Abstract
In this paper we are dealing with a general class of positive approximation processes of discrete type expressed in series. We modify them into finite sums and investigate their approximation properties in weighted spaces of continuous functions. Some special cases are also revealed.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Linear positive operators, Bohman-Korovkin test functions, rate of convergence, weight spaces.
Paper coordinates
O. Agratini, On the convergence of a truncated class of operators, Bulletin of the Institute of Mathematics Academia Sinica, 31 (2003) no. 3, pp. 213-223.
About this paper
Journal
Bulletin of the Institute of Mathematics Academia Sinica
Publisher Name
DOI
Print ISSN
2304-7909
Online ISSN
2304-7895
google scholar link
1. O. Agratini, Smoothness properties of positive summation integral operators, East Journal on Approximations, 5(4) (1999), 381-392.
2. F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Series Studies in Mathematics, Vol.17, Walter de Gruyter & Co., Berlin, New York, 1994.
3. Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol.9, Berlin, 1987.
4. J. Grof, Approximation durch Polynome mit Belegfunktionen, Acta Math. Acad. Sci. Hungar., 35(1980), 109-116.
5. H.-G. Lehnhoff, On a modified Sz´asz-Mirakjan operator, J. Approx. Theory, 42(1984), 278-282.
6. J. Wang and S. Zhou, On the convergence of modified Baskakov operators, Bull. Inst. Math. Academia Sinica, 28(2) (2000), 117-123.
7. G. Z. Zhou and S. P. Zhou, A remark on a modified Szasz-Mirakjan operator, Colloq. Math., 79(1999), 157-160.