality we obtain
(8) f X 1 q (8) f X 1 q {:(8)||f||_(X) >= (1)/(q):}\begin{equation*} \|f\|_{X} \geqq \frac{1}{q} \tag{8} \end{equation*}(8)fX1q
By (7) and (8) it follows that f X = 1 q f X = 1 q ||f||_(X)=(1)/(q)\|f\|_{X}=\frac{1}{q}fX=1q, which completes the proof of the proposition.
For f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# we denote
(9)
f ( 1 ) ( 0 ) = { x X , f ( x ) = 0 } f ( 1 ) ( 0 ) = { x X , f ( x ) = 0 } f^((-1))(0)={x in X,f(x)=0}f^{(-1)}(0)=\{x \in X, f(x)=0\}f(1)(0)={xX,f(x)=0}
Proposition 2. Let f X 0 # { θ } f X 0 # { θ } f inX_(0)^(#)-{theta}f \in X_{0}^{\#}-\{\theta\}fX0#{θ}. Then
(10)
d ( x , f ( 1 ) ( 0 ) ) | f ( x ) | f X d x , f ( 1 ) ( 0 ) | f ( x ) | f X d(x,f^((-1))(0)) >= (|f(x)|)/(||f||_(X))d\left(x, f^{(-1)}(0)\right) \geqq \frac{|f(x)|}{\|f\|_{X}}d(x,f(1)(0))|f(x)|fX
for every x X x X x in Xx \in XxX.
f X d ( x , y ) f X d ( x , y ) <= ||f||_(X)d(x,y)\leqq\|f\|_{X} d(x, y)fXd(x,y). Therefore
d ( x , f ( 1 ) ( 0 ) ) | f ( x ) | f X d x , f ( 1 ) ( 0 ) | f ( x ) | f X d(x,f^((-1))(0)) >= (|f(x)|)/(||f||_(X))d\left(x, f^{(-1)}(0)\right) \geqq \frac{|f(x)|}{\|f\|_{X}}d(x,f(1)(0))|f(x)|fX
and the proposition is proved.
Definition 1. A subset Y Y YYY of the metric space X X XXX is called proximinal if for cyery x X x X x in Xx \in XxX there is an element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y such that
d ( x , y 0 ) = d ( x , Y ) d x , y 0 = d ( x , Y ) d(x,y_(0))=d(x,Y)d\left(x, y_{0}\right)=d(x, Y)d(x,y0)=d(x,Y)
If, for all x X x X x in Xx \in XxX the element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y verifying (11) is unique, then the set Y Y YYY is called chebyshevian. An element y 0 X y 0 X y_(0)in Xy_{0} \in Xy0X, verifying (11) is called element of best approximation of x x xxx by elements of Y Y YYY.
Proposition 3. Let f X 0 # { θ } f X 0 # { θ } f inX_(0)^(#)-{theta}f \in X_{0}^{\#}-\{\theta\}fX0#{θ}. If for every x X f ( 1 ) ( 0 ) x X f ( 1 ) ( 0 ) x in X-f^((-1))(0)x \in X-f^{(-1)}(0)xXf(1)(0) there is an element y x f ( 1 ) ( 0 ) y x f ( 1 ) ( 0 ) y_(x)inf^((-1))(0)y_{x} \in f^{(-1)}(0)yxf(1)(0) such that
(12) | f ( x ) f ( y x ) | = f X d ( x , y x ) (12) f ( x ) f y x = f X d x , y x {:(12)|f(x)-f(y_(x))|=||f||_(X)d(x,y_(x)):}\begin{equation*} \left|f(x)-f\left(y_{x}\right)\right|=\|f\|_{X} d\left(x, y_{x}\right) \tag{12} \end{equation*}(12)|f(x)f(yx)|=fXd(x,yx)
then f ( 1 ) ( 0 ) f ( 1 ) ( 0 ) f^((-1))(0)f^{(-1)}(0)f(1)(0) is proximinal.
Proof. Let x X f ( 1 ) ( 0 ) x X f ( 1 ) ( 0 ) x in X-f^((-1))(0)x \in X-f^{(-1)}(0)xXf(1)(0). Since f ( 1 ) ( 0 ) f ( 1 ) ( 0 ) f^((-1))(0)f^{(-1)}(0)f(1)(0) is closed it follows that 0 << d ( x , f ( 1 ) ( 0 ) ) d ( x , y ) 0 << d x , f ( 1 ) ( 0 ) d ( x , y ) 0<<d(x,f^((-1))(0)) <= d(x,y)0< <d\left(x, f^{(-1)}(0)\right) \leqq d(x, y)0<<d(x,f(1)(0))d(x,y), for all y f ( 1 ) ( 0 ) y f ( 1 ) ( 0 ) y inf^((-1))(0)y \in f^{(-1)}(0)yf(1)(0). Now, let y x y x y_(x)y_{x}yx be an element of f ( 1 ) ( 0 ) f ( 1 ) ( 0 ) f^((-1))(0)f^{(-1)}(0)f(1)(0) for which (12) holds. Then for every y f ( 1 ) ( 0 ) y f ( 1 ) ( 0 ) y inf^((-1))(0)y \in f^{(-1)}(0)yf(1)(0),
f X = | f ( x ) f ( y x ) | d ( x , y x ) | f ( x ) f ( y ) | d ( x , y ) , f X = f ( x ) f y x d x , y x | f ( x ) f ( y ) | d ( x , y ) , ||f||_(X)=(|f(x)-f(y_(x))|)/(d(x,y_(x))) >= (|f(x)-f(y)|)/(d(x,y)),\|f\|_{X}=\frac{\left|f(x)-f\left(y_{x}\right)\right|}{d\left(x, y_{x}\right)} \geqq \frac{|f(x)-f(y)|}{d(x, y)},fX=|f(x)f(yx)|d(x,yx)|f(x)f(y)|d(x,y),
that is
| f ( x ) | d ( x , y x ) | f ( x ) | d ( x , y ) | f ( x ) | d x , y x | f ( x ) | d ( x , y ) (|f(x)|)/(d(x,y_(x))) >= (|f(x)|)/(d(x,y))\frac{|f(x)|}{d\left(x, y_{x}\right)} \geq \frac{|f(x)|}{d(x, y)}|f(x)|d(x,yx)|f(x)|d(x,y)
Therefore, d ( x , y x ) d ( x , y ) d x , y x d ( x , y ) d(x,y_(x)) <= d(x,y)d\left(x, y_{x}\right) \leqq d(x, y)d(x,yx)d(x,y) and, taking the infimum relatively to y y yyy we get d ( x , y x ) = d ( x , f ( 1 ) ( 0 ) ) d x , y x = d x , f ( 1 ) ( 0 ) d(x,y_(x))=d(x,f^((-1))(0))d\left(x, y_{x}\right)=d\left(x, f^{(-1)}(0)\right)d(x,yx)=d(x,f(1)(0)).
In the following proposition we give a characterization of the elements of best approximation.
Proposition 4. Let Y Y YYY be a subset of X X XXX such that x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y, and let x X Y x X Y x in X-Yx \in X-YxXY. Then y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is an clement of best approximation for x x xxx by elcments of Y Y YYY, if and only if there is an f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# such that
  1. f X = 1 f X = 1 ||f||_(X)=1\|f\|_{X}=1fX=1
  2. f | Y = 0 f Y = 0 f|_(Y)=0\left.f\right|_{Y}=0f|Y=0
  3. | f ( x ) f ( y 0 ) | = d ( x , y 0 ) f ( x ) f y 0 = d x , y 0 |f(x)-f(y_(0))|=d(x,y_(0))\left|f(x)-f\left(y_{0}\right)\right|=d\left(x, y_{0}\right)|f(x)f(y0)|=d(x,y0).
Proof. If x X Y x X Y x in X-Yx \in X-YxXY and y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is an element of best approximation for x x xxx by elements of Y Y YYY, then from the proof of proposition 1 it follows that the function
(13)
f ( x ) = d ( x , Y ) f ( x ) = d ( x , Y ) f(x)=d(x,Y)f(x)=d(x, Y)f(x)=d(x,Y)
has all the required properties.
Conversely, if f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# is such that the conditions 1), 2), 3) hold, then for every y Y y Y y in Yy \in YyY,
d ( x , y 0 ) = | f ( x ) f ( y 0 ) | = | f ( x ) f ( y ) | f X d ( x , y ) = d ( x , y ) , d x , y 0 = f ( x ) f y 0 = | f ( x ) f ( y ) | f X d ( x , y ) = d ( x , y ) , d(x,y_(0))=|f(x)-f(y_(0))|=|f(x)-f(y)| <= ||f||_(X)d(x,y)=d(x,y),d\left(x, y_{0}\right)=\left|f(x)-f\left(y_{0}\right)\right|=|f(x)-f(y)| \leqq\|f\|_{X} d(x, y)=d(x, y),d(x,y0)=|f(x)f(y0)|=|f(x)f(y)|fXd(x,y)=d(x,y),
which completes the proof of the proposition.
Proposition 5. Let Y Y YYY be a proximinal subset of X , x 0 Y X , x 0 Y X,x_(0)in YX, x_{0} \in YX,x0Y, and x X Y x X Y x in X-Yx \in X-YxXY. Let y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y be an element of best approximation of x x xxx by elements of Y Y YYY. The following conditions are equivalent:
i) y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is the only element of best approximation of x x xxx.
ii) There is no y Y , y y 0 y Y , y y 0 y in Y,y!=y_(0)y \in Y, y \neq y_{0}yY,yy0 and f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# such that
a) f X = 1 f X = 1 ||f||_(X)=1\|f\|_{X}=1fX=1
b) f ( y 0 ) = f ( y ) f y 0 = f ( y ) f(y_(0))=f(y)f\left(y_{0}\right)=f(y)f(y0)=f(y)
c) | f ( x ) f ( y ) | = d ( x , y ) | f ( x ) f ( y ) | = d ( x , y ) |f(x)-f(y)|=d(x,y)|f(x)-f(y)|=d(x, y)|f(x)f(y)|=d(x,y).
Proof. Let us suppose that i) holds and that there is y Y , y y 0 y Y , y y 0 y in Y,y!=y_(0)y \in Y, y \neq y_{0}yY,yy0 and f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# such that a), b), c) hold. Then
d ( x , y ) = | f ( x ) f ( y ) | | f ( x ) f ( y 0 ) | + | f ( y 0 ) f ( y ) | = | f ( x ) f ( y 0 ) | = d ( x , y 0 ) . d ( x , y ) = | f ( x ) f ( y ) | f ( x ) f y 0 + f y 0 f ( y ) = f ( x ) f y 0 = d x , y 0 . d(x,y)=|f(x)-f(y)| <= |f(x)-f(y_(0))|+|f(y_(0))-f(y)|=|f(x)-f(y_(0))|=d(x,y_(0)).d(x, y)=|f(x)-f(y)| \leqq\left|f(x)-f\left(y_{0}\right)\right|+\left|f\left(y_{0}\right)-f(y)\right|=\left|f(x)-f\left(y_{0}\right)\right|=d\left(x, y_{0}\right) .d(x,y)=|f(x)f(y)||f(x)f(y0)|+|f(y0)f(y)|=|f(x)f(y0)|=d(x,y0).
Therefore, y y yyy is also an element of best approximation of x x xxx, which condradicts i).
Now, let suppose that the condition i) is not accomplished. Then there is y Y , y y 0 y Y , y y 0 y in Y,y!=y_(0)y \in Y, y \neq y_{0}yY,yy0 such that
d ( x , y ) = d ( x , y 0 ) = d ( x , Y ) d ( x , y ) = d x , y 0 = d ( x , Y ) d(x,y)=d(x,y_(0))=d(x,Y)d(x, y)=d\left(x, y_{0}\right)=d(x, Y)d(x,y)=d(x,y0)=d(x,Y)
By proposition 4, there is f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# such that f X = 1 , f | X = 0 f X = 1 , f X = 0 ||f||_(X)=1,f|_(X)=0\|f\|_{X}=1,\left.f\right|_{X}=0fX=1,f|X=0 and f ( x ) f ( x ) ∣f(x)\mid f(x)f(x) - f ( y ) ∣= d ( x , y ) f ( y ) ∣= d ( x , y ) -f(y)∣=d(x,y)-f(y) \mid=d(x, y)f(y)∣=d(x,y). From f | Y = 0 f Y = 0 f|_(Y)=0\left.f\right|_{Y}=0f|Y=0 it follows that f ( y 0 ) = 0 = f ( y ) f y 0 = 0 = f ( y ) f(y_(0))=0=f(y)f\left(y_{0}\right)=0=f(y)f(y0)=0=f(y). Therefore the condition a), b), c) hold.
Let Y X Y X Y sub XY \subset XYX and x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y. Let us denote
(14) Y = { f | f X 0 # , f | Y = 0 } . (14) Y = f f X 0 # , f Y = 0 . {:(14)Y^(_|_)={f|f inX_(0)^(#),f|_(Y)=0}.:}\begin{equation*} Y^{\perp}=\left\{f\left|f \in X_{0}^{\#}, f\right|_{Y}=0\right\} . \tag{14} \end{equation*}(14)Y={f|fX0#,f|Y=0}.
For x , y X x , y X x,y in Xx, y \in Xx,yX we denote
(15) d Y ( x , y ) = sup f Y { 0 } | f ( x ) f ( y ) | f X . (15) d Y ( x , y ) = sup f Y { 0 } | f ( x ) f ( y ) | f X . {:(15)d_(Y^(_|_))(x","y)=s u p_(f inY^(_|_)-{0})(|f(x)-f(y)|)/(||f||_(X)).:}\begin{equation*} d_{Y^{\perp}}(x, y)=\sup _{f \in Y^{\perp}-\{0\}} \frac{|f(x)-f(y)|}{\|f\|_{X}} . \tag{15} \end{equation*}(15)dY(x,y)=supfY{0}|f(x)f(y)|fX.
We have the following inequality:
(16) d Y ( x , y ) d ( x , y ) . (16) d Y ( x , y ) d ( x , y ) . {:(16)d_(Y^(_|_))(x","y) <= d(x","y).:}\begin{equation*} d_{Y^{\perp}}(x, y) \leqq d(x, y) . \tag{16} \end{equation*}(16)dY(x,y)d(x,y).
Indeed, for all f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# and for all x , y X x , y X x,y in Xx, y \in Xx,yX,
| f ( x ) f ( y ) | f X d ( x , y ) , | f ( x ) f ( y ) | f X d ( x , y ) , |f(x)-f(y)| <= ||f||_(X)d(x,y),|f(x)-f(y)| \leqq\|f\|_{X} d(x, y),|f(x)f(y)|fXd(x,y),
so that, for f θ f θ f!=thetaf \neq \thetafθ,
| f ( x ) f ( y ) | f X d ( x , y ) , | f ( x ) f ( y ) | f X d ( x , y ) , (|f(x)-f(y)|)/(||f||_(X)) <= d(x,y),\frac{|f(x)-f(y)|}{\|f\|_{X}} \leqq d(x, y),|f(x)f(y)|fXd(x,y),
and
sup f X 0 # { θ } | f ( x ) f ( y ) | f X d ( x , y ) . sup f X 0 # { θ } | f ( x ) f ( y ) | f X d ( x , y ) . s u p_(f inX_(0)^(#)-{theta})(|f(x)-f(y)|)/(||f||_(X)) <= d(x,y).\sup _{f \in X_{0}^{\#}-\{\theta\}} \frac{|f(x)-f(y)|}{\|f\|_{X}} \leqq d(x, y) .supfX0#{θ}|f(x)f(y)|fXd(x,y).
Therefore
d Y ( x , y ) = sup f Y { θ } | f ( x ) f ( x ) | f X sup f X n # { θ } | f ( x ) f ( y ) | f X d ( x , y ) . d Y ( x , y ) = sup f Y { θ } | f ( x ) f ( x ) | f X sup f X n # { θ } | f ( x ) f ( y ) | f X d ( x , y ) . d_(Y^(_|_))(x,y)=s u p_(f inY^(_|_)-{theta})(|f(x)-f(x)|)/(||f||_(X)) <= s u p_(f inX_(n)^(#)-{theta})(|f(x)-f(y)|)/(||f||_(X)) <= d(x,y).d_{Y^{\perp}}(x, y)=\sup _{f \in Y^{\perp}-\{\theta\}} \frac{|f(x)-f(x)|}{\|f\|_{X}} \leqq \sup _{f \in X_{n}^{\#}-\{\theta\}} \frac{|f(x)-f(y)|}{\|f\|_{X}} \leqq d(x, y) .dY(x,y)=supfY{θ}|f(x)f(x)|fXsupfXn#{θ}|f(x)f(y)|fXd(x,y).
Proposition 6. Let Y X Y X Y sub XY \subset XYX and y 0 Y , x X Y y 0 Y , x X Y y_(0)in Y,x in X-Yy_{0} \in Y, x \in X-Yy0Y,xXY. Then, y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is an element of best approximation for x x xxx by elements of Y Y YYY if and only if
(17) d Y ( x , y 0 ) = d ( x , y 0 ) . (17) d Y x , y 0 = d x , y 0 . {:(17)d_(Y^(_|_))(x,y_(0))=d(x,y_(0)).:}\begin{equation*} d_{Y^{\perp}}\left(x, y_{0}\right)=d\left(x, y_{0}\right) . \tag{17} \end{equation*}(17)dY(x,y0)=d(x,y0).
Proof. Let y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y be an element of best approximation for x x xxx. Then, by Proposition 4 it follows that there exist an element f Y f Y f in Y _|_f \in Y \perpfY such that f X = 1 f X = 1 ||f||_(X)=1\|f\|_{X}=1fX=1 and | f ( x ) f ( y ) | = d ( x , y 0 ) | f ( x ) f ( y ) | = d x , y 0 |f(x)-f(y)|=d(x,y_(0))|f(x)-f(y)|=d\left(x, y_{0}\right)|f(x)f(y)|=d(x,y0). We have
d Y ( x , y 0 ) = sup g Y { θ } | g ( x ) g ( y 0 ) | g X | f ( x ) f ( y 0 ) | f X = d ( x , y 0 ) , d Y x , y 0 = sup g Y { θ } g ( x ) g y 0 g X f ( x ) f y 0 f X = d x , y 0 , d_(Y^(_|_))(x,y_(0))=s u p_(g inY^(_|_)-{theta})(|g(x)-g(y_(0))|)/(||g||_(X)) >= (|f(x)-f(y_(0))|)/(||f||_(X))=d(x,y_(0)),d_{Y^{\perp}}\left(x, y_{0}\right)=\sup _{g \in Y^{\perp}-\{\theta\}} \frac{\left|g(x)-g\left(y_{0}\right)\right|}{\|g\|_{X}} \geqq \frac{\left|f(x)-f\left(y_{0}\right)\right|}{\|f\|_{X}}=d\left(x, y_{0}\right),dY(x,y0)=supgY{θ}|g(x)g(y0)|gX|f(x)f(y0)|fX=d(x,y0),
and, because of d Y ( x , y 0 ) d ( x , y 0 ) d Y x , y 0 d x , y 0 d_(Y^(_|_))(x,y_(0)) <= d(x,y_(0))d_{Y^{\perp}}\left(x, y_{0}\right) \leqq d\left(x, y_{0}\right)dY(x,y0)d(x,y0) we have (17).
Conversely, if (17) holds, then for all y Y y Y y in Yy \in YyY we have:
d ( x , y 0 ) = d Y ( x , y 0 ) = sup f Y { θ } | f ( x ) f ( y 0 ) | f X = sup f Y { θ } | f ( x ) f ( y ) | f X = = d Y ( x , y ) d ( x , y ) . d x , y 0 = d Y x , y 0 = sup f Y { θ } f ( x ) f y 0 f X = sup f Y { θ } | f ( x ) f ( y ) | f X = = d Y ( x , y ) d ( x , y ) . {:[d(x,y_(0))=d_(Y^(_|_))(x,y_(0))=s u p_(f inY^(_|_)-{theta})(|f(x)-f(y_(0))|)/(||f||_(X))=s u p_(f inY^(_|_)-{theta})(|f(x)-f(y)|)/(||f||_(X))=],[=d_(Y^(_|_))(x","y) <= d(x","y).]:}\begin{aligned} d\left(x, y_{0}\right)=d_{Y^{\perp}}\left(x, y_{0}\right)= & \sup _{f \in Y^{\perp}-\{\theta\}} \frac{\left|f(x)-f\left(y_{0}\right)\right|}{\|f\|_{X}}=\sup _{f \in Y^{\perp}-\{\theta\}} \frac{|f(x)-f(y)|}{\|f\|_{X}}= \\ & =d_{Y^{\perp}}(x, y) \leqq d(x, y) . \end{aligned}d(x,y0)=dY(x,y0)=supfY{θ}|f(x)f(y0)|fX=supfY{θ}|f(x)f(y)|fX==dY(x,y)d(x,y).
Hence y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is an element of best approximation for x x xxx by elements of Y Y YYY.

Remarks.

1 0 1 0 1^(0)1^{0}10. Let ( X , d X , d X,dX, dX,d ) be a linear metric space, the metric d d ddd being translation invariant, and x 0 = θ X x 0 = θ X x_(0)=theta in Xx_{0}=\theta \in Xx0=θX. If Y Y YYY is a subspace of X X XXX, then one can choose the function f f fff in : roposition 1 such that f C X f C X f inC_(X)f \in C_{X}fCX, where C X C X C_(X)C_{X}CX denotes the ccne of subadditive function in X 0 # X 0 # X_(0)^(#)X_{0}^{\#}X0# [4]. The subadditivity of function f f fff follows from the proof of Proposition 2.1 [4]. If X X XXX is a normed linear space, then X 0 # C X X X 0 # C X X X_(0)^(#)supC_(X)supX^(**)X_{0}^{\#} \supset C_{X} \supset X^{*}X0#CXX. If Y Y YYY is a subspace of X X XXX, then Proposition 1 holds with f X ( [ 1 ] f X ( [ 1 ] f inX^(**)([1]f \in X^{*}([1]fX([1], Lemma 12, p. 64).
2 0 2 0 2^(0)2^{0}20. Simple example show that the inequality (10) in Proposition 2 can be strict. Let X = [ 1 , 10 ] R X = [ 1 , 10 ] R X=[-1,10]sub RX=[-1,10] \subset RX=[1,10]R with the usual metric d ( x , y ) = | x y | d ( x , y ) = | x y | d(x,y)=|x-y|d(x, y)=|x-y|d(x,y)=|xy|, x 0 = 0 R x 0 = 0 R x_(0)=0in Rx_{0}=0 \in Rx0=0R and
f ( x ) = { 0 x [ 1 , 0 ] x x ( 0 , 1 ] 1 x ( 1 , 10 ] f ( x ) = 0      x [ 1 , 0 ] x      x ( 0 , 1 ] 1      x ( 1 , 10 ] f(x)={[0,x in[-1","0]],[x,x in(0","1]],[1,x in(1","10]]:}f(x)= \begin{cases}0 & x \in[-1,0] \\ x & x \in(0,1] \\ 1 & x \in(1,10]\end{cases}f(x)={0x[1,0]xx(0,1]1x(1,10]
4 - L'analyse numérique et la théorie de l'approximation - Tome 4, No. 1/1975
Then f ( 1 ) ( 0 ) = [ 1 , 0 ] f ( 1 ) ( 0 ) = [ 1 , 0 ] f^((-1))(0)=[-1,0]f^{(-1)}(0)=[-1,0]f(1)(0)=[1,0] and for all x [ 2 , 10 ] x [ 2 , 10 ] x in[2,10]x \in[2,10]x[2,10],
d ( x , [ 1 , 0 ] ) > 1 = | f ( x ) | f X d ( x , [ 1 , 0 ] ) > 1 = | f ( x ) | f X d(x,[-1,0]) > 1=(|f(x)|)/(||f||_(X))d(x,[-1,0])>1=\frac{|f(x)|}{\|f\|_{X}}d(x,[1,0])>1=|f(x)|fX
If X X XXX is a metric space, Y Y YYY a closed subset of X , x 0 Y X , x 0 Y X,x_(0)in YX, x_{0} \in YX,x0Y, then for every function f X 0 # f X 0 # f inX_(0)^(#)f \in X_{0}^{\#}fX0# of the form f ( x ) = λ d ( x , Y ) , λ R f ( x ) = λ d ( x , Y ) , λ R f(x)=lambda d(x,Y),lambda in Rf(x)=\lambda d(x, Y), \lambda \in Rf(x)=λd(x,Y),λR, the relation (10) holds with the sign ,,=".
If X X XXX is a normed linear space and f X f X f inX^(**)f \in X^{*}fX, then (10) holds with the sign ,, =". (Ascoli's Theorem [6]).
3 0 3 0 3^(0)3^{0}30. If X X XXX is a normed linear space and f X f X f inX^(**)f \in X^{*}fX; then the condition (12) is equivalent to:
( J ) ( J ) (J)(\mathrm{J})(J). There is x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X such that | f ( x 0 ) | = f x 0 f x 0 = f x 0 |f(x_(0))|=||f||*||x_(0)||\left|f\left(x_{0}\right)\right|=\|f\| \cdot\left\|x_{0}\right\||f(x0)|=fx0.
Indeed, since X = f ( 1 ) ( 0 ) R x 0 X = f ( 1 ) ( 0 ) R x 0 X=f^((-1))(0)!=Rx_(0)X=f^{(-1)}(0) \neq R x_{0}X=f(1)(0)Rx0, for every x X f ( 1 ) ( 0 ) x X f ( 1 ) ( 0 ) x in X-f^((-1))(0)x \in X-f^{(-1)}(0)xXf(1)(0) there is λ R λ R lambda in R\lambda \in RλR and y x f ( 1 ) ( 0 ) y x f ( 1 ) ( 0 ) y_(x)inf^((-1))(0)y_{x} \in f^{(-1)}(0)yxf(1)(0) such that x = y x + λ x 0 x = y x + λ x 0 x=y_(x)+lambdax_(0)x=y_{x}+\lambda x_{0}x=yx+λx0. Then
| f ( x ) f ( y x ) | = | f ( x ) f ( x λ x 0 ) | = | λ | | f ( x 0 ) | = f x 0 | λ | = = f 1 x ( x λ x 0 ) = f X x y λ f ( x ) f y x = f ( x ) f x λ x 0 = | λ | f x 0 = f x 0 | λ | = = f 1 x x λ x 0 = f X x y λ {:[|f(x)-f(y_(x))|=|f(x)-f(x-lambdax_(0))|=|lambda|*|f(x_(0))|=||f||*||x_(0)||*|lambda|=],[=||f||*||_(1)x-(x-lambdax_(0))||=||f||_(X)*||x-y_(lambda)||*]:}\begin{aligned} \left|f(x)-f\left(y_{x}\right)\right| & =\left|f(x)-f\left(x-\lambda x_{0}\right)\right|=|\lambda| \cdot\left|f\left(x_{0}\right)\right|=\|f\| \cdot\left\|x_{0}\right\| \cdot|\lambda|= \\ & =\|f\| \cdot\left\|_{1} x-\left(x-\lambda x_{0}\right)\right\|=\|f\|_{X} \cdot\left\|x-y_{\lambda}\right\| \cdot \end{aligned}|f(x)f(yx)|=|f(x)f(xλx0)|=|λ||f(x0)|=fx0|λ|==f1x(xλx0)=fXxyλ
Evidently, if f X X 0 # f X X 0 # f inX^(**)subX_(0)^(#)f \in X^{*} \subset X_{0}^{\#}fXX0#, the norm (2) agrees with the usual norm of linear functionals).
The converse implication is obvious.
By a theorem of R. C. JAMES [6] it follows that (12) is a necessary and sufficient condition for f ( 1 ) ( 0 ) f ( 1 ) ( 0 ) f^((-1))(0)f^{(-1)}(0)f(1)(0) to be proximinal.
4. Proposition 4 is analogous to Theorem 1.1, p. 16, [5] and to Proposition 2.1, [4], while Proposition 5 is analogous to the Theorem 3.1, p. 96, [5] and Proposition 4.1, [4].

REIERENCE

[1] Dunford, N. and Schwartz J. T., Linear Operators. 1. New York, (1958).
[2] Jolınson, J. A:, Banach Spaces of Lipschitz functions and Vector-Valued Lipschitz Functions. Trans. Amer. Matli. Soc., 148, 147-169 (1970).
[3] Michael, E., A short proof of the Arens-Eells embedding theorem. Proc. Amer. Math. Soc., 15, 415-416 (1964).
[4] Pantelidis, G., Approximationstheorie für metrische lineare Räume. Math. Ann., 184, 30-48 (1969).
[5] Singer, I., Cea mai bună aproximare in spatii vectoriale normate prin clemcnte din subspafii vectoriale. Ed. Acad., București, (1967).
[6] V1as ov, L. P., Approximationye svojstva mnojestv v linejnyh normirovannyh prostranstvah. Uspehi Mat. Nauk., 13, 6, 4-66 (1973).
1975

Related Posts

No results found.