On the extension of convex functions of higher order

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur le prolongement des fonctions convexes d’ordre supérieur, Bul. Mathematique de la Soc. Roumaine des Sciences, 36 (1934) no. 1, pp. 75-108 (in French).

PDF

About this paper

Journal

Bul. Mathematique de la Soc. Roumaine des Sciences

Publisher Name
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE EXTENSION OF HIGHER-ORDER CONVEX FUNCTIONS

BY
TIBERIU POPOVICIU
(Cluj)

The present work aims to supplement, on certain points, the theory of higher-order convex functions that was presented in our Thesis 1 ).

We consider functionsf(x)f(x)defined, uniform and real of the real variablexxon a linear and bounded set E.

Let us designate byV(α1,α2,,αk+1)\mathrm{V}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)the Van Der determinant of the world of quantitiesαi\alpha_{i}and byU(α1,α2,,αk+1;f)U\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right)the determinant that we deduce fromV(α1,α2,,αk+1)\mathrm{V}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1}\right)when the elements of the last column are replaced by

f(α1),f(α2),,f(αk+1)f\left(\alpha_{1}\right),f\left(\alpha_{2}\right),\ldots,f\left(\alpha_{k+1}\right)

respectively.
The quotient

[α1,α2,,αk+1;f]=U(α1,α2,,xk+1;f)V(α1,2,,αk+1)\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right]=\frac{U\left(\alpha_{1},\alpha_{2},\cdots,x_{k+1};f\right)}{V\left(\alpha_{1},2,\cdots,\alpha_{k+1}\right)}

is the difference divided by orderkkof the functionf(x)f(x)for distinct pointsα1,α2,,xk+1\alpha_{1},\alpha_{2},\ldots,x_{k+1}.

The divided differences are linked by the recurrence relation.

[α1,α2,,αk+1;f]=[α2,α3,,αk+1;f][α1,α2,,αk;f]αk+1α1[α;f]=f(α)\begin{gathered}{\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k+1};f\right]=\frac{\left[\alpha_{2},\alpha_{3},\ldots,\alpha_{k+1};f\right]-\left[\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\right]}{\alpha_{k+1}-\alpha_{1}}}\\ {[\alpha;f]=f(\alpha)}\end{gathered}

The functionf(x)f(x)will be called convex, non-concave, polynomial, non-convex or concave of ordernnon the set E following the differences divided by ordern+1n+1across all groups ofn+2n+2points of E>0,0,=0,0>0,\equiv 0,=0,\leq 0Or<0<0.

These functions form the class of functions of order n.

0 0 footnotetext: 1) „On some properties of functions of one or two real variables" Paris 1933.

It can happen that a function possesses several convexity properties of different orders. We will say that it belongs to the class (has,b,c,a,b,c,\ldots) if it possesses order propertieshas,b,c,a,b,c,\ldotsTo highlight the nature of the function, we will assign numbershas,b,c,a,b,c,\ldotsclues in the following manner:has,has*,has¯,has,has**a,a^{*},\bar{a},a^{\prime},a^{**}depending on whether the function is non-concave, convex, polynomial, non-convex or concave of orderhasaIt is useful to distinguish functions with an invariant sign. We will agree to call them functions of order -1, and we will assign this number of indices, as above, depending on whether the function remains0,>0,=0,0\geq 0,>0,=0,\leq 0Or<0<0.

We will also refer to it as:

P(α1,α2,,αk;fx)\mathrm{P}\left(\alpha_{1},\alpha_{2},\ldots,\alpha_{k};f\mid x\right)

the Lagrange polynomial for pointsα1,α2,,αk\alpha_{1},\alpha_{2},\ldots,\alpha_{k}relative to the functionf(x)f(x), therefore the polynomial of degreek1k-1who takes the valuesf(αi)f\left(\alpha_{i}\right)to the pointsαi\alpha_{i}.

In what follows, we will constantly make use of the properties of functions of a given order or class that are demonstrated in our Thesis. We ask the reader to refer to it.

I.

Statement of the extension problem

  1. 1.

    We will say that the functionf(x)f(x)of a given class onEse\mathrm{E}seextends onto another setE1\mathrm{E}_{1}, if a function existsf1(x)f_{1}(x)of the same class defined onE+E1\mathrm{E}+\mathrm{E}_{1}and which coincides withf(x)f(x)on E. We will say that the function is extended in the broad sense if we consider convexity and polynomiality as special cases of non-concaveness. Otherwise, we will say that the function is extended in the strict sense. This extension is more restrictive and implies the extension in the broad sense.

To simplify the language, we call the maximum order off(x)f(x)the highest order that appears in its class.
2. We will study in particular the extension of functions defined on a finite set ofmmpoints

x1<x2<<xm.x_{1}<x_{2}<\ldots<x_{m}. (1)

The following properties are immediate.
Any function of order 0 or 1 defined on (1) can be strictly extended to any setE1E_{1}.

Any function of maximum order 1 defined on (1) can be extended in a wide sense to any setE1E_{1}.

It is obviously sufficient to demonstrate that the function can be extended in the interval (x1,xmx_{1},x_{m}), since it is on a point to the left ofx1x_{1}or to the right ofxmx_{m}Let's construct a differentiable function that performs the extension.

Simply looking at the geometric representation of the function shows that we can take

f1(x1),f1(x2),f1(x3)f_{1}^{\prime}\left(x_{1}\right),f_{1}^{\prime}\left(x_{2}\right),f_{1}^{\prime}\left(x_{3}\right)

such that this sequence precisely satisfies the convexity properties of the derivative of a function of the form considered, and such that we have

f1(x1)[x1,x2;f],f1(xm)[xm1,xm;f][xi1,xi;f]f1(xi)[xi,xi+1;f]i=2.3,,m1\begin{gathered}f_{1}^{\prime}\left(x_{1}\right)\leq\left[x_{1},x_{2};f\right],f_{1}^{\prime}\left(x_{m}\right)\geq\left[x_{m-1},x_{m};f\right]\\ {\left[x_{i-1},x_{i};f\right]\leq f_{1}^{\prime}\left(x_{i}\right)\leq\left[x_{i},x_{i+1};f\right]}\\ i=2,3,\ldots,m-1\end{gathered}

without equality if the function is convex. We can now constructf1(x)f_{1}(x)In(xi,xi+1)\left(x_{i},x_{i+1}\right)such that it has a continuous derivative reducing tof1(xi),f1(xi+1)f_{1}^{\prime}\left(x_{i}\right),f_{1}^{\prime}\left(x_{i+1}\right)to the pointsxi,xi+1x_{i},x_{i+1}and fulfilling the conditions required for the extension. (For example, one could takef1(x)f_{1}(x)represented by an arc of an ellipse satisfying the desired conditions).

It should be noted that the strict extension of a function of maximum order 1 is not always possible. For example, if the function is of the class(0.1*)(0,1*)and iff(xi)=f(xi+1)f\left(x_{i}\right)=f\left(x_{i+1}\right)its extension is necessarily of the class(0.1)(0,1)the function must reduce to a constant in the interval (xi,xi+1x_{i},x_{i+1}On the contrary, a function of the class (0*,1*0*,1*) is always strictly extendable.
3. Letf(x)f(x)of ordern>1n>1on (1). We can assumem>n+2m>n+2because ifm=n+2m=n+2the problem is entirely solved by the polynomial

P(x1,x2,,xn+2;fx)\mathrm{P}\left(x_{1},x_{2},\ldots,x_{n+2};f\mid x\right)

We will examine the extension on one pointxxdistinct from points (1). This point lies betweenxi,xi+1x_{i},x_{i+1}(to the left ofx1x_{1}ifi=0i=0, to the right ofxmx_{m}ifi=mi=mThe extension depends only on then+1n+1first points to the left ofxxandn+1n+1first points to the right ofx2x^{2}). Therefore, we simply need to write that the function is of the desired class on the set

xin,xin+1,xi,x,xi+1,xi+2,,xi+n+1x_{i-n},x_{i-n+1},\ldots x_{i},x,x_{i+1},x_{i+2},\ldots,x_{i+n+1}

where we agree to consider the pointsx1,x2,,xix_{1},x_{2},\ldots,x_{i}to the left ofxxifi<n+1i<n+1(none ifi=0i=0) and the pointsxi+1,xi+2,,xmx_{i+1},x_{i+2},\ldots,x_{m}to the right ofxxifi>mn1i>m-n-1(none ifi=mi=m) and we will keep this convention in the following without explicitly stating it.

0 0 footnotetext: 2 ) See loc. cit. 1) p. 19.

The conditions for extension are therefore

yj=[xj,xj+1,,xj+n,x;f]0 Or >0\displaystyle y_{j}=\left[x_{j},x_{j+1},\ldots,x_{j+n},x;f\right]\geq 0\text{ ou }>0 (2)
j=in,in+1,,i+1\displaystyle j=i-n,i-n+1,\ldots,i+1

depending on whether the function is non-concave or convex and depending on whether it is a wide or strict extension.

For the function to extend to the pointxxIt is necessary and sufficient that the inequalities (2) be compatible withf(x)f(x)viewed as a parameter. The function is then extended by any value off(x)f(x)verifying these inequalities.

Inequality (2) means thatf(x)f(x)has a precise position relative to the polynomials

Pj=P(xj,xj+1,,xj+n;fx)\displaystyle\mathrm{P}_{j}=\mathrm{P}\left(x_{j},x_{j+1},\ldots,x_{j+n};f\mid x\right)
j=in,in+1,,i+1\displaystyle j=i-n,i-n+1,\ldots,i+1

The following geometric interpretation is easily found:
PolynomialsPin,Pin+2,Pin+4\mathrm{P}_{i-n},\mathrm{P}_{i-n+2},\mathrm{P}_{i-n+4}have an upper limit functiong¯i(x)\bar{g}_{i}(x)and a lower limit functiongi(x)g_{i}(x)Likewise, let themh¯i(x),hi(x)\bar{h}_{i}(x),h_{i}(x)the two corresponding limit functions of the polynomialsPin+1,Pin+3,Pin+5,\mathrm{P}_{i-n+1},\mathrm{P}_{i-n+3},\mathrm{P}_{i-n+5},\ldots

We then have
g¯i(x)f(x)h¯i(x)\bar{g}_{i}(x)\leq f(x)\leq\underline{h}_{i}(x)Org¯i(x)<f(x)<h¯i(x)\bar{g}_{i}(x)<f(x)<\underline{h}_{i}(x)if|ni+1|+ni+12\frac{|n-i+1|+n-i+1}{2}peer
g¯i(x)f(x)h¯i(x)\underline{g}_{i}(x)\leq f(x)\leq\bar{h}_{i}(x)Org¯i(x)>f(x)>h¯i(x)\underline{g}_{i}(x)>f(x)>\bar{h}_{i}(x)if|ni+1|+ni+12\frac{|n-i+1|+n-i+1}{2}The necessary and sufficient conditions for extendability are therefore
expressed as follows:
g¯i(x)h¯i(x)\bar{g}_{i}(x)\leq\underline{h}_{i}(x)Org¯i(x)<h¯i(x)\bar{g}_{i}(x)<\underline{h}_{i}(x)if|ni+1|+ni+12\frac{|n-i+1|+n-i+1}{2}is even
g¯i(x)h¯i(x)\underline{g}_{i}(x)\geq\bar{h}_{i}(x)Org¯i(x)>h¯i(x)\underline{g}_{i}(x)>\bar{h}_{i}(x)if|ni+1|+ni+12\frac{|n-i+1|+n-i+1}{2}is odd
4. Let's introduce the following notation

Δn+1j=[xj,xj+1,..,xj+n+1;f],j=1.2,,mn1\Delta_{n+1}^{j}=\left[x_{j},x_{j+1},..,x_{j+n+1};f\right],j=1,2,\ldots,m-n-1

Let's ask

δj,j+1i=yj(xxj)+yj+1(xj+n+1x)\delta_{j,j+1}^{i}=y_{j}\left(x-x_{j}\right)+y_{j+1}\left(x_{j+n+1}-x\right)

we then

δj,j+1i=(xj+n+1xj)Δn+1j\delta_{j,j+1}^{i}=\left(x_{j+n+1}-x_{j}\right)\Delta_{n+1}^{j} (3)

The conditionsj,j+1L0\partial_{j,j+1}^{l}\geq 0Or>0>0are therefore indeed verified, in other words the inequalitiesyj0ou>0,yj+10ou>0y_{j}\geq 0\mathrm{ou}>0,y_{j+1}\geq 0\mathrm{ou}>0are still compatible.

Let us generally assume
(4)

j,j+2p+1i=δj,j+2p+1i(x)=yj(xxj)(xxj+1)(xxj+2p)++yj+2p+1(xj+n+1x)(xj+n+2x)(xj+n+2p+1x).\begin{gathered}\partial_{j,j+2p+1}^{i}=\delta_{j,j+2p+1}^{i}(x)=y_{j}\left(x-x_{j}\right)\left(x-x_{j+1}\right)\ldots\left(x-x_{j+2p}\right)+\\ +y_{j+2p+1}\left(x_{j+n+1}-x\right)\left(x_{j+n+2}-x\right)\ldots\left(x_{j+n+2p+1}-x\right).\end{gathered}

These quantities do not contain the parameterf(x)f(x)and inequality

δj,j+2p+1i0 Or >0inii+1,p>0,j+2p+1i+1.0<jmn1\begin{gathered}\delta_{j,j+2p+1}^{i}\geq 0\text{ ou }>0\\ i-n\leq i\leq i+1,p>0,j+2p+1\leq i+1,0<j\leq m-n-1\end{gathered}

precisely expresses the compatibility of inequalitiesyj0y_{j}\geq 0Or>0,yj+2p+10>0,y_{j+2p+1\geq 0}Or>0>0.

Quantities (4) can also be easily expressed using (3). These are polynomials of degree2p2pinxxdependent on the given function only through its divided differences of ordern+1n+1which was to be expected.

The inequalities (5) therefore express the conditions of prolongation.

When there are at most three quantitiesyjy_{j}The number of conditions is equal to zero, therefore:

Any function of order n on (1) can be extended in the strict sense to any point to the left ofx3\mathrm{x}_{3}and any point to the right ofxm2\mathrm{x}_{\mathrm{m}-2}.

Any function of order n defined onn+3\mathrm{n}+3points extend in the strict sense to every point.

The following property results from the fact that (4) are polynomials:
If a convex function of ordernnon points (1) extends in the strict sense on a pointxx, it also extends in the strict sense to every point in the vicinity ofxx.

The points on which a convex function extends in the strict sense form a finite number of open intervals. The endpoints of these intervals (±\pm\inftyexcluded) are points where we can extend in the broad sense; we will call them the singular points of the convex function.

II.

A study of some simple extension cases

  1. 5.

    We will now fully study second-order functions defined on (1). In this case, the quantities (4) can be written

δi2,i+1i\displaystyle\delta_{i-2,i+1}^{i} =(xxi1)(xxi)(xi+1xi2)Δ3i2+\displaystyle=\left(x-x_{i-1}\right)\left(x-x_{i}\right)\left(x_{i+1}-x_{i-2}\right)\Delta_{3}^{i-2}+
+(xxi)(xxi+1)(xi+2xi1)Δ3i1+\displaystyle+\left(x-x_{i}\right)\left(x-x_{i+1}\right)\left(x_{i+2}-x_{i-1}\right)\Delta_{3}^{i-1}+
+(xxi+1)(xxi+2)(xi+3xi)Δ3i\displaystyle+\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)\left(x_{i+3}-x_{i}\right)\Delta_{3}^{i}
i=3.4,,m3.\displaystyle i=4,\ldots,m-3.

It is easy to see that if the function is convex, it extends in the neighborhood of every pointxi\mathrm{x}_{\mathrm{i}}.

In the meantime (xi,xi+1x_{i},x_{i+1}) can exist 2, 1, or 0 singular points depending on the equationδi2,i+1i(x)=0\delta_{i-2,i+1}^{i}(x)=0has two unequal real roots, a double root, or no real roots in the interval (xi,xi+1x_{i},x_{i+1}). Let us designate byαi,βi+1\alpha_{i},\beta_{i+1}these points

xi<αiβi+1<xi+1x_{i}<\alpha_{i}\leq\beta_{i+1}<x_{i+1}

Let's takeαi,βi+1\alpha_{i},\beta_{i+1}arbitrarily in (xi,xi+1x_{i},x_{i+1}) and let's write the identity inxx

Σi2,i+1i=HAS(xxi)(xβi+1).\Sigma_{i-2,i+1}^{i}=\mathrm{A}\left(x-x_{i}\right)\left(x-\beta_{i+1}\right).

We deduce from this

(xi+1xi2)Δ3i2HASi=(xi+2xi1)Δ3i1HASi=(xi+3xi)Δ3iHASi"\frac{\left(x_{i+1}-x_{i-2}\right)\Delta_{3}^{i-2}}{\mathrm{\penalty 10000\ A}_{i}}=\frac{\left(x_{i+2}-x_{i-1}\right)\Delta_{3}^{i-1}}{\mathrm{\penalty 10000\ A}_{i}^{\prime}}=\frac{\left(x_{i+3}-x_{i}\right)\Delta_{3}^{i}}{\mathrm{\penalty 10000\ A}_{i}^{\prime\prime}} (6)

Or

HASi=(xi+2xi)(αixi+1)(βi+1xi+1)HASi=(xi+βi+1)(xi+1xi+2xixi1)+xiβi+1(xi+xi1xi+2xi+1)xi1xi+1(xi+2xi)xixi+2(xi+1xi1)HASi"=(xi+1xi1)(xixi)(βi+1xi).\begin{gathered}\mathrm{A}_{i}=\left(x_{i+2}-x_{i}\right)\left(\alpha_{i}-x_{i+1}\right)\left(\beta_{i+1}-x_{i+1}\right)\\ \mathrm{A}_{i}^{\prime}=\left(x_{i}+\beta_{i+1}\right)\left(x_{i+1}x_{i+2}-x_{i}x_{i-1}\right)+x_{i}\beta_{i+1}\left(x_{i}+x_{i-1}-x_{i+2}-x_{i+1}\right)-\\ -x_{i-1}x_{i+1}\left(x_{i+2}-x_{i}\right)-x_{i}x_{i+2}\left(x_{i+1}-x_{i-1}\right)\\ \mathrm{A}_{i}^{\prime\prime}=\left(x_{i+1}-x_{i-1}\right)\left(x_{i}-x_{i}\right)\left(\beta_{i+1}-x_{i}\right).\end{gathered}

These relationships determineΔ3i2,Δ3i1,Δ3i\Delta_{3}^{i-2},\Delta_{3}^{i-1},\Delta_{3}^{i}Whenαi,βi+1\alpha_{i},\beta_{i+1}are given and we see thatHASi,HASi,HASi"\mathrm{A}_{i},\mathrm{\penalty 10000\ A}_{i}^{\prime},\mathrm{A}_{i}^{\prime\prime}are positive when the pointsαi,βi+1\alpha_{i},\beta_{i+1}are in (xi,xi+1x_{i},x_{i+1}).

It follows that we can arbitrarily choose the two singular pointsxi,βi+1x_{i},\beta_{i+1}.

More generally, we can determine all second-order functions having the points as singular points

αi1,βi1+1,αi2,βi2+1,αi3,βi3+1,\alpha_{i_{1}},\beta_{i_{1}+1},\alpha_{i_{2}},\beta_{i_{2}+1},\alpha_{i_{3}},\beta_{i_{3}+1},\ldots (7)

taken arbitrarily from the intervals(xi1,xi1+1),(xi2,xi2+1),\left(x_{i_{1}},x_{i_{1}+1}\right),\left(x_{i_{2}},x_{i_{2}+1}\right),\ldotsprovided thati1>ii+1,i3>i2+1,i_{1}>i_{i}+1,\mathrm{i}_{3}>i_{2}+1,\ldots
6. We will now demonstrate that in two consecutive intervals(xi,xi+1),(xi+1,xi+2)\left(\mathrm{x}_{\mathrm{i}},\mathrm{x}_{\mathrm{i}+1}\right),\left(\mathrm{x}_{\mathrm{i}+1},\mathrm{x}_{\mathrm{i}+2}\right)Singular points cannot exist at the same time.

We should indeed have
(8)

HASi"HASi+1HASiHASi+1=0.A_{i}^{\prime\prime}A_{i+1}--A_{i}^{\prime}A_{i+1}^{\prime}=0.

Let us designate the first member byF(αi,βi+1;αi+1,βi+2)\mathrm{F}\left(\alpha_{i},\beta_{i+1};\alpha_{i+1},\beta_{i+2}\right)and let's ask

F1(αi,βi+1;αi+1)=F(αi,βi+1;αi+1,αi+1)\displaystyle\mathrm{F}_{1}\left(\alpha_{i},\beta_{i+1};\alpha_{i+1}\right)=\mathrm{F}\left(\alpha_{i},\beta_{i+1};\alpha_{i+1},\alpha_{i+1}\right)
F2(αi,βi+1;xi+1)=F(αi,βi+1;αi+1,xi+2)\displaystyle\mathrm{F}_{2}\left(\alpha_{i},\beta_{i+1};x_{i+1}\right)=\mathrm{F}\left(\alpha_{i},\beta_{i+1};\alpha_{i+1},x_{i+2}\right)
F1(αi,βi+1;xi+1)=(xi+3xi+1)(xi+2xi+1)F3(αi,βi+1)\displaystyle\mathrm{F}_{1}\left(\alpha_{i},\beta_{i+1};x_{i+1}\right)=\left(x_{i+3}-x_{i+1}\right)\left(x_{i+2}-x_{i+1}\right)\mathrm{F}_{3}\left(\alpha_{i},\beta_{i+1}\right)
F4(αi)=F3(αi,αi),F5(αi)=F3(αi,xi+1)\displaystyle\mathrm{F}_{4}\left(\alpha_{i}\right)=\mathrm{F}_{3}\left(\alpha_{i},\alpha_{i}\right),\mathrm{F}_{5}\left(\alpha_{i}\right)=\mathrm{F}_{3}\left(\alpha_{i},x_{i+1}\right)

F4(αi)\mathrm{F}_{4}\left(\alpha_{i}\right)is a second-degree polynomial inαi\alpha_{i}and we have a coefficient ofαi2\alpha_{i}^{2}InF4\mathrm{F}_{4}
SO

F4(xi)=(xi+1xi)2(xi+2xi)(xixi1),F4(xi+1)=0\mathrm{F}_{4}\left(x_{i}\right)=-\left(x_{i+1}-x_{i}\right)^{2}\left(x_{i+2}-x_{i}\right)\left(x_{i}-x_{i-1}\right),\mathrm{F}_{4}\left(x_{i+1}\right)=0
F4(αi)=F3(αi,αi)<0(xi<αi<xi+1)\mathrm{F}_{4}\left(\alpha_{i}\right)=\mathrm{F}_{3}\left(\alpha_{i},\alpha_{i}\right)<0\quad\left(x_{i}<\alpha_{i}<x_{i+1}\right)

We also haveF5(xi)<0\mathrm{F}_{5}\left(x_{i}\right)<0, SO

F3(xi,xi+1)<0(xi<αi<xi+1)\mathrm{F}_{3}\left(x_{i},x_{i+1}\right)<0\quad\left(x_{i}<\alpha_{i}<x_{i+1}\right)

F3(αi,βi+1)\mathrm{F}_{3}\left(\alpha_{i},\beta_{i+1}\right)being linear with respect toαi\alpha_{i}Andβi+1\beta_{i+1}
Therefore, we deduce

F3(αi,βi+1)<0(xi<αiβi+1<xi+1)\mathrm{F}_{3}\left(\alpha_{i},\beta_{i+1}\right)<0\quad\left(x_{i}<\alpha_{i}\leq\beta_{i+1}<x_{i+1}\right)
F1(αi,βi+1;xi+1)<0(xi<xiβi+1<xi+1)\mathrm{F}_{1}\left(\alpha_{i},\beta_{i+1};x_{i+1}\right)<0\quad\left(x_{i}<x_{i}\leq\beta_{i+1}<x_{i+1}\right)

and also

F1(αi,βi+1;αi+1)=F(αi,βi+1;xi+1,αi+1)<0(xi<xiβi+1<xi+2<αi+1<xi+2)\begin{gathered}\mathrm{F}_{1}\left(\alpha_{i},\beta_{i+1};\alpha_{i+1}\right)=\mathrm{F}\left(\alpha_{i},\beta_{i+1};x_{i+1},\alpha_{i+1}\right)<0\\ \left(x_{i}<x_{i}\leq\beta_{i+1}<x_{i+2}<\alpha_{i+1}<x_{i+2}\right)\end{gathered}

But

F2(xi,βi+1;xi+1)<0,(xi<αiβi+1<xi+2)\mathrm{F}_{2}\left(x_{i},\beta_{i+1};x_{i+1}\right)<0,\left(x_{i}<\alpha_{i}\leq\beta_{i+1}<x_{i+2}\right)

so also

F2(αi,βi+1;αi+1)=F(αi,βi+1;xi+1,xi+2)<0(xi<xiβi+1<xi+1<αi+1<xi+2)\begin{gathered}\mathrm{F}_{2}\left(\alpha_{i},\beta_{i+1};\alpha_{i+1}\right)=\mathrm{F}\left(\alpha_{i},\beta_{i+1};x_{i+1},x_{i+2}\right)<0\\ \left(x_{i}<x_{i}\leq\beta_{i+1}<x_{i+1}<\alpha_{i+1}<x_{i+2}\right)\end{gathered}

Finally, we can deduce that

F(αi,βi+1;xi+1,βi+2)<0(xi<αiβi+1<xi+1<αi+1βi+2<xi+2)\begin{gathered}\mathrm{F}\left(\alpha_{i},\beta_{i+1};x_{i+1},\beta_{i+2}\right)<0\\ \left(x_{i}<\alpha_{i}\leq\beta_{i+1}<x_{i+1}<\alpha_{i+1}\leq\beta_{i+2}<x_{i+2}\right)\end{gathered}

This contradicts (8), so the property is proven.
It follows that the distribution (7) of singular points is the most general possible, and we can also find, using formulas (6), all convex functions of order 2 having these points as singular points. We can also determine the functions that have no other singular points.

These conclusions remain true for non-concave functions, only in this case the pointsαi,βi+1\alpha_{i},\beta_{i+1}may coincide withxi,xi+1x_{i},x_{i+1}respectively. We see, for example, that if the function cannot be extended at any point in the interval (xi,xi+1x_{i},x_{i+1}) it can be extended to any point belonging to one of the intervals (xi1,xix_{i-1},x_{i}), (xi+1,xi+2x_{i+1},x_{i+2}).

Taking

Δ31=Δ33=Δ35==0,Δ32>0,Δ34>0,Δ36>0,\Delta_{3}^{1}=\Delta_{3}^{3}=\Delta_{3}^{5}=\ldots=0,\quad\Delta_{3}^{2}>0,\Delta_{3}^{4}>0,\Delta_{3}^{6}>0,\ldots

We obtain all the second-order functions that do not extend to any point in the intervals

(x3,x4),(x5,x6),(x7,x8),\left(x_{3},x_{4}\right),\left(x_{5},x_{6}\right),\left(x_{7},x_{8}\right),\ldots

The number of singular points of a convex function of order 2 is at most equal tom4m-4Orm5m-5following thatmmis even or odd.
7. If the order of the function is greater than 2, much more complicated cases of non-extendability can arise. For example, functions of ordern>2n>2which are such that

Δn+11=Δn+13==0,Δn+12>0,Δn+14>0,\Delta_{n+1}^{1}=\Delta_{n+1}^{3}=\ldots=0,\Delta_{n+1}^{2}>0,\Delta_{n+1}^{4}>0,\ldots

do not extend to any point in the interval (x3,xm2x_{3},x_{m-2}) ifmn1m--n-1is odd and on no point of (x3,xm3x_{3},x_{m-3}) ifmn1m-n-1if is even. In the latter case, they also extend to every point of (xm3,xm2x_{m-3},x_{m-2}).

If the function class contains multiple convexity conditions, more complicated circumstances may arise. Nevertheless, some interesting observations can be made. Suppose the function belongs to the class(1.2)(1,2) : for it to be extendable at a point, it is necessary and sufficient that it be extendable as a function of order 2. Indeed, let the polynomials

P1=P(xi2,xi1,xi;fx)P2=P(xi1,xi,xi+1;fx)Q1=P(xi1,xi;fx)P3=P(xi,xi+1,xi+2;fx)Q2=P(xi,xi+1;fx)P4=P(xi+1,xi+2,xi+3;fx)Q3=P(xi+1,xi+2;fx)\begin{array}[]{ll}\mathrm{P}_{1}=\mathrm{P}\left(x_{i-2},x_{i-1},x_{i};f\mid x\right)&\\ \mathrm{P}_{2}=\mathrm{P}\left(x_{i-1},x_{i},x_{i+1};f\mid x\right)&\mathrm{Q}_{1}=\mathrm{P}\left(x_{i-1},x_{i};f\mid x\right)\\ \mathrm{P}_{3}=\mathrm{P}\left(x_{i},x_{i+1},x_{i+2};f\mid x\right)&\mathrm{Q}_{2}=\mathrm{P}\left(x_{i},x_{i+1};f\mid x\right)\\ \mathrm{P}_{4}=\mathrm{P}\left(x_{i+1},x_{i+2},x_{i+3};f\mid x\right)&\mathrm{Q}_{3}=\mathrm{P}\left(x_{i+1},x_{i+2};f\mid x\right)\end{array}

The conditions for extension are
P2Q1,P2Q3,P4P1,P4Q1,P4Q3,Q2P1,Q2P3P_{2}\geqslant Q_{1},P_{2}\geqslant Q_{3},P_{4}\geqslant P_{1},P_{4}\geqslant Q_{1},P_{4}\geqslant Q_{3},Q_{2}\geqslant P_{1},Q_{2}\geqslant P_{3}However
, we have, by examining the representative figure of the functionP2Q1\mathrm{P}_{2}\geq\mathrm{Q}_{1}In (xi,xi+1x_{i},x_{i+1}) the function being of order 1
P2Q3P_{2}\geq Q_{3}
P4P1P_{4}\geq P_{1}by hypothesis
P4Q1\mathrm{P}_{4}\geqslant\mathrm{Q}_{1}to the pointxxbecauseP1Q1\mathrm{P}_{1}\leftrightarrows\mathrm{Q}_{1}In (xi,xi+1x_{i},x_{i+1})
P4Q3\mathrm{P}_{4}\geqslant\mathrm{Q}_{3}In (xi,xi+1x_{i},x_{i+1}) the function being of order 1
Q2P1,,\mathrm{Q}_{2}\geqslant\mathrm{P}_{1}\quad,\quad,\quadof the class(1.2)(1,2)
Q2P3\mathrm{Q}_{2}\geqslant\mathrm{P}_{3}In (xi,xi+1x_{i},x_{i+1}) the function being of order 1.
8. Consider a function defined on any set E. We can extend the function in the strict sense on the derivative setEEexcept perhaps the extremities a andbbWhen the maximum order is greater than 0, this extension occurs by continuity; therefore, it is only possible in one way. If the maximum order is 0, the property
is fairly obvious, but uniqueness does not generally hold. The extension occurs in the strict sense by virtue of a known property ( 3 ).

Any function of a given class, bounded in the neighborhood of an endpoint, extends in the strict sense to that endpoint.

We assume, of course, that this extremity,bbfor example, does not belong to E. We can then immediately see that it suffices to take forf(b)f(b)the limit off(x)f(x)whenxbx\rightarrow bThis limit exists and is clearly defined.

If the endbb(Orhasa) belongs to E the function can be discontinuous there and it is then clear that in general it is impossible to extend the function beyond this point.

Let us now examine the possibility of an extension beyond one end, for example inbb. Iff(x)f(x)is of maximal ordernn, so that it can be extended beyondbbit is necessary that it be atnthn^{\text{ième}}The difference divided is bounded in the neighborhood of this point. It can easily be seen that, for a strict extension, this condition is not sufficient.

For example, if the function is of class(0*,1*)(0^{*},1^{*})and if the right-hand derivative at the pointbbis zero, so the function only extends in the broad sense , remaining constant beyondbb.

In general, derivativesf(b)f^{\prime}(b),f"(b)f^{\prime\prime}(b),\ldots,f(n)(b)f^{(n)}(b)exist to the pointbb- Orf(n)(b)f^{(n)}(b)is, by definition, thenthn^{\text{ième}}left derivative — and some of them have a specific sign. For simplicity, we assume thatEEis an interval(has,b)(a,b)If the extension is possible beyond the pointbb, particularly in the interval(b,c)(b,c)by functionf1(x)f_{1}(x), it is necessary that

f1(b)=f(b),f1(i)(b)=f(i)(b)i=1.2,n1f_{1}(b)=f(b),f_{1}^{(i)}(b)=f^{(i)}(b)i=1,2,\ldots n-1

and thatf1d¯(n)(b)f_{1\bar{d}}^{(n)}(b)either\geqOrf(n)(b)\leq f^{(n)}(b)depending on whether the function is non-concave or non-convex of ordernn.

We can now see that even in a broad sense, extension is not always possible 4 ).

If the polynomial

i=0nf(i)(b)i!(xb)i\sum_{i=0}^{n}\frac{f^{(i)}(b)}{i!}(x-b)^{i}

is of the same class asf(x)f(x)In(b,c)(b,c)He performs the extension (au seus Iarge). The same applies to

i=0nf(i)(b)i!(xb)i+HAS(xb)n+1\sum_{i=0}^{n}\frac{f^{(i)}(b)}{i!}(x-b)^{i}+\mathrm{A}(x-b)^{n+1}

Being==Or0\leq 0following thatf(x)f(x)is non-concave or non-convex
3 ) See loc. cit. 1) p. 26.
4 ) For example, a function of the class (0.12.30,1^{\prime},2,3^{\prime}) cannot be extended beyondbbiff(b)=0,f"(b)0f^{\prime}(b)=0,f^{\prime\prime}(b)\neq 0(It is easy to construct such functions).
of ordernnIn some cases this extension is in the strict sense, such as for example iff(x)f(x)is of ordernnsimply or if she is of the class(k,k+1,,n)(k,k+1,\ldots,n)Or(k*,k+1*,,n*)\left(k^{*},k+1^{*},\ldots,n^{*}\right)\ldotsetc.

We can also state the following property:
The necessary and sufficient condition for a functionf(x)\mathrm{f}(\mathrm{x})enjoying (has,b\mathrm{a},\mathrm{b}) order propertiesk,k+1,,n\mathrm{k},\mathrm{k}+1,\ldots,\mathrm{n}of the same meaning, can be extended beyond point b is that it is a divided nth difference bounded in the neighborhood of b.

The extension is in the strict sense and can go as far as desired.
A similar property applies to the extremityhasa, it is then necessary to consider order propertiesk,k+1,,nk,k+1,\ldots,nalternating directions, as it results from a change in the orientation of the axis ofxxWe also deduce that:

The necessary and sufficient condition for a function of order n in(has,b)(\mathrm{a},\mathrm{b})that it can be extended in the strict sense in any interval is that it is a bounded divided nth difference.

III

Extension of convex functions in an interval.

  1. 9.

    Let us consider a functionf(x)f(x)non-concave of ordernnin the meantime(has,b)(a,b)and either

x1<x2<<xmx_{1}<x_{2}<\ldots<x_{m}

a sequence of points in this interval.
We can assume, without restricting the generality, thatx1=hasxm=bx_{1}=ax_{m}=bas will result from the method we are about to describe.

Let us add
(9)Δn+1i=[xi,xi+1,,xi+n+1;f],i=1.2,,mn1\quad\Delta_{n+1}^{i}=\left[x_{i},x_{i+1},\ldots,x_{i+n+1};f\right],i=1,2,\ldots,m-n-1

We will first assume that the pointsx2,x3,,xm1x_{2},x_{3},\ldots,x_{m-1}rationally divide the interval (x1,xmx_{1},\mathrm{x}_{m}We can then find a positive numberδ\deltaand positive integersρ1,ρ2,,ρm1\rho_{1},\rho_{2},\ldots,\rho_{m-1}such as

xi+1xi=ρiδi=1.2,,m1x_{i+1}-x_{i}=\rho_{i}\delta\quad i=1,2,\ldots,m-1

We will use the notations
ρi+ρ2++ρj=ρj,j=1.2,,m1,ρ0=0,ρm1=ρ\rho_{i}+\rho_{2}+\ldots+\rho_{j}=\rho_{j}^{\prime},\quad j=1,2,\ldots,m-1,\quad\rho_{0}^{\prime}=0,\quad\rho_{m-1}^{\prime}=\rho
Let's divide the interval (x1,xmx_{1},x_{m}) inpp\circequal parts,ppbeing a sufficiently large positive integer and are

xi=x1+(i1)h,h=xmx1pρx_{i}^{\prime}=x_{1}+(i-1)h,\quad h=\frac{x_{m}-x_{1}}{p_{\rho}}

the division points. We then have

xpφj1+1=xj,j=1.2,,m.x_{p_{\varphi^{\prime}j-1}+1}^{\prime}=x_{j},\quad j=1,2,\ldots,m.

Let us consider a functionΨ(x;p)\Psi(x;p)defined in the interval(xp,xm)\left(x_{p},x_{m}\right)reducing to a polynomial of degreennin each of the intervals(x1,x2),(x2,x3),,(xn1,xm)\left(x_{1},x_{2}\right),\left(x_{2},x_{3}\right),\ldots,\left(x_{n-1},x_{m}\right)By asking

Pj(x)=i=0nλij(xxj)ni,j=1.2,,m1\mathrm{P}_{j}(x)=\sum_{i=0}^{n}\lambda_{i}^{j}\left(x-x_{j}\right)^{n-i},j=1,2,\ldots,m-1

we will be able to write

ψ(x;p)=j=1kPj(x) In (xk,xk+1),k=1.2,,m1.\psi(x;p)=\sum_{j=1}^{k}\mathrm{P}_{j}(x)\text{ dans }\left(x_{k},x_{k+1}\right),\quad k=1,2,\ldots,m-1.

We assume that this function is continuous, therefore

λnj=0,j=2.3,,m1\lambda_{n}^{j}=0,\quad j=2,3,\ldots,m-1

and that the other coefficients are generally functions ofpp
We will examine the sum in the following section .

i=1pϱnΨ(xi;p)[xi,xi+1,..,xi+n+1;f]=i=1pφ+1γif(xi).\sum_{i=1}^{p\varrho-n}\Psi\left(x_{i}^{\prime};p\right)\left[x_{i}^{\prime},x_{i+1}^{\prime},..,x_{i+n+1}^{\prime};f\right]=\sum_{i=1}^{p\varphi+1}\gamma_{i}f\left(x_{i}^{\prime}\right). (10)
  1. 10.

    The first member of (10) can be written

1(n+1)!hn+1i=1pφnΨ(xi;p)[r=0n+1(1)n+1r(n+1r)f(xi+r)]\frac{1}{(n+1)!h^{n+1}}\sum_{i=1}^{p\varphi-n}\Psi^{\prime}\left(x_{i}^{\prime};p\right)\left[\sum_{r=0}^{n+1}(-1)^{n+1-r}\binom{n+1}{r}f\left(x_{i+r}^{\prime}\right)\right]

It immediately follows that

1(n+1)!hn+1(j)(1)n+1j(n+1j)Ψ(xij;p)\frac{1}{(n+1)!h^{n+1}}\sum_{(j)}(-1)^{n+1-j}\binom{n+1}{j}\Psi\left(x_{i-j}^{\prime};p\right)

where the summons extends from

0 has i1 For in+1ipp+n has n+1 For ippn+10 has n+1 For n+1<i<ppn+1.\begin{array}[]{cll}0&\text{ à }&i-1\text{ pour }i\leq n+1\\ i-p_{p}+n&\text{ à }&n+1\text{ pour }i\geq p_{p}-n+1\\ 0&\text{ à }&n+1\text{ pour }n+1<i<p_{p}-n+1.\end{array}

The form of the function shows us that the only coefficientsγi\gamma_{i}The following are not zero:
γi,γpρn+i*i=1.2,n+1;γpφj+i,j=1.2,,m2,i=2.3,,n+1\gamma_{i},\gamma_{p\rho-n+i^{*}}i=1,2,\ldots n+1;\gamma_{p\varphi_{j}^{\prime}}+i,j=1,2,\ldots,m-2,i=2,3,\ldots,n+1We therefore
see the following appear in the second member of (10)mmgroups of terms. The extreme groups containn+1n+1the othersnnterms.

For the first group, a simple calculation gives us
(11)i=1n+17if(xi)=i=0n[r=0ni(r+jr)7i+r+1][r=0i(1)ir(ir)f(xr+1)]=\sum_{i=1}^{n+1}7_{i}f\left(x_{i}^{\prime}\right)=\sum_{i=0}^{n}\left[\sum_{r=0}^{n-i}\binom{r+j}{r}7_{i+r+1}\right]\left[\sum_{r=0}^{i}(-1)^{i-r}\binom{i}{r}f\left(x_{r+1}^{\prime}\right)\right]=

=i=0nhi[r=0ni(r+ir)yi+r+1]i![xi,x2,,xi+1;f]=\sum_{i=0}^{n}h^{i}\left[\sum_{r=0}^{n-i}\binom{r+i}{r}y_{i+r+1}\right]i!\left[x_{i}^{\prime},x_{2}^{\prime},\ldots,x_{i+1}^{\prime};f\right]

In this case, we have

γi=1(n+1)!hn+1r=0nλnr1hrΓir\gamma_{i}=\frac{1}{(n+1)!h^{n+1}}\sum_{r=0}^{n}\lambda_{n-r}^{1}h^{r}\Gamma_{i}^{r}

Or

Γir=j=0i1(1)n+1j(n+1j)(ij1)r(Γ1r=0,r>0,Γ10=(1)n+1)\Gamma_{i}^{\mathrm{r}}=\sum_{j=0}^{i-1}(-1)^{n+1-j}\binom{n+1}{j}(i-j-1)^{r}\left(\Gamma_{1}^{r}=0,r>0,\Gamma_{1}^{0}=(-1)^{n+1}\right)

We deduce from this

r=0ni(r+ir)γi+r+1=1(n+1)!hn+1s=0nλns1hsGis\sum_{r=0}^{n-i}\binom{r+i}{r}\gamma_{i+r+1}=\frac{1}{(n+1)!h^{n+1}}\sum_{s=0}^{n}\lambda_{n-s}^{1}h^{s}\mathrm{G}_{i}^{s}

with

Gis=r=0ni(r+ir)ri+r+1s\mathrm{G}_{i}^{s}=\sum_{r=0}^{n-i}\binom{r+i}{r}\mathrm{r}_{i+r+1}^{s}

The numbersGis\mathrm{G}_{i}^{s}are easily calculated. Let's consider the polynomial

Fi(z)=(1)n+1r=0i1(1)r(n+1i+rr)(z1)ir1\mathrm{F}_{i}(z)=(-1)^{n+1}\sum_{r=0}^{i-1}(-1)^{r}\binom{n+1-i+r}{r}(z-1)^{i-r-1}

we then

rir=[(zddz)(r)Fi(z)]z=1\displaystyle\mathrm{r}_{i}^{r}=\left[\left(z\frac{d}{dz}\right)^{(r)}\mathrm{F}_{i}(z)\right]_{z=1}
Gis=[(zddz)(s)r=1ni(r+ir)Fi+r+1(z)]z=1\displaystyle\mathrm{G}_{i}^{s}=\left[\left(z\frac{d}{dz}\right)^{(s)}\sum_{r=1}^{n-i}\binom{r+i}{r}\mathrm{\penalty 10000\ F}_{i+r+1}(z)\right]_{z=1}

hence in particular

Gis=0 For s=0,1,2,,ni1\mathrm{G}_{i}^{s}=0\text{ pour }s=0,1,2,\ldots,n-i-1

Gini=(1)n+1i[(zddz)(ni)(z1)ni]z=1=(1)n+1i(ni)!\mathrm{G}_{i}^{n-i}=(-1)^{n+1-i}\left[\left(z\frac{d}{dz}\right)^{(n-i)}(z-1)^{n-i}\right]_{z=1}=(-1)^{n+1-i}(n-i)!
Note now that we know nothing about the quantities
(12)

i![x1,x2,xi+1;f],i=1.2,,n.i!\left[x_{1}^{\prime},x_{2}^{\prime}\ldots,x_{i+1}^{\prime};f\right],\quad i=1,2,\ldots,n.

Let's take the coefficientsλi\lambda_{i}^{\perp}values ​​such as101^{0}
limitpλ01=Λ1\lim_{p\rightarrow\infty}\lambda_{0}^{1}=\Lambda_{1}exists and is finished
202^{0}equalities

r=0ni(r+ir)γi+r+1=1n+1)!hn+1,s=ninλns1hsGis=0\sum_{r=0}^{n-i}\binom{r+i}{r}\gamma_{i+r+1}=\frac{1}{n+1)!h^{n+1}},\sum_{s=n-i}^{n}\lambda_{n-s}^{1}h^{s}\mathrm{G}_{i}^{s}=0

are verified identically inpp
The result is that :
10λ11,λ21,,7n11^{0}\quad\lambda_{1}^{1},\lambda_{2}^{1},\ldots,7_{n}^{1}tend towards zero forpp\rightarrow\infty.
202^{0}All quantities (12) disappear in the sum (11). We can therefore write:

limitp1pi=1n+1γif(xi)=limit1p[r=0n(r+1r)γr+1]f(x1)=\displaystyle\lim_{p\rightarrow\infty}\frac{1}{p}\sum_{i=1}^{n+1}\gamma_{i}f\left(x_{i}^{\prime}\right)=\lim\cdot\frac{1}{p}\left[\sum_{r=0}^{n}\binom{r+1}{r}\gamma_{r+1}\right]f\left(x_{1}\right)=
=\displaystyle= limit1p1(n+1)hn+1hnλ01G0n=(1)n+1ρΛ1(n+1)(xmx1)f(x1).\displaystyle\lim\cdot\frac{1}{p}\frac{1}{(n+1)h^{n+1}}h^{n}\lambda_{0}^{1}\mathrm{G}_{0}^{n}=\frac{(-1)^{n+1}\rho\Lambda_{1}}{(n+1)\left(x_{m}-x_{1}\right)}f\left(x_{1}\right).

Let us now consider a group of intermediate terms:

i=1nγpϱj+i+1f(xpj+i+1)1jm2\sum_{i=1}^{n}\gamma_{p\varrho_{j}^{\prime}+i+1}f\left(x_{p\ell_{j}+i+1}^{\prime}\right)\quad 1\leq j\leq m-2

and we know the quantities.

[xpj+2,xpj+3,,xpj+i+2;f],i=0,1,2,,n1\left[x_{p\ell_{j}^{\prime}+2}^{\prime},x_{p\ell_{j}^{\prime}+3}^{\prime},\ldots,x_{p\ell_{j}^{\prime}+i+2}^{\prime};f\right],\quad i=0,1,2,\ldots,n-1

those involved in this sum all remain limited in their scope.p\mathrm{p}\rightarrow\inftyWithout going into the details of the calculation, let
's just say that if we take the coefficientsλij+1\lambda_{i}^{j+1}values ​​such as:
10.limitpλ0j+1=Λj+11^{0}.\quad\lim_{p\rightarrow\infty}\lambda_{0}^{j+1}=\Lambda_{j+1}exists and is finished.
2.limitp.λij+1=0,i=1.2,,n12^{\prime}.\quad\lim_{p\rightarrow\infty}.\lambda_{i}^{j+1}=0,i=1,2,\ldots,n-1,
we find the relationship.

limitp1pi=1nγpϱj+i+1f(xpϱj+i+1)=(1)n+1pΛj+1(n+1(xmx1).f(xj+1).\lim_{p\rightarrow\infty}\frac{1}{p}\sum_{i=1}^{n}\gamma_{p\varrho_{j}^{\prime}+i+1}f\left(x_{p\varrho_{j}^{\prime}+i+1}\right)=\frac{(-1)^{n+1}p\Lambda_{j+1}}{\left(n+1\left(x_{m}-x_{1}\right).\right.}f\left(x_{j+1}\right).

We still need to see what happens with the last group of terms.

i=1n+1γpρn+if(xpρn+i).\sum_{i=1}^{n+1}\gamma_{p\rho-n+i}f\left(x_{p\rho-n+i}^{\prime}\right). (13)

We will try to arrange things so that this sum multiplied by1p\frac{1}{p}also has a finite limit forpp\rightarrow\inftyTo do this, simply repeat the previous demonstration, this time starting from pointxmx_{m}towards the pointx1x_{1}, therefore by reversing the order of the pointsx1,x2,,xmx_{1},x_{2},\ldots,x_{m}This process amounts to performing an operation on the functionΨ(x;p)\Psi(x;p)the transformationxxm+x1xx\mid x_{m}+x_{1}-x, SO.

Ψ1(x;p)=Ψ(xm+x1x;p)\Psi_{1}(x;p)=\Psi\left(x_{m}+x_{1}-x;p\right)

and we have
Ψ1(x;p)=j=1kQj(x) In (xm+x1xmk+1,xm+x1xmk)k=1.2,,m1.\Psi_{1}(x;p)=\sum_{j=1}^{k}\mathrm{Q}_{j}(x)\quad\begin{gathered}\text{ dans }\left(x_{m}+x_{1}-x_{m-k+1},x_{m}+x_{1}-x_{m-k}\right)\\ k=1,2,\ldots,m-1.\end{gathered}
with

Qj(x)=i=0nμij(xx1xm+xmj+1)nij=1.2,,m1\mathrm{Q}_{j}(x)=\sum_{i=0}^{n}\mu_{i}^{j}\left(x-x_{1}-x_{m}+x_{m-j+1}\right)^{n-i}\quad j=1,2,\ldots,m-1

The following three properties must be verified:
101^{0}.

limitpμ0j exists and is finite. \lim_{p\rightarrow\infty}\mu_{0}^{j}\text{ existe et est finie. }

202^{0}Equality.

s=ninμns1hsGis=0i=1.2,,n\sum_{s=n-i}^{n}\mu_{n-s}^{1}h^{s}\mathrm{G}_{i}^{s}=0\quad i=1,2,\ldots,n (14)

are verified identically on p.
30.limitpμij=0,i>0\quad\lim_{p\rightarrow\infty}\mu_{i}^{j}=0,\quad i>0.

Here are the coefficientsGis\mathrm{G}_{i}^{\prime s}are still independentppbut are not identical toGis\mathrm{G}_{i}^{s}This stems from the fact that while in formula (10) the values ​​ofΨ(x;p)\Psi(x;p)In(x1,xp,n)\left(x_{1}^{\prime},x_{p,-n}^{\prime}\right)In the reversed problem, we use the values ​​ofΨ1(x;p)\Psi_{1}(x;p)In(xn+2,xpq+1)\left(x_{n+2}^{\prime},x_{pq+1}^{\prime}\right)So we have

pis=j=0i1(1)n+1j(n+1j)(n+1j)s\displaystyle\mathrm{p}_{i}^{\prime s}=\sum_{j=0}^{i-1}(-1)^{n+1-j}\binom{n+1}{j}(n+1-j)^{s}
Gis=r=0ni(r+ir)Ii+r+1s\displaystyle\mathrm{G}_{i}^{\prime s}=\sum_{r=0}^{n-i}\binom{r+i}{r}\mathrm{I}_{i+r+1}^{\prime s}

But :

ris\displaystyle\mathrm{r}_{i}^{\prime s} =t=0s(st)(n+1)strit\displaystyle=\sum_{t=0}^{s}\binom{s}{t}(n+1)^{s-t}\mathrm{r}_{i}^{t}
Gis\displaystyle\mathrm{G}_{i}^{\prime s} =t=0s(st)(n+1)stGit\displaystyle=\sum_{t=0}^{s}\binom{s}{t}(n+1)^{s-t}\mathrm{G}_{i}^{t}

donations in particular:

Gis=0,s=0,1,2,ni+1,Gini=Gini0\mathrm{G}_{i}^{\prime s}=0,s=0,1,2\ldots,n-i+1,\mathrm{G}_{i}^{\prime n-i}=\mathrm{G}_{i}^{n-i}\neq 0

The property101^{0}is obviously verified. Note that:

Qj(x)=Pm+1j(xm+x1x),j=2.3,,m1\mathrm{Q}_{j}(x)=-\mathrm{P}_{m+1-j}\left(x_{m}+x_{1}-x\right),\quad j=2,3,\ldots,m-1

and it immediately follows that303^{0}" Forj>1j>1is verified.
We also have:

Q1(x)=j=1m1Pj(xm+x1x)\mathrm{Q}_{1}(x)=\sum_{j=1}^{m-1}\mathrm{P}_{j}\left(x_{m}+x_{1}-x\right)

hence the values ​​of the coefficientsμi1\mu_{i}^{1}

μi1=j=1m1[r=0i(1)ir(nrir)(xmxj)irλrj],i=0,1,2,,n.\mu_{i}^{1}=\sum_{j=1}^{m-1}\left[\sum_{r=0}^{i}(-1)^{i-r}\binom{n-r}{i-r}\left(x_{m}-x_{j}\right)^{i-r}\lambda_{r}^{j}\right],\quad i=0,1,2,\ldots,n.

So that303^{0}should also be checked forj=1j=1it is necessary that.

j=1m1(xmxj)iΛj=0,i=1.2,,n.\sum_{j=1}^{m-1}\left(x_{m}-x_{j}\right)^{i}\Lambda_{j}=0,\quad i=1,2,\ldots,n. (15)

Once these equalities are satisfied, we see that we can always arrange things so that202^{0}that should also be checked.

We now know that (13) multiplied by1p\frac{1}{p}has a limit when the preceding conditions are met and this limit depends only onf(xm)f\left(x_{m}\right)We can write

limitp1pi=1n+1γpζn+if(xpρn+i)=(1)n+1ρΛm(n+1)(xmx1)f(xm)\lim_{p\rightarrow\infty}\frac{1}{p}\sum_{i=1}^{n+1}\gamma_{p\zeta-n+i}f\left(x_{p\rho-n+i}^{\prime}\right)=\frac{(-1)^{n+1}\rho\Lambda_{m}}{(n+1)\left(x_{m}-x_{1}\right)}f\left(x_{m}\right)

and the coefficient𝚲m\mathbf{\Lambda}_{m}is obviously determined by the condition that

limit1pi=1pφ+1γif(xi)\lim\cdot\frac{1}{p}\sum_{i=1}^{p\varphi+1}\gamma_{i}f\left(x_{i}^{\prime}\right) (16)

depends only on divided differences of ordern+1n+1In other words, it must be zero iff(x)f(x)is an arbitrary polynomial of degreenn. SO

j=1mxjkΛj=0,k=0,1,2,,n\sum_{j=1}^{m}x_{j}^{k}\Lambda_{j}=0,\quad k=0,1,2,\ldots,n

and (15) are precisely the compatibility conditions of this system.
11. Whenpp\rightarrow\inftythe functionΨ(x;p)\Psi(x;p)converges uniformly 5 ) in (x1,xmx_{1},x_{m}) to the function

Ψ(x)=limitpΨ(x;p)=j=1kΛj(xxj)nIn(xk,xk+1)k=1.2,,m1.\begin{array}[]{r}\Psi(x)=\lim_{p\rightarrow\infty}\Psi(x;p)=\sum_{j=1}^{k}\Lambda_{j}\left(x-x_{j}\right)^{n}\operatorname{dans}\left(x_{k},x_{k+1}\right)\\ k=1,2,\ldots,m-1.\end{array}

This function can be expressed as a sum ofmn1m-n-1analogous functions.

To simplify the notation, let us assume for the Van der Monde determinants

Vi=V(xi,xi+1,,xi+n+1)i=1.2,,mn1Vi(k)=V(xi,xi+1,,xk1,xk+1,,xi+n+1)k=i,i+1,,i+n+1\begin{array}[]{r}\mathrm{V}_{i}=\mathrm{V}\left(x_{i},x_{i+1},\ldots,x_{i+n+1}\right)\quad i=1,2,\ldots,m-n-1\\ \mathrm{\penalty 10000\ V}_{i}^{(k)}=\mathrm{V}\left(x_{i},x_{i+1},\ldots,x_{k-1},x_{k+1},\ldots,x_{i+n+1}\right)\\ \quad k=i,i+1,\ldots,i+n+1\end{array}

and consider the functions

Ψi(x)={0 In (x1,xi)r=0k(1)rVi(i+r)Vi(xxi+r)n In (xi+k,xi+k+1)0 In (xi+n+1,xm)i=1.2,,mn1.\Psi_{i}(x)=\left\{\begin{array}[]{l}0\quad\text{ dans }\quad\left(x_{1},x_{i}\right)\\ \sum_{r=0}^{k}(-1)^{r}\frac{\mathrm{\penalty 10000\ V}_{i}^{(i+r)}}{\mathrm{V}_{i}}\left(x-x_{i+r}\right)^{n}\quad\text{ dans }\quad\left(x_{i+k},x_{i+k+1}\right)\\ 0\quad\text{ dans }\quad\left(x_{i+n+1},x_{m}\right)\\ \quad i=1,2,\ldots,m-n-1.\end{array}\right.
0 0 footnotetext: 5 ) The uniformity of convergence is immediate if we notice thatΨ5(x;p)\Psi^{5}(x;p)is formed by polynomials of invariable degree.

Taking into account (15) we see that

Ψ(x)=j=1mn1λjΨj(x)\Psi(x)=\sum_{j=1}^{m-n-1}\lambda_{j}\Psi_{j}(x)

Expression (16) will then dilate, by removing a common positive factor:

j=1mn1λjΔn+1j.\sum_{j=1}^{m-n-1}\lambda_{j}\Delta_{n+1}^{j}.
  1. 12.

    The preceding calculations allow us to state the following property:

If the function

Ψ(x)=j=1mn1λjΨj(x)\Psi(x)=\sum_{j=1}^{m-n-1}\lambda_{j}\Psi_{j}(x)

is non-negative in the interval (x1xm\mathrm{x}_{1}\mathrm{x}_{\mathrm{m}}), any functionf(x)\mathrm{f}(\mathrm{x})nonconcave of order n in (x1,xm\mathrm{x}_{1},\mathrm{x}_{\mathrm{m}}) verifies the inequality.

j=1mn1λjΔn+1j0\sum_{j=1}^{m-n-1}\lambda_{j}\Delta_{n+1}^{j}\geq 0 (17)

I'll start by saying that the functionΨi(x)\Psi_{\mathrm{i}}(x)is positive in the open interval(xi,x1+n+1)\left(\mathrm{x}_{\mathrm{i}},\mathrm{x}_{1+\mathrm{n}+1}\right)It suffices to demonstrate this.i=1i=1Because of the symmetry, it is even sufficient to show that

r=1k(1)r1V1(r)(xxr)n>0, In (xk,xk+1)\sum_{r=1}^{k}(-1)^{r-1}\mathrm{\penalty 10000\ V}_{1}^{(r)}\left(x-x_{r}\right)^{n}>0,\quad\text{ dans }\left(x_{k},x_{k+1}\right)

Fork=2.3,,[n+22]6k=2,3,\ldots,\left[\frac{n+2}{2}\right]^{6}(Fork=1,n+1k=1,n+1(Obviously), This property can be verified by induction. It is immediate forn=1n=1Suppose it is true up ton1n-1and let us show that it is a fortiori true fornnBy hypothesis, the property is true for sequences.x1,x2,,xn+1;x2,x3,,xn+2x_{1},x_{2},\ldots,x_{n+1};x_{2},x_{3},\ldots,x_{n+2}Let us designate byV(1),V(2),,V"(2)\mathrm{V}^{\prime}(1),\mathrm{V}^{\prime}(2),\ldots,\mathrm{V}^{\prime\prime}(2),V"(3),\mathrm{V}^{\prime\prime}(3),\ldots, the analogues ofV1(r)\mathrm{V}_{1}^{(r)}for these sequels, then

V(r)=V(x1,x2,xr1,xr+1,,xn+1)\displaystyle\mathrm{V}^{\prime(r)}=\mathrm{V}\left(x_{1},x_{2}\ldots,x_{r-1},x_{r+1},\ldots,x_{n+1}\right)
V"(r)=V(x2,x3,,xr1,xr+1,,xn+2)\displaystyle\mathrm{V}^{\prime\prime(r)}=\mathrm{V}\left(x_{2},x_{3},\ldots,x_{r-1},x_{r+1},\ldots,x_{n+2}\right)
0 0 footnotetext: 6 ) [ø] is equal to the number of integers included in u.

The relationship (which is easily verifiable)

V(r)(xn+2x2)(xn+2x3)(xn+2xn+1)(xx1)V"(r)(x2x1)(x3x1)(xn+1x1)(xn+2x)=V1(r)(xx1)\begin{gathered}\mathrm{V}^{\prime(r)}\left(x_{n+2}-x_{2}\right)\left(x_{n+2}-x_{3}\right)\ldots\left(x_{n+2}-x_{n+1}\right)\left(x-x_{1}\right)-\\ -\mathrm{V}^{\prime\prime(r)}\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\cdot\left(x_{n+1}-x_{1}\right)\left(x_{n+2}-x\right)=\mathrm{V}_{1}^{(r)}\left(x-x_{1}\right)\end{gathered}

allows writing

r=1k(1)r1V1(r)(xxr)n=(xn+2x2)(xn+2x3)\sum_{r=1}^{k}(-1)^{r-1}\mathrm{\penalty 10000\ V}_{1}^{(r)}\left(x-x_{r}\right)^{n}=\left(x_{n+2}-x_{2}\right)\left(x_{n+2}-x_{3}\right)\ldots (18)

(xn+2xn+1)(xx1)r=1k(1)r1V(r)(xxr)n1+\left(x_{n+2}-x_{n+1}\right)\left(x-x_{1}\right)\sum_{r=1}^{k}(-1)^{r-1}\mathrm{\penalty 10000\ V}^{(r)}\left(x-x_{r}\right)^{n-1}+

+(x2x1)(x3x1)(xn+1x1)(xn+2x)r=2k(1)r2V"(r)(xxr)n1+\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\ldots\left(x_{n+1}-x_{1}\right)\left(x_{n+2}-x\right)\sum_{r=2}^{k}(-1)^{r-2}\mathrm{\penalty 10000\ V}^{\prime\prime(r)}\left(x-x_{r}\right)^{n-1}

which proves property 7 by induction ).
We can now state that ifΨ(x)\Psi(x)is non-negative in the open interval (x1,xmx_{1},x_{m}) there exists another analogous function that can be as close as one wants toΨ(x)\Psi(x)and which is positive within that interval.

Therefore, it suffices to demonstrate the stated property forΨ(x)\Psi(x)positive in the open interval (x1,xmx_{1},x_{m}). Our analysis then shows us that we can find a sequence of functionsΨ(x;p)p=1.2,\Psi(x;p)p=1,2,\ldotsin such a way that:
101^{0}The expression (10) multiplied by1p\frac{1}{p}tends, up to a constant positive factor, towards the first member of (17).
202^{0}. The functionΨ(x;p)\Psi(x;p)converges uniformly towardsΨ(x)\Psi(x)In(x1,xm)\left(x_{1},x_{m}\right).

It follows that, from a certain value ofpΨ(x;p)p\Psi(x;p)stay positive in(x1,xm)\left(x_{1},x_{m}\right)This is not entirely certain for the neighborhood of the points.x1,xmx_{1},x_{m}, but the special form of the functionsΨ(x;p)\Psi(x;p)shows us that we can always assume that this circumstance is realized. Inequality (17) is now immediate since from this value ofppAll terms on the left-hand side of (10) are non-negative.
7 ) The polynomial

r=1k(1)r1V1(r)(xxr)n\sum_{r=1}^{k}(-1)^{r-1}V_{1}^{(r)}\left(x-x_{r}\right)^{n}

is even "very positive" in the interval (xk,xk+1x_{k},x_{k+1}If we put it in the form

i=0nHASi(xxk)i(xk+1x)ni\sum_{i=0}^{n}\mathrm{\penalty 10000\ A}_{i}\left(x-x_{k}\right)^{i}\left(x_{k+1}-x\right)^{n-i}

the coefficientsHASiA_{i}are all positive. (Immediate proof by induction).

Let's not forget that we assumed that the pointsx2,x3,xm1x_{2},x_{3},\ldots x_{m-1}rationally divide the interval (x1,xmx_{1},x_{m}Note that our statement is not affected by this restriction. We also know that we can find pointsx2*,x3*,xm1*x_{2}^{*},x_{3}^{*},\ldots x_{m-1}^{*}as close as we want to the respective pointsx2,x3,,xm1x_{2},x_{3},\ldots,x_{m-1}and such that they rationally divide the interval (x1,xmx_{1},x_{m}). By taking the limit, which is perfectly legitimate because of the continuity of the function 8 ), it follows that the property is general.

To simplify the language, we will call the property thus highlighted: restricted convexity property of ordernnon themmpoints considered 9 ).

Note that we obtain the restricted convexity conditions on a partial sequence ofx1,x2,,xmx_{1},x_{2},\ldots,x_{m}by determining the coefficientsλi\lambda_{i}so that the left-hand side of (17) depends only on the divided differences taken at these points. We then see that restricted convexity of order n implies non-concavity of the same order. Ifm=n+2m=n+2For restricted convexity, it suffices that the function be non-concave. This property is still true form=n+3\mathrm{m}=\mathrm{n}+3Indeed, in this case we have the function:

Ψ(x)=λ1Ψ1(x)+λ2Ψ2(x)\Psi(x)=\lambda_{1}\Psi_{1}(x)+\lambda_{2}\Psi_{2}(x)

And

Ψ(x2)=λ1Ψ1(x2),Ψ(xn+2)=λ2Ψ2(xn+2)\Psi\left(x_{2}\right)=\lambda_{1}\Psi_{1}\left(x_{2}\right),\quad\Psi\left(x_{n+2}\right)=\lambda_{2}\Psi_{2}\left(x_{n+2}\right)

so thatΨ(x)\Psi(x)either non-negative, it is necessary thatλ1,λ2\lambda_{1},\lambda_{2}are non-negative, hence the property. The property is no longer true ifm>n+3m>n+3except in the casen=1n=1In this case, indeed:

Ψ(xi)=λi1Ψi1(xi)i=2.3,,m2\Psi\left(x_{i}\right)=\lambda_{i-1}\Psi_{i-1}\left(x_{i}\right)\quad i=2,3,\ldots,m-2

and the non-negativity of the coefficients is necessary for that ofΨ(x)\Psi(x)In (x1,xmx_{1},x_{m}13.
Now let us consider the functionf(x)f(x)defined on the sequence of points

x1<x2<<xm.x_{1}<x_{2}<\ldots<x_{m}. (19)

Suppose we have

Δn+1j=Ψj(ξ)j=1.2,,mn1(x1ξxm)\Delta_{n+1}^{j}=\Psi_{j}(\xi)\quad j=1,2,\ldots,m-n-1\quad\left(x_{1}\leq\xi\leq x_{m}\right) (20)

Let us show that in this case the function can be extended in any interval containing the points (19).
8 ) In fact, in this way we exclude functions of order 0, which are not necessarily continuous, but for this simple case the problem is of no interest since the function is always and everywhere extendable.
9 ) To avoid complicating matters, it is unnecessary to make a more precise distinction regarding the nature of convexity. It is actually a matter of restricted non-concavity.

Let's suppose thatm=2n+2,xn+1ξ<xn+2m=2n+2,x_{n+1}\leq\xi<x_{n+2}The formulas established above give us:

P(xn+2,xn+3,,x2n+2;fx)P(x1,x2,,xn+1;fx)=\displaystyle\mathrm{P}\left(x_{n+2},x_{n+3},\ldots,x_{2n+2};f\mid x\right)-\mathrm{P}\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)=
=i=1n+1(xn+i+1xi)Δn+1i(xxi+1)(xxi+2)(xxi+n)\displaystyle=\sum_{i=1}^{n+1}\left(x_{n+i+1}-x_{i}\right)\Delta_{n+1}^{i}\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)\ldots\left(x-x_{i+n}\right)
=i=1n+1(xn+i+1xi)Ψi(ξ)(xxi+1)(xxi+2)(xxi+n).\displaystyle=\sum_{i=1}^{n+1}\left(x_{n+i+1}-x_{i}\right)\Psi_{i}(\xi)\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)\ldots\left(x-x_{i+n}\right).

To calculate this expression, we will proceed by induction again. Relations (18) can be written in condensed form:

(xn+j+1xj)Ψj(x)=(xxj)Ψj(x)+(xn+j+1x)Ψj+1(x)j=1.2,,n+1\begin{gathered}\left(x_{n+j+1}-x_{j}\right)\Psi_{j}(x)=\left(x-x_{j}\right)\Psi_{j}^{\prime}(x)+\left(x_{n+j+1}-x\right)\Psi_{j+1}^{\prime}(x)\\ j=1,2,\ldots,n+1\end{gathered}

OrΨ1,Ψ2,,Ψn+2\Psi_{1}^{\prime},\Psi_{2}^{\prime},\ldots,\Psi_{n+2}^{\prime}are functions analogous toΨ1,Ψ2,,Ψn+1\Psi_{1},\Psi_{2},\ldots,\Psi_{n+1}on the sequelx1,x2,,x2n+2x_{1},x_{2},\ldots,x_{2n+2}, but by lowering the value of by one unitnn.

We can therefore deduce:

i=1n+1(xn+i+1xi)Ψi(ξ)(xxi+1)(xxi+2)(xxi+n)=\displaystyle\sum_{i=1}^{n+1}\left(x_{n+i+1}-x_{i}\right)\Psi_{i}(\xi)\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)\ldots\left(x-x_{i+n}\right)=
=\displaystyle= (xξ)i=1n(xn+i+1xi+1)Ψi+1(ξ)(xxi+2)(xxi+3)(xxi+n)\displaystyle(x-\xi)\sum_{i=1}^{n}\left(x_{n+i+1}-x_{i+1}\right)\Psi_{i+1}^{\prime}(\xi)\left(x-x_{i+2}\right)\left(x-x_{i+3}\right)\ldots\left(x-x_{i+n}\right)

so little by little

P(xn+2,xn+3,x2n+2;fx)P(x1,x2,xn1;fx)=(xξ)n\mathrm{P}\left(x_{n+2},x_{n+3},\ldots x_{2n+2};f\mid x\right)-\mathrm{P}\left(x_{1},x_{2},\ldots x_{n-1};f\mid x\right)=(x-\xi)^{n}

and the extension is obviously achieved by the function equal to:

P(x1,x2,,xn+1;fx) For xξP(xn+2,xn+3,,x2n+2;fx) For xξ\begin{array}[]{ll}\mathrm{P}\left(x_{1},x_{2},\ldots,x_{n+1};f\mid x\right)&\text{ pour }x\leq\xi\\ \mathrm{P}\left(x_{n+2},x_{n+3},\ldots,x_{2n+2};f\mid x\right)&\text{ pour }x\geq\xi\end{array}

it being manifestly non-concave in ordernn
The general case of mmany andξ˙\dot{\xi}anything can be reduced to this. If, generally speaking, one hasxiξ÷xi+1x_{i}\leqslant\xi\div x_{i+1}the quantities:

Ψj(ξ)j=1.2,,in1( none if in+1)Ψj(ξ)j=i+1,i+2,,mn1( none if imn1)\begin{array}[]{ll}\Psi_{j}^{\circ}(\xi)\quad j=1,2,\ldots,i-n-1\quad&(\text{ aucun si }i\leq n+1)\\ \Psi_{j}^{\circ}(\xi)\quad j=i+1,i+2,\ldots,m-n-1&(\text{ aucun si }i\geq m-n-1)\end{array}

are zero by definition. The function is therefore necessarily polynomial in the intervals(x1,xi),(xi+1,xm)\left(x_{1},x_{i}\right),\left(x_{i+1},x_{m}\right)The previous demonstration then shows us that it suffices to keep then+1n+1first points to the left ofxix_{i}This includes and then+1n+1first points to the right ofxi+1x_{i+1}the latter included. Ifi<n+1i<n+1we complete the function on the leftx1x_{1}by introducingn+1in+1-ipoints to the left ofx1x_{1}and taking differences divided in such a way that on this new sequence they are
still of the form (20). Ifi>mn1i>m-n-1we perform the same operation on the right ofxmx_{m}and ifm<2n+2m<2n+2we make the complement both on the left ofx1x_{1}and to the right ofxmx_{m}.

We can now state the following property:
For the functionf(x)\mathrm{f}(\mathrm{x})defined and non-concave of order n on the points (19) is everywhere extendable it is necessary and sufficient that it satisfies on these points the property of restricted convexity.

Indeed, in ordinary space,mn1m-n-1dimensions the curve

y1=Ψ1(x),y2=Ψ2(x),,ymn1=Ψmn1(x)\displaystyle y_{1}=\Psi_{1}(x),y_{2}=\Psi_{2}(x),\ldots,y_{m-n-1}=\Psi_{m-n-1}(x) (C)
x1xxm.\displaystyle x_{1}\leq x\leq x_{m}.

We then see that the restricted convexity condition means that any hyperplane passing through the origin and leaving the curve (C) on the same side, leaves the point with coordinates

(Δn+11,Δn+12,,Δn+1mn1)\left(\Delta_{n+1}^{1},\Delta_{n+1}^{2},\ldots,\Delta_{n+1}^{m-n-1}\right) (21)

on this same side. Geometrically this means that point (21) is inside or on the boundary of the smallest convex cone containing the curve(𝒞)(\mathcal{C})and having the origin as its apex.

It immediately follows that if the restricted convexity condition is satisfied, then we have

Δn+1j=ΣμkΨj(ξk)ı^=1.2,,mn1\Delta_{n+1}^{j}=\Sigma_{\mu_{k}}\Psi_{j}\left(\xi_{k}\right)\quad\hat{\imath}=1,2,\ldots,m-n-1 (22)

Orμk\mu_{k}are a finite number of positive constants andεk\varepsilon_{k}of points in the interval (x1,xmx_{1},x_{m}). The stated property then follows from the preliminary position demonstrated at the beginning of this No.
14. Let us call(Γ)(\Gamma)the convex domain defined previously. If there exists a functionΨ(x)\Psi(x)non-negative and not identically zero, vanishing at the pointsξk\xi_{k}the point (21) given by formulas (22) is on the frontier of (I\mathrm{I}^{\prime}). In this case, we can indeed find a point as close as we want to (21) that does not satisfy the restricted convexity condition. Any boundary point can be obtained in this way, which follows from the fact that if the pointsξk\xi_{k}If the previous condition is not met, point (21) is necessarily an interior point. Indeed, ifΨ(x)=ΣλjΨj(x)\Psi(x)=\Sigma\lambda_{j}\Psi_{j}(x)is a non-negative function the expression

|ΣμkΨ(s˙x)Σλj|\left|\frac{\Sigma\mu_{k}\Psi\left(\dot{s}_{x}\right)}{\Sigma\lambda^{j}}\right|

has a minimum which is not zero in our case, otherwise we could, by a process of passing to the limit, conclude the existence of a functionΨ(x)\Psi(x)not identically zero and vanishing at the pointsξk\xi_{k}, which contradicts the hypothesis.

Of course we are not talking about the origin point, the apex of the cone (l'), which is of no interest.

Suppose that one of the differences is divided, for exampleΔn+1i\Delta_{n+1}^{i}, is zero. Then all the pointsξk\xi_{k}are outside the open interval (xi,xi+n+1x_{i},x_{i+n+1}). But in this case the functionΨ(x)=Ψi(x)\Psi(x)=\Psi_{i}(x)cancels itself out in all respectsξk\xi_{k}, SO :

The points (21) corresponding to non-concave (and not convex) functions satisfying the restricted convexity condition lie on the boundary of the domain (1'). It should be noted that convex functions do not always yield an interior point. For examplen=2,m=6x3<ξ<x4n=2,m=6x_{3}<\xi<x_{4},

Δ31=Ψ1(ξ),Δ32=Ψ2(ξ)Δ33=Ψ3(ξ)\Delta_{3}^{1}=\Psi_{1}(\xi),\Delta_{3}^{2}=\Psi_{2}(\xi)\Delta_{3}^{3}=\Psi_{3}(\xi)

All these functions are convex, but point (21) is on the boundary of (11^{\prime}since the function
Ψ(x)=(ξx2)(ξx3)Ψ1(x)+(ξx3)(ξx4)Ψ2(x)+(ξx4)(ξx5)Ψ3(x)\Psi(x)=\left(\xi-x_{2}\right)\left(\xi-x_{3}\right)\Psi_{1}(x)+\left(\xi-x_{3}\right)\left(\xi-x_{4}\right)\Psi_{2}(x)+\left(\xi-x_{4}\right)\left(\xi-x_{5}\right)\Psi_{3}(x)is non-negative and vanishes at the point..\underset{.}{.}15.
Let us say a few more words about the functions that can be extended at each point. For this to be the case, it is obviously necessary that the point (21) be inside or on the boundary of a certain convex conic domain (Γ\Gamma^{\prime}) having the origin as its vertex. The domain (Γ\Gamma^{\prime}) always contains the domain (Γ\Gamma), but is generally more extensive than the latter. It can be stated that (11^{\prime}) is greater than (11^{\prime}) as soon as there exists on the boundary of the latter a point such that any point sufficiently close to it corresponds to non-concave functions that can be extended to any point. Thus, in the casen>2,mn+4n>2,m\geq n+4the domains (L\mathrm{l}^{\prime}), (L\mathrm{l}^{\prime}) do not coincide 10 ). The same applies ifn=2,m811n=2,m\geq 8{}^{11}).

10) All you need to do is take m=n+4Let's assume, for simplicity, that\displaystyle\text{ 10) Il suffit de prendre }m=n+4\text{. Supposons, pour simplifier, que }
x1=0,x2=1,x3=2,,xi=i1,,xn+4=n+3\displaystyle\qquad x_{1}=0,x_{2}=1,x_{3}=2,\ldots,x_{i}=i-1,\ldots,x_{n+4}=n+3

and consider a function such that

n+11=5n(n+1)3n+n(n+1)2,n+12=3n(n+1),n+13=1 We have (x1)(x2)n+11+(x2)(xn1)n+12+(xn1)(xn2)n+13>03xn+2,n>2\begin{gathered}\triangle_{n+1}^{1}=5^{n}-(n+1)3^{n}+\frac{n(n+1)}{2},\triangle_{n+1}^{2}=3^{n}-(n+1),\triangle_{n+1}^{3}=1\\ \text{ On a }\\ (x-1)(x-2)\triangle_{n+1}^{1}+(x-2)(x-n-1)\triangle_{n+1}^{2}+(x-n-1)(x-n-2)\triangle_{n+1}^{3}>0\\ \quad 3\leq x\leq n+2,n>2\end{gathered}

therefore any point quite close to(n+11,n+12,n+13)\left(\triangle_{n+1}^{1},\triangle_{n+1}^{2},\triangle_{n+1}^{3}\right)gives convex functions of ordernnextendable at every point. On the other hand, it can be shown that there exists a functionΨ(x)0\Psi(x)\geq 0canceling out at the point52\frac{5}{2}and conclude that it is indeed a boundary point.
11 ) It suffices to considerm=8m=8. Example

x1=0,x2=1,,x8=731=1,32=6,33=2,34=6,35=1\begin{gathered}x_{1}=0,x_{2}=1,\ldots,x_{8}=7\\ \triangle_{3}^{1}=1,\triangle_{3}^{2}=6,\triangle_{3}^{3}=2,\triangle_{3}^{4}=6,\triangle_{3}^{5}=1\end{gathered}

We arrive at the property as in the previous example by noting that we have

3ψ1ψ2+3ψ3ψ4+3ψ503\psi_{1}-\psi_{2}+3\psi_{3}-\psi_{4}+3\psi_{5}\geq 0

equality being verified forx=52,92x=\frac{5}{2},\frac{9}{2}.

On the contrary, we will show that ifn=2,m=6.7n=2,m=6,7the domains (L\mathrm{l}^{\prime}), (L\mathrm{l}^{\prime}) coincide. It suffices to considerm=7m=7the casem=6m=6which can always be reduced to this. We will show that in any neighborhood of any boundary point of (I) we can find a point corresponding to functions that are either not of order 2, or, while being second order, are not extendable to every point. This property is immediate for boundary points arising from non-concave functions (of which at least one of the divided differences is zero). This is true, moreover, regardless ofnnAndm12m{}^{12}). It remains to examine the boundary points arising from convex functions. It is then necessary that in each open interval (x1,x4x_{1},x_{4}),(x2,x5),(x3x6)(x4,x7)\left(x_{2},x_{5}\right),\left(x_{3}x_{6}\right)\left(x_{4},x_{7}\right)at least one pointξk\xi_{k}It is easy to see that the only case that can provide a boundary point is that where one of the points is in the open interval (x3,x4x_{3},x_{4}) all the others being in (x6,x7x_{6},x_{7}) [or one in (x4,x5x_{4},x_{5}) and the others in (x1,x2x_{1},x_{2})].

These boundary points are therefore of the form

Δ31=λΨ1(ξ),Δ32=λΨ2(ξ),Δ33=λΨ3(ξ),Δ34=μλ>0,μ>0x3<ξ<x4\begin{gathered}\Delta_{3}^{1}=\lambda\Psi_{1}(\xi),\Delta_{3}^{2}=\lambda\Psi_{2}(\xi),\Delta_{3}^{3}=\lambda\Psi_{3}(\xi),\Delta_{3}^{4}=\mu\\ \lambda>0,\mu>0x_{3}<\xi<x_{4}\end{gathered}

(similar form ifx4<ξ<x5x_{4}<\xi<x_{5}The existence of a neighboring point corresponding to a non-extendable function follows from the fact that

(xx2)(xx3)(x4x1)Δ31+(xx3)(xx4)(x5x2)Δ32++(xx4)(xx5)(x6x3)Δ33=λ(x54)2 In (x3,x4)\begin{gathered}\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x_{4}-x_{1}\right)\Delta_{3}^{1}+\left(x-x_{3}\right)\left(x-x_{4}\right)\left(x_{5}-x_{2}\right)\Delta_{3}^{2}+\\ +\left(x-x_{4}\right)\left(x-x_{5}\right)\left(x_{6}-x_{3}\right)\Delta_{3}^{3}=\lambda\left(x-\frac{5}{4}\right)^{2}\text{ dans }\left(x_{3},x_{4}\right)\end{gathered}

It is now clear that (Γ\Gamma^{\prime}), (Γ\Gamma^{\prime}) must coincide. Let A be a point on (L\mathrm{l}^{\prime}) outside of (Γ\Gamma). The entire cone with vertex A, circumscribed about (Γ\Gamma^{\prime}) must belong to (Γ\Gamma^{\prime}) which contradicts what was demonstrated earlier (13 ).
16. Let us call an elementary function of degree n with m vertices any function whose(n1)e˙me(n-1)^{\dot{e}me}derivative is a polygonal line atmmvertices without counting the endpoints of the interval where these functions are defined.

It follows that an elementary function of degreennis of the form

f(x)={P(x) degree polynomial n In (has,ξ1)P(x)+i=1khasi(xξi)n In (ξk,ξk+1)k=1.2,,m(ξm+1=b).f(x)=\left\{\begin{array}[]{r}\mathrm{P}(x)\text{ polynome de degré }n\text{ dans }\left(a,\xi_{1}\right)\\ \mathrm{P}(x)+\sum_{i=1}^{k}a_{i}\left(x-\xi_{i}\right)^{n}\quad\text{ dans }\left(\xi_{k},\xi_{k+1}\right)\\ k=1,2,\ldots,m\left(\xi_{m+1}=b\right).\end{array}\right.
0 0 footnotetext: 12 ) From this property it immediately follows that (Γ\Gamma), (Γ\Gamma) have parts of a common border.
13 ) In this reasoning, it is of course assumed that (𝚪\boldsymbol{\Gamma}) is indeed a 5-dimensional manifold. Moreover, it can easily be verified that in the general case (Γ\Gamma) is indeed atmn1m-n-1dimensions.

For such a function to be non-concave of ordernnit is necessary and sufficient that

hasi0,i=1.2,,ma_{i}\geq 0,i=1,2,\ldots,m

An elementary function of degreennhaving a single vertex is always of ordernn.

If a function of ordernndefined on the points (19) is extendable in any interval; we have seen that it is extendable by an elementary function of degreenn.

It follows that iff(x)f(x)is non-concave of ordernnwithin an interval (x1,xmx_{1},x_{m}) there exists an elementary function of degreennand non-concave of ordernntaking the valuesf(xi)f\left(x_{i}\right)to the points

x1<x2<<xm1<xmx_{1}<x_{2}<\ldots<x_{m-1}<x_{m}

Let's examine more closely the functions that provide the extension. Since these are non-concave functions in any interval, they will be atnth n^{\text{ème }}differences divided bounded in (x1,xmx_{1},x_{m}), therefore their (n1n-1The second derivative will always be continuous in this closed interval, and the derivativesf(n)(x1),f(n)(xm)f^{(n)}\left(x_{1}\right),f^{(n)}\left(x_{m}\right)exist[\left[\right.we askf(n)(x1)=(ddx)df(n1)(x1)f^{(n)}\left(x_{1}\right)=\left(\frac{d}{dx}\right)_{d}f^{(n-1)}\left(x_{1}\right),f(n)(xm)1=(ddx)gf(n1)(xm)]\left.f^{(n)}\left(x_{m}\right)_{1}=\left(\frac{d}{dx}\right)_{g}f^{(n-1)}\left(x_{m}\right)\right]I say that:

Every non-concave function of order n is the limit of a sequence of uniformly converging convex functions of order n. The sequence of derivatives converges uniformly to those of the given function up to order n.n1\mathrm{n}-1and also for the nth derivative at both endsx1,xmx_{1},x_{m}.

By successive derivations we see that it suffices to demonstrate the property forn=1n=1. In this case, it can be easily seen by considering the representative figure of the function and proceeding as in No. 2.

Now suppose that point (21) is inside (Γ\Gamma). Let us consider a hypertetrahedronHAS1HAS2HASmn1\mathrm{A}_{1}\mathrm{\penalty 10000\ A}_{2}\ldots\mathrm{\penalty 10000\ A}_{m-n-1}not degenerated completely internal to (L\mathrm{l}^{\prime}) and containing within it point (21). Letf1(x),f2(x),,fmn1(x)f_{1}(x),f_{2}(x),\ldots,f_{m-n-1}(x)giving the extension and corresponding to the pointsHAS1,HAS2,,HASmn1\mathrm{A}_{1},\mathrm{\penalty 10000\ A}_{2},\ldots,\mathrm{\penalty 10000\ A}_{m-n-1}By modifying the points as needed, however slightly,HASi\mathrm{A}_{i}We can see that we can assume thatfi(x)f_{i}(x)let them be convex. Let them now beλ1,λ2,,λmn1(0)\lambda_{1},\lambda_{2},\ldots,\lambda_{m-n-1}(\geq 0)The homogeneous tetrahedral coordinates of point (21), we then see that the function

λifi(x)λi+ suitable polynomial of degree n\frac{\sum\lambda_{i}f_{i}(x)}{\sum\lambda_{i}}+\text{ polynome convenable de degré }n

is convex and takes the values ​​given at the pointsx1,x2,xmx_{1},x_{2},\ldots x_{m}. SO.

If (21) is an interior point, the extension can always be done by a convex function 14 ).

It also follows that if (21) is inside, any function extending it can be approximated as closely as desired by other convex functions. Indeed,f(x)f(x)such a function andf*(x)f*(x)a convex function performing the extension, it suffices to consider

f(x)+λf*(x)1+λ,λ>0\frac{f(x)+\lambda f^{*}(x)}{1+\lambda},\lambda>0

We also intend to demonstrate that, if the point(21)(21)is on the border of(Γ)(\Gamma)The extension is not possible with a convex function.

In other words, iff(x)f(x)is a convex function of ordernnand if we construct the point(21)(21)from its divided differences, then this point lies within(I)(I^{\prime}).

Let us consider the interval(xi,xi+1)(x_{i},x_{i+1})From a property that will be demonstrated later (property A of no . 22), it follows that there exists a functionφ(x)\varphi(x)non-concave, and even convex of ordernnIn(xi,xi+1)(x_{i},x_{i+1}), such as …

f(k)(xi)=f(k)(xi),p(k)(xi+1)=f(k)(xi+1)k=1.2,,n1Pd(n)(xi)=fd(n)(xi),φg(n)(xi+1)=fg(n)(xi+1)\begin{gathered}\mathrm{f}^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right),\quad\mathrm{p}^{(k)}\left(x_{i+1}\right)=f^{(k)}\left(x_{i+1}\right)\\ k=1,2,\ldots,n-1\\ \mathrm{P}_{d}^{(n)}\left(x_{i}\right)=f_{d}^{(n)}\left(x_{i}\right),\quad\varphi_{g}^{(n)}\left(x_{i+1}\right)=f_{g}^{(n)}\left(x_{i+1}\right)\end{gathered}

and the valuesφ(xi),φ(xi+1)\varphi\left(x_{i}\right),\varphi\left(x_{i+1}\right)being subject to the sole condition

φ(xi)f(xi)|<ε,|φ(xi+1)f(xi+1)<ε\varphi\left(x_{i}\right)-f\left(x_{i}\right)|<\varepsilon,\quad|\varphi\left(x_{i+1}\right)-f\left(x_{i+1}\right)\mid<\varepsilon

ε\varepsilonbeing a sufficiently small positive number.
It follows that any functionf1(x)f_{1}(x)such as

|f(xi)f1(xi)|<ε,i=1.2,,m\left|f\left(x_{i}\right)-f_{1}\left(x_{i}\right)\right|<\varepsilon,i=1,2,\ldots,m

is still extendable provided thatε>0\varepsilon>0is quite small, which proves that it is indeed an internal point.

Properties demonstrated a little later will further follow that any function performing the extension is the limit of a sequence of elementary functions of degreenncarrying out the extension and converging uniformly in any finite interval.

For an interior point of (Γ\Gamma) the extension is always possible by an infinite number of functions. The same is true for boundary points in general, except for some of them for which the extension is only possible in one way within the interval (x1,xmx_{1},x_{m}). The problem addressed in the following issues allows us to study this uniqueness.

Finally, we could propose to express restricted convexity by explicit inequalities between quantitiesΔn+1i\Delta_{n+1}^{i}. We don't have

0 0 footnotetext: 14 ) As we can see, the property is demonstrated for the interval (xi,xmx_{i},x_{m}), but, we can extend the function outwards while respecting the convexity.

The intention here is to look for these inequalities, which present themselves in a rather complicated form. Let us simply note that we can look at theΔn+1i\Delta_{n+1}^{i}as generalizing the sequence of coefficients of certain quadratic forms.

IV

Case study of an extension

  1. 17.

    We have assumed up to this point that all points (19) are distinct. We can study limit problems by assuming that several of these points coincide. We will choose one of these problems, the most interesting one in fact.

By takingm=2n+2m=2n+2and assuming that

x2,x3,,xn+1x1=hasxn+2,xn+3,,x2n+2x2n+2=b>has\begin{gathered}x_{2},x_{3},\ldots,x_{n+1}\rightarrow x_{1}=a\\ x_{n+2},x_{n+3},\ldots,x_{2n+2}\rightarrow x_{2n+2}=b>a\end{gathered}

We obtain the following problem:
Determine a non-concave function of order n in the interval (a, b) taking the given values ​​for its first n derivatives

f(has),f(has),,f(n)(has)\displaystyle f(a),f^{\prime}(a),\ldots,f^{(n)}(a)
f(b),f(b),,f(n)(b)\displaystyle f(b),f^{\prime}(b),\ldots,f^{(n)}(b)

We can obtain the possibility condition of this problem by taking the limit in the restricted convexity condition and we can easily show that this method is perfectly justified.

Thus we obtain

Δn+1i+1=(1)ii!(bhas)n+1\displaystyle\Delta_{n+1}^{i+1}=\frac{(-1)^{i}}{i!(b-a)^{n+1}} [k=0i(1)k(bhas)k(ik)(nk)!(ni)!f(k)(b)\displaystyle{\left[\sum_{k=0}^{i}(-1)^{k}(b-a)^{k}\binom{i}{k}\frac{(n-k)!}{(n-i)!}f(k)(b)-\right.} (23)
k=0ni(bhas)k(ik)(nk)!(ni)!f(k)(has)].\displaystyle\left.-\sum_{k=0}^{n-i}(b-a)^{k}\binom{i}{k}\frac{(n-k)!}{(n-i)!}f^{(k)}(a)\right].

On the other hand, the limits of the functionsψi(x)\psi_{i}(x)are polynomials

limit.Ψi(x)=1(bhas)n+1(ni1)(bx)ni+1(xhas)i1.\lim.\Psi_{i}(x)=\frac{1}{(b-a)^{n+1}}\binom{n}{i-1}(b-x)^{n-i+1}(x-a)^{i-1}.

Therefore, for our problem to be possible, it is necessary that for every polynomial

i=1n+1λi(ni1)(bx)ni+1(xhas)i1\sum_{i=1}^{n+1}\lambda_{i}\binom{n}{i-1}(b-x)^{n-i+1}(x-a)^{i-1} (24)

not negative in (has,ba,b) we have

i=1n+1λiΔn+1i0\sum_{i=1}^{n+1}\lambda_{i}\Delta_{n+1}^{i}\supseteq 0

The polynomial (24) can also be written in the form

k=0nμk(bx)k\sum_{k=0}^{n}\mu_{k}(b-\cdots x)^{k}

Or

μk=(nk)(bhas)nki=nk+1n+1(1)i+kn1λi(kni+1)\mu_{k}=\binom{n}{k}(b-a)^{n-k}\sum_{i=n-k+1}^{n+1}(-1)^{i+k-n-1}\lambda_{i}\binom{k}{n-i+1}

We also have

i=1n+1λiΔn+1i=1n!(bhas)n+1i=0nμici\sum_{i=1}^{n+1}\lambda_{i}\Delta_{n+1}^{i}=\frac{1}{n!(b-a)^{n+1}}\sum_{i=0}^{n}\mu_{i}c_{i}

where by performing the calculations using formulas (23)

ci=i![f(ni)(b)k=0i(bhas)kk!f(ni+k)(has)],i=0.1,,n.c_{i}=i!\left[f^{(n-i)}(b)-\sum_{k=0}^{i}\frac{(b-a)^{k}}{k!}f^{(n-i+k)}(a)\right],i=0,1,\ldots,n. (25)

Therefore, for the problem to be possible, it is necessary that for every polynomial

i=0nμi(bx)i\sum_{i=0}^{n}\mu_{i}(b-x)^{i}

non-negative in(has,b)(a,b)we have

i=0nμici0\sum_{i=0}^{n}\mu_{i}c_{i}\geqslant 0

If we havec0=0c_{0}=0we must also havec1=c2==cn=0c_{1}=c_{2}=\ldots=c_{n}=0as can be easily verified, and therefore the only solution is a polynomial of completely determined degree. In what follows, we will always assume thatc0>0c_{0}>0.

The condition of possibility can be expressed in the following geometric form:

For the problem posed to be possible, the point must be

Mn(c1c0,c2c0,,cnc0)\mathrm{M}_{n}\left(\frac{c_{1}}{c_{0}},\frac{c_{2}}{c_{0}},\ldots,\frac{c_{n}}{c_{0}}\right)

either inside or on the boundary of the smallest convex domain(Wn)\left(\mathrm{W}_{n}\right)containing curve 15 )

y1=(bx),y2=(bx)2,,yn=(bx)nhasxb.y_{1}=(b-x),y_{2}=(b-x)^{2},\ldots,y_{n}=(b-x)^{n}a\leq x\leq b.

Let's say once and for all that, given the problem data, every function of ordernnto consider isnth n^{\text{ème }}difference divided is bounded, therefore

0 0 footnotetext: 15) This property is due to MS Kakeya. „On some Integral Equations III" Tôhoku Math. Journ. t. 8 p. 14. The author studies a particular case of the problem.

has a(n1)th (n-1)^{\text{ème }}continuous derivative in the closed interval(has,b)(a,b)and thenth n^{\text{ème }}The derivative exists at the extremities.
18. Every point of(Wn)\left(\mathrm{W}_{n}\right)or its border can be represented in the form

ci=k=1mλk(bξk)ii=0,1,2,,n\displaystyle c_{i}=\sum_{k=1}^{m}\lambda_{k}\left(b-\xi_{k}\right)^{i}i=0,1,2,\ldots,n (26)
mn,λi0,hasξ1<ξ2<<ξmb.\displaystyle m\leq n,\lambda_{i}\geq 0,a\leq\xi_{1}<\xi_{2}<\ldots<\xi_{m}\leq b.

For this point to be on the boundary, it is necessary and sufficient that one of the following three conditions be met.

(type I) m[n2] if has<ξ1,ξm<b\displaystyle\text{ (type I) }m\leq\left[\frac{n}{2}\right]\text{ si }a<\xi_{1},\xi_{m}<b
(type II) m[n+22] if has=ξ1,ξm=b\displaystyle\text{ (type II) }m\leq\left[\frac{n+2}{2}\right]\text{ si }a=\xi_{1},\xi_{m}=b
(type III) m[n+12] if has<ξ1,ξm=b\displaystyle\text{ (type III) }m\leq\left[\frac{n+1}{2}\right]\text{ si }a<\xi_{1},\xi_{m}=b
(type IV) m[n+12] if has=ξ1,ξmb\displaystyle\text{ (type IV) }m\leq\left[\frac{n+1}{2}\right]\text{ si }a=\xi_{1},\xi_{m}-b

which immediately follows from the distribution of zeros of a non-negative polynomial of degreennIn (has,ba,b).

It can easily be shown, by comparing two systems of linear equations, that the representation (26) of a boundary point is unique.

Note now that the projection of the domain (Wn\mathrm{W}_{n}) on the hyperplaneOy1y2yn1\mathrm{O}y_{1}y_{2}\ldots y_{n-1}is precisely the domain(Wn1)\left(\mathrm{W}_{n-1}\right). Likewise(Wn)\left(\mathrm{W}_{n}\right)can be viewed as the projection of(Wn+1)\left(\mathrm{W}_{n+1}\right)\ldotsetc. The projection of the pointMnM_{n}and the point

Mn1(c1c0,c2c0,,cn1c0)\mathrm{M}_{n-1}\left(\frac{c_{1}}{c_{0}},\frac{c_{2}}{c_{0}},\ldots,\frac{c_{n-1}}{c_{0}}\right)

and corresponds, as we can see, to our problem posed with the same data for the derivative.f(x)f^{\prime}(x)of the function. The lineMnMn1M_{n}M_{n-1}cuts the border(Wn)\left(\mathrm{W}_{n}\right)in two points:Mn\mathrm{M}_{n}^{\prime}whose ordinate is the smallest andMn"\mathrm{M}_{n}^{\prime\prime}whose ordinate is the largest. IfMn1\mathrm{M}_{n-1}is a border pointMnMn1\mathrm{M}_{n}\mathrm{M}_{n-1}cannot cut (Wn\mathrm{W}_{n}) that at a single border point;MnMn",Mn\mathrm{M}_{n}^{\prime}\mathrm{M}_{n}^{\prime\prime},\mathrm{M}_{n}therefore coincide. It follows that every point of (Wn\mathrm{W}_{n}) is the projection of a boundary point of (Wn+1\mathrm{W}_{n+1}).

It also follows that any interior pointMnM_{n}has infinitely many representations of the form (26). It can be shown that there are infinitely many for any value ofm>n2+1m>\left\lceil\frac{n}{2}\right\rfloor+1, withhas<ξ1,ξm<ba<\xi_{1},\xi_{m}<b. Ifnnis even there are an infinite number of representations withm=[n2]+1m=\left[\frac{n}{2}\right]+1Among these re-
presentations there is one for whichhas=ξ1,ξm<ba=\xi_{1},\xi_{m}<band one for whichhas<ξ1,ξ˙m=ba<\xi_{1},\dot{\xi}_{m}=b. Ifnnis odd there is only one representation withm=[n2]+1m=\left[\frac{n}{2}\right]+1and thenhas<ξ1,ξm<ba<\xi_{1},\xi_{m}<bAmong the representations withm=[n2]+2m=\left[\frac{n}{2}\right]+2there is one for whichhas=ξ1,ξm=ba=\xi_{1},\xi_{m}=b.

IfMnM_{n}is inside (WnW_{n}),Mn1M_{n-1}is inside (Wn1W_{n-1}). It follows that ifnnis oddMn,Mn"\mathrm{M}_{n}^{\prime},\mathrm{M}_{n}^{\prime\prime}are of type (III) and (IV) and ifnnis even, they are of type (I) and (II). It can easily be shown thatMnM_{n}^{\prime}is of type (I) or (III) andMn"M_{n}^{\prime\prime}of type (II) or (IV).

Forn=1n=1the domain(Wn)\left(\mathrm{W}_{n}\right)reduces to the segment(0,bhas)(0,b-a)and we can easily verify that our problem is impossible for the right-hand side.
19. Let us now examine the sufficient conditions. Consider the polynomials:

P1(x),P2(x),,Pn+2(x)\mathrm{P}_{1}(x),\mathrm{P}_{2}(x),\ldots,\mathrm{P}_{n+2}(x)

defined by the relationships:

Pi(k)(has)=f(k)(has)k=0.1,,ni+1Pi(k)(b)=f(k)(b)k=0.1,,i2\begin{array}[]{ll}\mathrm{P}_{i}^{(k)}(a)=f^{(k)}(a)&k=0,1,\ldots,n-i+1\\ \mathrm{P}_{i}^{(k)}(b)=f^{(k)}(b)&k=0,1,\ldots,i-2\end{array}

The initial conditions being removed forPn+2\mathrm{P}_{n+2}and the last ones forP1P_{1}A simple calculation reveals

Pn+2(x)P1(x)=1n!i=1mλi(xξ˙i)n\mathrm{P}_{n+2}(x)-\mathrm{P}_{1}(x)=\frac{1}{n!}\sum_{i=1}^{m}\lambda_{i}\left(x-\dot{\xi}_{i}\right)^{n} (27)

using representation (26). IfMnM_{n}is an interior point; there are an infinite number of representations withhas<ξ1,ξm<ba<\xi_{1},\xi_{m}<band then our problem is solved by the function

Φ(x)={P1(x) In (has,ξ1)P1(x)+1n!i=1kλi(xξi)n In (ξk,ξk+1)k=1.2,,mξm+1=b.\Phi(x)=\left\{\begin{array}[]{l}\mathrm{P}_{1}(x)\quad\text{ dans }\left(a,\xi_{1}\right)\\ \mathrm{P}_{1}(x)+\frac{1}{n!}\sum_{i=1}^{k}\lambda_{i}\left(x-\xi_{i}\right)^{n}\text{ dans }\left(\xi_{k},\xi_{k+1}\right)\\ \quad k=1,2,\ldots,m\quad\xi_{m+1}=b.\end{array}\right.

Let us call an elementary solution any elementary function of degreennsolving the problem.

So, ifMn\mathrm{M}_{n}is an interior point ityyalways has infinitely many solutions. There are always infinitely many elementary solutions. In particular, there is always an elementary solution ton2+1\left\lfloor\frac{n}{2}\right\rfloor+1summits. Ifnnis odd the solution of this form is unique, but there are infinitely many ifnnis even. The set of all solutions forms a
bounded family. Their derivatives up to ordern1n-1as well as their two derivatives of ordernnalso form bounded families. The solutions have an upper limit function𝚽1(x)\boldsymbol{\Phi}_{1}(x)and a lower limit functionΦ2(x)\Phi_{2}(x)We must have it in particular!

P2(x)Φ1(x)f(x)Φ2(x)P1(x)(hasxb)P_{2}(x)\geqslant\Phi_{1}(x)\geqslant f(x)\geqslant\Phi_{2}(x)\geqslant P_{1}(x)\quad(a\leq x\leq b)

for any solutionf(x)f(x)
Note that :

P2(x)P1(x)=[f(b)f(has)(bhas)n+i=1n1i!(bhas)nif(i)(has)](xhas)n\mathrm{P}_{2}(x)-\mathrm{P}_{1}(x)=\left[\frac{f(b)-f(a)}{(b-a)^{n}}+\sum_{i=1}^{n}\frac{1}{i!(b-a)^{n-i}}f^{(i)}(a)\right](x-a)^{n}

It follows that if the problem data remains smaller than a fixed number in modulo, then...ε0\varepsilon-0corresponds to aη>0\eta>0such that if:
we have

|f(b)f(has)|<η|bhas|<η\displaystyle|f(b)-f(a)|<\eta\quad|b-a|<\eta
|Φ1(x)Φ2(x)|<ε In (has,b)\displaystyle\left|\Phi_{1}(x)-\Phi_{2}(x)\right|<\varepsilon\quad\text{ dans }(a,b)
  1. 20.

    The function (28) can be constructed with any representation (26). If we havehas=ξ1a=\xi_{1}of course, we remove the definition in the interval (has,ξ˙1a,\dot{\xi}_{1}). Let us designate in particular byΦ1*(x)\Phi_{1}^{*}(x)the function (28) constructed with the representation for whichhas=ξ1,m=[n2]+1a=\xi_{1},m=\left[\frac{n}{2}\right]+1ifnnis even andhas=ξ˙1,b=ξ˙m,m=[n2]+2a=\dot{\xi}_{1},b=\dot{\xi}_{m},m=\left[\frac{n}{2}\right]+2ifnnis odd and byΦ2*(x)\Phi_{2}^{*}(x)the function (28) constructed with the representation for whichs˙m=b\dot{\boldsymbol{s}}_{m}=b,m=[n2]+1m=\left[\frac{n}{2}\right]+1ifnnis even andm=[n2]+1m=\left[\frac{n}{2}\right]+1ifnnis odd.

We intend to demonstrate that.

Φ1(x)Φ1*(x),Φ2(x)=Φ2*(x).\Phi_{1}(x)\equiv\Phi_{1}^{*}(x),\quad\Phi_{2}(x)=\Phi_{2}^{*}(x). (30)

Ifnnis evenΨ1*(x),Ψ2*(x)\Psi_{1}^{*}(x),\Psi_{2}^{*}(x)These are not solutions. Let them be:

(has=ξ1),ξ2,,ξ[n2]+1 the peaks of Φ1*ξ1",ξ2",,(ξ"][n2]+1=b)\begin{array}[]{ll}\left(a=\xi_{1}^{\prime}\right),\xi_{2}^{\prime},\ldots,\xi^{\prime}\left[\frac{n}{2}\right]+1&\text{ les sommets de }\Phi_{1}^{*}\\ \xi_{1}^{\prime\prime},\xi_{2}^{\prime\prime},\ldots,\left(\xi^{\prime\prime}\right]\left[\frac{n}{2}\right]+1&=b)\end{array}

and consider an elementary solutionf(x)f(x)having[n2]+1\left[\frac{n}{2}\right]+1summitsξ1,ξ2,,ξ[n2]+1\xi_{1},\xi_{2},\ldots,\xi_{\left[\frac{n}{2}\right]+1}. It is easily demonstrated that ifξ1ξ1\xi_{1}\rightarrow\xi_{1}^{\prime}we also haveξ˙iξ˙i,i>1\dot{\xi}_{i}\rightarrow\dot{\xi}_{i}^{\prime},i>1Andf(x)f(x)tends uniformly towardsΦ1*(x)\Phi_{1}^{*}(x)In(has,b)(a,b)Similarly ifξ1ξ1"\xi_{1}\rightarrow\xi_{1}^{\prime\prime}we also haveξiξi",i>1\xi_{i}\rightarrow\xi_{i}^{\prime\prime},i>1Andf(x)f(x)tends uniformly towardsΦ2*(x)\Phi_{2}^{*}(x)We also have the property of separation:

has=ξ1<ξ1"<ξ2<ξ2"<<ξ[n2]+1<ξ[n2]+1"=ba=\xi_{1}^{\prime}<\xi_{1}^{\prime\prime}<\xi_{2}^{\prime}<\xi_{2}^{\prime\prime}<\cdots<\xi_{\left[\frac{n}{2}\right]+1}^{\prime}<\xi_{\left[\begin{array}[]{l}n\\ 2\end{array}\right]+1}^{\prime\prime}=b

which can be easily verified by comparing the two corresponding representations (26).

Ifnnis oddΦ2*(x)\Phi_{2}^{*}(x)is one solution, butΦ1*(x)\Phi_{1}^{*}(x)That's not a solution. Let's

(has=ξ1),ξ2,ξ3,,(ξ[n2]+2=b) the peaks of Φ1*\left(a=-\xi_{1}^{\prime}\right),\xi_{2}^{\prime},\xi_{3}^{\prime},\ldots,\left(\xi_{\left[\frac{n}{2}\right]+2}^{\prime}=b\right)\text{ les sommets de }\Phi_{1}^{*}

Ifξ1,ξ2,,ξ[n2]+2\xi_{1},\xi_{2},\ldots,\xi_{\left[\frac{n}{2}\right]+2}are the vertices of an elementary solutionf(x)f(x)has[n2]+2\left[\frac{n}{2}\right]+2summits,f(x)f(x)converges uniformly towardsΨ1*(x)\Psi_{1}^{*}(x)whenξ1has,ξ[n2]+2b\xi_{1}\rightarrow a,\xi_{\left[\frac{n}{2}\right]+2}\rightarrow bWe still have the separation property

has=ξ˙1<ξ˙1"<ξ˙2<ξ˙2"<<ξ˙[n2]+1"<ξ˙[n2]+2"=b.a=\dot{\xi}_{1}^{\prime}<\dot{\xi}_{1}^{\prime\prime}<\dot{\xi}_{2}^{\prime}<\dot{\xi}_{2}^{\prime\prime}<\cdots<\dot{\xi}_{\left[\frac{n}{2}\right]+1}^{\prime\prime}<\dot{\xi}_{\left[\frac{n}{2}\right]+2}^{\prime\prime}=b.

We can therefore finally say that the functionsΦ1,*(x),Φ2*(x)\Phi_{1,}^{*}(x),\Phi_{2}^{*}(x)are the limits of uniformly convergent sequences of solutions. It follows that to prove relations (30) it suffices to show that iff(x)f(x)is any solution we have

Φ1*(x)f(x)Φ2*(x) In (has,b)\Phi_{1}^{*}(x)\geqslant f(x)\geqslant\Phi_{2}^{*}(x)\quad\text{ dans }(a,b) (31)
  1. 21.

    Let us now turn to the proof of inequalities (31). Let a point be in the interval(has,b)(a,b)The restricted convexity condition must be expressed on2n+32n+3points whichn+1n+1are confused inhas,n+1a,n+1confused inbband the(2n+3)th (2n+3)^{\text{ème }}is the pointξ\xiThis condition is expressed by the fact that if we have

i=0nμi(bx)i+μΨ(x)0 In (has,b)\sum_{i=0}^{n}\mu^{i}(b-x)^{i}+\mu\Psi(x)\geqslant 0\quad\text{ dans }(a,b)

we must also have

i=0nμici+c*0\sum_{i=0}^{n}\mu_{i}c_{i}+c^{*}\geqslant 0

Or

T(x)={(ξx)n In (has,ξ)0 In (ξ,b)c*=n![f(ξ)P1(ξ)]16).\mathrm{T}(x)=\left\{\begin{array}[]{cc}(\xi-x)^{n}&\text{ dans }(a,\xi)\\ 0&\text{ dans }(\xi,b)\end{array}c^{*}=n!\left[f(\xi)-\mathrm{P}_{1}(\xi)\right]^{16}\right).

)16\left.{}^{16}\right)This condition can easily be seen by assuming thatf(n)(x)f^{(n)}(x)exists. We then have

f(x)=1n!hasx(xt)ndf(n)(t)+P1(x)ci=hasb(bt)idf(n)(t),i=0.1,,n,c*=hasbΨ(t)df(n)(t)\begin{gathered}f(x)=\frac{1}{n!}\int_{a}^{x}(x-t)^{n}df^{(n)}(t)+\mathrm{P}_{1}(x)\\ c_{i}=\int_{a}^{b}(b-t)^{i}df^{(n)}(t),i=0,1,\ldots,n,c^{*}=\int_{a}^{b}\Psi(t)df^{(n)}(t)\end{gathered}

Andf(n)(x)f^{(n)}(x)is non-decreasing. We arrive at the same result, of course, by taking the limit in the general condition of restricted convexity.

Forn=1n=1The inequalities (31) are clear. In this case indeedΦ1*(x)\Phi_{1}^{*}(x)is none other than the polynomialP2(x)\mathrm{P}_{2}(x)the summitξ1"\xi_{1}^{\prime\prime}ofΦ2*(x)\Phi_{2}^{*}(x)is the point where we haveP1(x)=P3(x)\mathrm{P}_{1}(x)=\mathrm{P}_{3}(x)And

Φ2*(x)={P1(x) In (has,ξξ1")P3(x) In (ξξ1"b)\Phi_{2}^{*}(x)=\begin{cases}\mathrm{P}_{1}(x)&\text{ dans }\left(a,\stackrel_{1}^{\prime\prime}\right)\\ \mathrm{P}_{3}(x)&\text{ dans }\left(\stackrel_{1}^{\prime\prime}b\right)\end{cases}

Let us take the general case and prove the second inequality (31) by assuming thatnnis odd.

Either

ξk"ξξk+1"(k=1.2,,n2)\xi_{k}^{\prime\prime}\leq\xi\leq\xi_{k+1}^{\prime\prime}\quad\left(k=1,2,\ldots,\left\lfloor\frac{n}{2}\right\rfloor\right)

and let's construct the polynomial of degreen,Q(x)n,\mathrm{Q}(x)defined by the relationships:
Q(ξi")=0,Q(ξi")=0,i=k+1,k+2,,[n2]+1\mathrm{Q}\left(\xi_{i}^{\prime\prime}\right)=0,\quad\mathrm{Q}^{\prime}\left(\xi_{i}^{\prime\prime}\right)=0,\quad i=k+1,k+2,\ldots,\left[\frac{n}{2}\right]+1
Q(ξi")=(ξξi")",Q(ξi")=n(ξξi")n1,i=1.2,,k\mathrm{Q}\left(\xi_{i}^{\prime\prime}\right)=-\left(\xi-\xi_{i}^{\prime\prime}\right)^{\prime\prime},\mathrm{Q}^{\prime}\left(\xi_{i}^{\prime\prime}\right)=n\left(\xi-\xi_{i}^{\prime\prime}\right)^{n-1},\quad i=1,2,\ldots,k
I say that

Q(x)+Ψ(x)0 In (has,b)\mathrm{Q}(x)+\Psi(x)\geqslant 0\quad\text{ dans }(a,b) (32)

This property is immediate. IndeedΨ(x)\Psi(x)is of ordernn, SOQ(x)+Ψ(x)\mathrm{Q}(x)+\Psi(x)is also of ordernnBut this elementary function has a vertex and vanishes, as does its first derivative, at the pointsξ1",ξ2",ξ[n"\xi_{1}^{\prime\prime},\xi_{2}^{\prime\prime}\ldots,\xi_{[n}^{\prime\prime}

I say that thenQ(x)+Ψ(x)\mathrm{Q}(x)+\Psi(x)is of invariable sign. Indeed, otherwise it would necessarily have to change sign at some pointξ*\xi^{*}at least and therefore be zero at this point 17 ). We then have:

[ξ1",ξ1,ξ2",ξ2",,ξ[n2]+1,"ξ2"]+ξ1,ξ*;Q+Ψ]=0\left.\left[\xi_{1}^{\prime\prime},\xi_{1}^{\prime},\xi_{2}^{\prime\prime},\xi_{2}^{\prime\prime},\ldots,\xi_{\left[\frac{n}{2}\right]+1,}^{\prime\prime}\xi_{2}^{\prime\prime}\right]+\xi_{1},\xi^{*};\mathrm{Q}+\Psi^{\prime}\right]=0

and the function should be zero identically in(ξ1",ξ["]+1)\left.\left(\xi_{1}^{\prime\prime},\xi_{[}^{\prime\prime}\right]+1\right)at least, which is impossible. Just look at the graph representing the functionsQ(x)\mathrm{Q}(x)AndΨ(x)\Psi(x)to see that it is indeed (32) which takes place.

Let us now consider the functionΦ2*(x)\Phi_{2}^{*}(x)and beλ1,λ2,,λn[n2]+1\lambda_{1},\lambda_{2},\ldots,\lambda_{n}\left[\frac{n}{2}\right]+1the coefficients of its representation (26). We have:

Q(x)\displaystyle\mathrm{Q}(x) =i=0nμi(bx)n\displaystyle=\sum_{i=0}^{n}\mu_{i}(b-x)^{n}
[n2]+1\displaystyle{\left[\frac{n}{2}\right]+1} λiQ(ξi")=i=1nμici=i=1kλi(ξξi")n\displaystyle\lambda_{i}\mathrm{Q}\left(\xi_{i}^{\prime\prime}\right)=\sum_{i=1}^{n}\mu_{i}c_{i}=\sum_{i=1}^{k}-\lambda_{i}\left(\xi-\xi_{i}^{\prime\prime}\right)^{n}
  1. 17.

    ξ*\xi^{*}may coincide with a pointξi"\xi_{i}^{\prime\prime}The second derivative ofQ(x)+Ψ(x)\mathrm{Q}(x)+\Psi(x)must also be cancelled at this point and the conclusions remain the same.

Therefore, we must have:

i=1kλi(ξξi")n+c*0-\sum_{i=1}^{k}\lambda_{i}\left(\xi-\xi_{i}^{\prime\prime}\right)^{n}+c^{*}\geq 0

which is none other than

f(ξ)Φ2*(ξ)ξk"ξk+1"(k=1.2,,[n2])f(\xi)\geq\Phi_{2}^{*}(\xi)\quad\xi_{k}^{\prime\prime}\leq\vdots\leq\xi_{k+1}^{\prime\prime}\quad\left(k=1,2,\ldots,\left[\frac{n}{2}\right]\right)

In the intervals(has,s*1"),(s*"[n2]+1,b)\left(a,\stackrel{{\scriptstyle*}}_{1}^{\prime\prime}\right),\left(\stackrel{{\scriptstyle*}}^{\prime\prime}\left[\frac{n}{2}\right]+1,b\right)this inequality is verified, reducing itself to

[ξ,has,has,,hasn+1;f]0,[ξ,b,b,,bn+1;f]0[\xi,\underbrace{a,a,\ldots,a}_{n+1};f]\geq 0,\quad[\xi,b,\underbrace{b,\ldots,b}_{n+1};f]\geq 0

respectively.
Ifnnis even, the second inequality (31) is proven in the same way. To obtain inequality (32), we will take the polynomial

Q(ξ[n2]+1")=0\displaystyle\mathrm{Q}\left(\xi_{\left[\frac{n}{2}\right]+1}^{\prime\prime}\right)=0
Q(ξi")=0,Q(ξi")=0i=k+1,k+2,,[n2]\displaystyle\mathrm{Q}\left(\xi_{i}^{\prime\prime}\right)=0,\quad\mathrm{Q}^{\prime}\left(\xi_{i}^{\prime\prime}\right)=0\quad i=k+1,k+2,\ldots,\left[\frac{n}{2}\right]
(ξk"ξξk+1")\displaystyle\left(\xi_{k}^{\prime\prime}\leq\xi\leq\xi_{k+1}^{\prime\prime}\right)

The proof is similar for the first inequality (31). We will look for the polynomialQ(x)\mathrm{Q}(x)such as

Q(x)Ψ(x)0 In (has,b)\mathrm{Q}(x)-\Psi(x)\geq 0\quad\text{ dans }(a,b)

We will take: Ifnnis odd

Q(ξ[n2]+2)=0\displaystyle\mathrm{Q}\left(\xi_{\left[\frac{n}{2}\right]+2}^{\prime}\right)=0
Q(ξi)=0,Q(ξi)=0,i=k+1,k+2,,[n2]+1\displaystyle\mathrm{Q}\left(\xi_{i}^{\prime}\right)=0,\mathrm{Q}^{\prime}\left(\xi_{i}^{\prime}\right)=0,i=k+1,k+2,\ldots,\left[\frac{n}{2}\right]+1
Q(ξi)=(ξξi)n,Q(ξi)=n(ξξi)n1(ξkξkξk+1")\displaystyle\mathrm{Q}\left(\xi_{i}^{\prime}\right)=\left(\xi-\xi_{i}^{\prime}\right)^{n},\mathrm{Q}^{\prime}\left(\xi_{i}^{\prime}\right)=-n\left(\xi-\xi_{i}^{\prime}\right)^{n-1}\quad\left(\xi_{k}^{\prime}\leq\xi_{k}\leq\xi_{k+1}^{\prime\prime}\right)
Q(ξi)=(ξξi)n.\displaystyle\mathrm{Q}\left(\xi_{i}^{\prime}\right)=\left(\xi-\xi_{i}^{\prime}\right)^{n}.
Q(ξi)=0,Q(ξi)=0,i=k+1,k+2,,[n2]+1\displaystyle\mathrm{Q}\left(\xi_{i}^{\prime}\right)=0,\quad\mathrm{Q}^{\prime}\left(\xi_{i}^{\prime}\right)=0,\quad i=k+1,k+2,\ldots,\left[\frac{n}{2}\right]+1
Q(ξi)=(ξξi)nQ(ξi)=n(ξξi)n1\displaystyle\mathrm{Q}\left(\xi_{i}^{\prime}\right)=\left(\xi-\xi_{i}^{\prime}\right)^{n}\quad\mathrm{Q}^{\prime}\left(\xi_{i}^{\prime}\right)=-n\left(\xi-\xi_{i}^{\prime}\right)^{n-1}
1=2.3,,k(ξkξξk+1)\displaystyle\quad 1=3,\ldots,k\quad\left(\xi_{k}^{\prime}\leq\xi\leq\xi_{k+1}^{\prime}\right)
Q(ξ1)=(ξξ1)n\displaystyle\mathrm{Q}\left(\xi_{1}^{\prime}\right)=\left(\xi-\xi_{1}^{\prime}\right)^{n}

So ultimately, in all cases, identities (30) are proven. 22. We have the following two properties:
A. The pointMn\mathrm{M}_{n}whose coordinates are constructed using the quantities (25) corresponding to a convex function in (a, b) is always inside (Wn\mathrm{W}_{n}B.
Every solution to our problem is the limit of a sequence of elementary solutions converging uniformly in(has,b)(\mathrm{a},\mathrm{b}).

To demonstrate property B, it suffices to consider convex solutions. Indeed, just as in No. 16, we demonstrate that every solution is the limit of a sequence of convex solutions converging uniformly in (has,ba,b).

I now say that property B is a consequence of property A. Property A is independent of the interval (has,ba,b) and we can then in any partial interval of (has,ba,b) replace the elementary function of degreennnon-concave of ordernnconcurring as well as itsnn premières derivées avec celles de la fonction donnée aux extrémités. Divisons l’intervalle ( a,ba,b ) en pp parties égales et faisons la construction précédente dans chaque intervalle partiel. Comme la solution considérée est continue et est, ainsi que ses nn premières dérivées, bornée par les données du problème, de la propriété (29) résulte qu’à tout ε>0\varepsilon>0 correspond un η\eta tel que si p>ηp>\eta la fonction élémentaire ainsi construite, qui est évidemment une solution, diffère de moin de s de la solution donnée, dans tout l’intervalle.

Considérons maintenant la projection Mn1\mathrm{M}_{n-1} du point Mn\mathrm{M}_{n}. Soit f(x)f(x) une solution et varions les valeurs f(a),f(b)f(a),f(b) dans notre problème. L’expression

abf(x)𝑑x+i=0n(ba)ii!f(i)(a)\int_{a}^{b}f^{\prime}(x)dx+\sum_{i=0}^{n}\frac{(b-a)^{i}}{i!}f^{(i)}(a)

a un maximum et un minimum. Il est clair que le maximum est égal à l’ néme n^{\text{éme }} coordonnée du point Mn′′M_{n}^{\prime\prime} et le minimum à l’ neme n^{\text{eme }} coordonnée de MnM_{n}^{\prime}. Or le maximum est atteint pour la fonction Φ1(x)\Phi_{1}(x) et le minimum pour Φ2(x)\Phi_{2}(x) correspondant au problème relatif au point Mn1M_{n-1} et par conséquence ces extrema ne sont atteints pour aucune autre solution correspondant à Mn1\mathrm{M}_{n-1}.

Il en résulte que la propriété A est vraie et donc la propriété B est aussi vraie.

Nous avons ainsi démontré également que notre problème est impossible pour les points frontieres du type (II), (III) ou (IV) et admet une solution unique pour les points frontières du type (I). La solution est alors une fonction élémentaire de degré nn ayant m[n2]m\leq\left[\frac{n}{2}\right] sommets.

Nous avons considéré des points frontières tels que Mn.Mn′′M_{n}^{\prime}.M_{n}^{\prime\prime} se projetent sur un point intérieur de (Wn1)\left(\mathrm{W}_{\mathrm{n}-1}\right). Tous les autres se ramènent à cette forme par des projections succesives.

Remarquons encore que les conditions de possibilité du problème peuvent être exprimées par des inégalités explicites. Par une transformation facile on voit en effet que si on a

l=0nμixi0,x0\sum_{l=0}^{n}\mu_{i}x^{i}\geqslant 0,\quad x\geqslant 0

on doit avoir

i=0nμici0,ci=r=0i(1)r(ir)cni+r(ba)ni+r\sum_{i=0}^{n}\mu_{i}c_{i}^{\prime}\geqslant 0,\quad c_{i}^{\prime}=\sum_{r=0}^{i}(-1)^{r}\binom{i}{r}\frac{c_{n-i+r}}{\left(\begin{array}[]{ll}b&a\end{array}\right)^{n-i+r}}

On sait alors que les formes quadratiques

i=0[n2]j=0[n2]ci+jtitj,i=0[n12]j=0[n12]ci+j+1titj\sum_{i=0}^{\left[\frac{n}{2}\right]}\sum_{j=0}^{\left[\begin{array}[]{c}n\\ 2\end{array}\right]}c_{i+j}^{\prime}t_{i}t_{j},\quad\sum_{i=0}^{\left[\frac{n-1}{2}\right]}\sum_{j=0}^{\left[\frac{n-1}{2}\right]}c_{i+j+1}^{\prime}t_{i}t_{j}

doivent être positives. Le cas oû ces formes sont définies positives correspond aux points interieurs de (Wn)18\left(\mathrm{W}_{n}\right)^{18} ).

Pour finir remarquons la liaisons étroite entre le problème du prolongement dans un intervalle et entre certains problèmes de moments. Le procédé par lequel nous établissons la condition de convexité restreinte rappelle d’ailleurs la définition d’une intégrale, mais tandis que dans les procédés d’intégration il s’agit toujours de certaines expressions ayant une limite, dans les problèmes des moments il suffit toujours que certaines sommes puisse ètre multipliées par des expressions de signe invariable telles que le produit ait une limite 19 ).

TABLE DE MATIERES

Manuscrit reçu le 20 Avril, 1934.
18) Voir Polya u. Szegõ „Aufgaben und Lehrsätze aus der Analysis" tome II p. 107. Cette propriété et la propriété projective des domaines (Wn)\left(\mathrm{W}_{n}\right) permettent de retrouver très simplement les formules donnant les coefficients de certaines formes quadratiques données par M. E. Fischer „Uber das Carathéodory’sche Problem Potenzreihen mit Positivem reellen Teil Bettreffend" Rendic. Circ t. 32 (1911) p. 240.
19 ) Les fonctions presentant des caractères de convexité de tout ordre et leur ilité pour le problème des moments ont été étudiées par M. S. Bernstein "Sur les

AL. PANTAZI. Sur les couples de congruences stratifiables par familles de surfaces réglées.
NICOLAS CIORĂNESCU. Sur une ralisant les sur une classe de polynomes à un paramètre généBARBILIAN. Zur Be he Legendre

Bewegungstheorie der Septuoren . . . . . . . . . . 29 superieur ICIU. Sur le prolongement des fonctions convexes d’ordre {}^{\text{ICIU. Sur le prolongement des fonctions convexes d'ordre }} superieur fonctions absulument monotones" Acta Mathematica t. 52 (1928) p. 1.

1934

Related Posts