[1] Dunford, N. and Schwartz, J. T., Linear Operators. I. New York (1958)
[2] Johnson, J.A., Banach Spaces of Lipschitz functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. soc., 148, 147-169 (1970).
[3] Michael, E., A short prof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc., 15, 415-416 (1964).
[4] Pantelidis, G., Approximationstheorie fur metrische lineare Raume, Math. Ann., 184, 30-48 (1969).
[5] Singer, I., Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale. Ed. Acad. București, 1967.
[6] Vlasov, L.P., Approximationye svojstva mnojestv v linejnyh normirovannyh prostranstvah, Uspechi Mat. Nauk., 18, 6, 4-66 (1973).
Paper (preprint) in HTML form
1975-Mustata-On the best approximation in metric spaces-Jnaat
ON THE BEST APPROXIMATION IN METRIC SPACES
byCOSTICĂ MUSTĂTA(Cluj-Napoca)
Let (X,d)(X, d) be a metric space and x_(0)x_{0} a fixed point in XX. The set
{:(1)X_(0)^(‡‡)={f:X rarr R,s u p_({:[x!=y],[x","y in X]:})(|f(x)-f(y)|)/(d(x,y)) < oo,f(x_(0))=0}",":}\begin{equation*}
X_{0}^{\ddagger \ddagger}=\left\{f: X \rightarrow R, \sup _{\substack{x \neq y \\ x, y \in X}} \frac{|f(x)-f(y)|}{d(x, y)}<\infty, f\left(x_{0}\right)=0\right\}, \tag{1}
\end{equation*}
with the usual operation of addition and multiplication by real scalars, normed by
{:(2)||f||_(X)=s u p_({:[x!=y],[x","y in X]:})(|f(x)-f(y)|)/(d(x,y))","f inX_(0)^(#):}\begin{equation*}
\|f\|_{X}=\sup _{\substack{x \neq y \\ x, y \in X}} \frac{|f(x)-f(y)|}{d(x, y)}, f \in X_{0}^{\#} \tag{2}
\end{equation*}
is a Banach space (even a conjugate Banach space [2]).
The space X_(0)^(#)X_{0}^{\#} plays, with respect to XX, in many ways, the same role as the conjugate E^(**)E^{*} of a normed linear space EE, with respect to EE. In this paper we give further details in this direction.
For O/!=Y sube X\emptyset \neq Y \subseteq X and x in Xx \in X we denote by d(x,Y)d(x, Y) the distance from xx to YY, i.e.
{:(3)d(x","Y)=i n f_(y in Y)d(x","y):}\begin{equation*}
d(x, Y)=\inf _{y \in Y} d(x, y) \tag{3}
\end{equation*}
Proposition 1. Let Y sub X,x_(0)in YY \subset X, x_{0} \in Y and x_(1)in X-Yx_{1} \in X-Y such that
This means that f inX_(0)^(#)f \in X_{0}^{\#}.
Evidently, f|_(Y)=0\left.f\right|_{Y}=0 and f(x_(1))=1f\left(x_{1}\right)=1. Since d(x_(1),Y)=q > 0d\left(x_{1}, Y\right)=q>0, then there is a sequence (y_(n))_(n in N)sub Y\left(y_{n}\right)_{n \in N} \subset Y such that d(x_(1),y_(n))rarr d(x_(1),Y)d\left(x_{1}, y_{n}\right) \rightarrow d\left(x_{1}, Y\right) when y rarr ooy \rightarrow \infty, It follows that we can find an increasing sequence of natural numbers {n_(k)}\left\{n_{k}\right\}. such that d(x_(1),y_(n_(h))) <= d(x_(1),Y)+(1)/(k)d\left(x_{1}, y_{n_{h}}\right) \leqq d\left(x_{1}, Y\right)+\frac{1}{k}. Then
and the proposition is proved.
Definition 1. A subset YY of the metric space XX is called proximinal if for cyery x in Xx \in X there is an element y_(0)in Yy_{0} \in Y such that
d(x,y_(0))=d(x,Y)d\left(x, y_{0}\right)=d(x, Y)
If, for all x in Xx \in X the element y_(0)in Yy_{0} \in Y verifying (11) is unique, then the set YY is called chebyshevian. An element y_(0)in Xy_{0} \in X, verifying (11) is called element of best approximation of xx by elements of YY.
Proposition 3. Let f inX_(0)^(#)-{theta}f \in X_{0}^{\#}-\{\theta\}. If for every x in X-f^((-1))(0)x \in X-f^{(-1)}(0) there is an element y_(x)inf^((-1))(0)y_{x} \in f^{(-1)}(0) such that
then f^((-1))(0)f^{(-1)}(0) is proximinal.
Proof. Let x in X-f^((-1))(0)x \in X-f^{(-1)}(0). Since f^((-1))(0)f^{(-1)}(0) is closed it follows that 0<<d(x,f^((-1))(0)) <= d(x,y)0< <d\left(x, f^{(-1)}(0)\right) \leqq d(x, y), for all y inf^((-1))(0)y \in f^{(-1)}(0). Now, let y_(x)y_{x} be an element of f^((-1))(0)f^{(-1)}(0) for which (12) holds. Then for every y inf^((-1))(0)y \in f^{(-1)}(0),
Therefore, d(x,y_(x)) <= d(x,y)d\left(x, y_{x}\right) \leqq d(x, y) and, taking the infimum relatively to yy we get d(x,y_(x))=d(x,f^((-1))(0))d\left(x, y_{x}\right)=d\left(x, f^{(-1)}(0)\right).
In the following proposition we give a characterization of the elements of best approximation.
Proposition 4. Let YY be a subset of XX such that x_(0)in Yx_{0} \in Y, and let x in X-Yx \in X-Y. Then y_(0)in Yy_{0} \in Y is an clement of best approximation for xx by elcments of YY, if and only if there is an f inX_(0)^(#)f \in X_{0}^{\#} such that
Proof. If x in X-Yx \in X-Y and y_(0)in Yy_{0} \in Y is an element of best approximation for xx by elements of YY, then from the proof of proposition 1 it follows that the function
(13)
f(x)=d(x,Y)f(x)=d(x, Y)
has all the required properties.
Conversely, if f inX_(0)^(#)f \in X_{0}^{\#} is such that the conditions 1), 2), 3) hold, then for every y in Yy \in Y,
which completes the proof of the proposition.
Proposition 5. Let YY be a proximinal subset of X,x_(0)in YX, x_{0} \in Y, and x in X-Yx \in X-Y. Let y_(0)in Yy_{0} \in Y be an element of best approximation of xx by elements of YY. The following conditions are equivalent:
i) y_(0)in Yy_{0} \in Y is the only element of best approximation of xx.
ii) There is no y in Y,y!=y_(0)y \in Y, y \neq y_{0} and f inX_(0)^(#)f \in X_{0}^{\#} such that
a) ||f||_(X)=1\|f\|_{X}=1
b) f(y_(0))=f(y)f\left(y_{0}\right)=f(y)
c) |f(x)-f(y)|=d(x,y)|f(x)-f(y)|=d(x, y).
Proof. Let us suppose that i) holds and that there is y in Y,y!=y_(0)y \in Y, y \neq y_{0} and f inX_(0)^(#)f \in X_{0}^{\#} such that a), b), c) hold. Then
By proposition 4, there is f inX_(0)^(#)f \in X_{0}^{\#} such that ||f||_(X)=1,f|_(X)=0\|f\|_{X}=1,\left.f\right|_{X}=0 and ∣f(x)\mid f(x) --f(y)∣=d(x,y)-f(y) \mid=d(x, y). From f|_(Y)=0\left.f\right|_{Y}=0 it follows that f(y_(0))=0=f(y)f\left(y_{0}\right)=0=f(y). Therefore the condition a), b), c) hold.
Let Y sub XY \subset X and x_(0)in Yx_{0} \in Y. Let us denote
s u p_(f inX_(0)^(#)-{theta})(|f(x)-f(y)|)/(||f||_(X)) <= d(x,y).\sup _{f \in X_{0}^{\#}-\{\theta\}} \frac{|f(x)-f(y)|}{\|f\|_{X}} \leqq d(x, y) .
Therefore
d_(Y^(_|_))(x,y)=s u p_(f inY^(_|_)-{theta})(|f(x)-f(x)|)/(||f||_(X)) <= s u p_(f inX_(n)^(#)-{theta})(|f(x)-f(y)|)/(||f||_(X)) <= d(x,y).d_{Y^{\perp}}(x, y)=\sup _{f \in Y^{\perp}-\{\theta\}} \frac{|f(x)-f(x)|}{\|f\|_{X}} \leqq \sup _{f \in X_{n}^{\#}-\{\theta\}} \frac{|f(x)-f(y)|}{\|f\|_{X}} \leqq d(x, y) .
Proposition 6. Let Y sub XY \subset X and y_(0)in Y,x in X-Yy_{0} \in Y, x \in X-Y. Then, y_(0)in Yy_{0} \in Y is an element of best approximation for xx by elements of YY if and only if
Proof. Let y_(0)in Yy_{0} \in Y be an element of best approximation for xx. Then, by Proposition 4 it follows that there exist an element f in Y _|_f \in Y \perp such that ||f||_(X)=1\|f\|_{X}=1 and |f(x)-f(y)|=d(x,y_(0))|f(x)-f(y)|=d\left(x, y_{0}\right). We have
and, because of d_(Y^(_|_))(x,y_(0)) <= d(x,y_(0))d_{Y^{\perp}}\left(x, y_{0}\right) \leqq d\left(x, y_{0}\right) we have (17).
Conversely, if (17) holds, then for all y in Yy \in Y we have:
Hence y_(0)in Yy_{0} \in Y is an element of best approximation for xx by elements of YY.
Remarks.
1^(0)1^{0}. Let ( X,dX, d ) be a linear metric space, the metric dd being translation invariant, and x_(0)=theta in Xx_{0}=\theta \in X. If YY is a subspace of XX, then one can choose the function ff in : roposition 1 such that f inC_(X)f \in C_{X}, where C_(X)C_{X} denotes the ccne of subadditive function in X_(0)^(#)X_{0}^{\#} [4]. The subadditivity of function ff follows from the proof of Proposition 2.1 [4]. If XX is a normed linear space, then X_(0)^(#)supC_(X)supX^(**)X_{0}^{\#} \supset C_{X} \supset X^{*}. If YY is a subspace of XX, then Proposition 1 holds with f inX^(**)([1]f \in X^{*}([1], Lemma 12, p. 64). 2^(0)2^{0}. Simple example show that the inequality (10) in Proposition 2 can be strict. Let X=[-1,10]sub RX=[-1,10] \subset R with the usual metric d(x,y)=|x-y|d(x, y)=|x-y|, x_(0)=0in Rx_{0}=0 \in R and
f(x)={[0,x in[-1","0]],[x,x in(0","1]],[1,x in(1","10]]:}f(x)= \begin{cases}0 & x \in[-1,0] \\ x & x \in(0,1] \\ 1 & x \in(1,10]\end{cases}
4 - L'analyse numérique et la théorie de l'approximation - Tome 4, No. 1/1975
Then f^((-1))(0)=[-1,0]f^{(-1)}(0)=[-1,0] and for all x in[2,10]x \in[2,10],
If XX is a metric space, YY a closed subset of X,x_(0)in YX, x_{0} \in Y, then for every function f inX_(0)^(#)f \in X_{0}^{\#} of the form f(x)=lambda d(x,Y),lambda in Rf(x)=\lambda d(x, Y), \lambda \in R, the relation (10) holds with the sign ,,=".
If XX is a normed linear space and f inX^(**)f \in X^{*}, then (10) holds with the sign ,, =". (Ascoli's Theorem [6]). 3^(0)3^{0}. If XX is a normed linear space and f inX^(**)f \in X^{*}; then the condition (12) is equivalent to: (J)(\mathrm{J}). There is x_(0)in Xx_{0} \in X such that |f(x_(0))|=||f||*||x_(0)||\left|f\left(x_{0}\right)\right|=\|f\| \cdot\left\|x_{0}\right\|.
Indeed, since X=f^((-1))(0)!=Rx_(0)X=f^{(-1)}(0) \neq R x_{0}, for every x in X-f^((-1))(0)x \in X-f^{(-1)}(0) there is lambda in R\lambda \in R and y_(x)inf^((-1))(0)y_{x} \in f^{(-1)}(0) such that x=y_(x)+lambdax_(0)x=y_{x}+\lambda x_{0}. Then
Evidently, if f inX^(**)subX_(0)^(#)f \in X^{*} \subset X_{0}^{\#}, the norm (2) agrees with the usual norm of linear functionals).
The converse implication is obvious.
By a theorem of R. C. JAMES [6] it follows that (12) is a necessary and sufficient condition for f^((-1))(0)f^{(-1)}(0) to be proximinal.
4. Proposition 4 is analogous to Theorem 1.1, p. 16, [5] and to Proposition 2.1, [4], while Proposition 5 is analogous to the Theorem 3.1, p. 96, [5] and Proposition 4.1, [4].
REIERENCE
[1] Dunford, N. and Schwartz J. T., Linear Operators. 1. New York, (1958).
[2] Jolınson, J. A:, Banach Spaces of Lipschitz functions and Vector-Valued Lipschitz Functions. Trans. Amer. Matli. Soc., 148, 147-169 (1970).
[3] Michael, E., A short proof of the Arens-Eells embedding theorem. Proc. Amer. Math. Soc., 15, 415-416 (1964).
[4] Pantelidis, G., Approximationstheorie für metrische lineare Räume. Math. Ann., 184, 30-48 (1969).
[5] Singer, I., Cea mai bună aproximare in spatii vectoriale normate prin clemcnte din subspafii vectoriale. Ed. Acad., București, (1967).
[6] V1as ov, L. P., Approximationye svojstva mnojestv v linejnyh normirovannyh prostranstvah. Uspehi Mat. Nauk., 13, 6, 4-66 (1973).