On the selections associated to the metric projection

Abstract

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian, Romania

Keywords

Paper coordinates

C. Mustăţa, On the selections associated to the metric projection, Rev. Anal. Numér. Théor. Approx. 23 (1994) 1, 89-93 (MR # 96b: 46019)

PDF

About this paper

Journal

Revue d’Analyse Numer. Theor. Approx.

Publisher Name

Publishing Romanian Academy

Print ISSN

2501-059X

Online ISSN

2457-6794

google scholar link

[1] Deutsch, F., Linear Selections for the Metric Projection, J. Funct. Analysis 49(1982) 269-292.
[2] Deutsch, F., Wu Li, Sung-Ho Park, Tietze Extensions and Continuous Selections for Metric  Projections, J.A.T., 64 (1991), 55-68.
[3] Mustata, C., Selections Associated to the Mc Shane’s Extension Theorem for Lipschitz Functions, Revue d’Analyse Numer et de Theorie de l’Approximtion 21 (2) (1992), 135-145.
[4] Mustata, C., Best Approximation and Unique Extension of Lipschitz Functions, J.A.T. 19 (1977), 222-230.
[5] Mustata, C., A Characterization of Chebyshevian Subspace of  Y^{⊥}- type Mathematica – Revue d’Analyse Numer. et de Theorie de l’Approximation, 6 (1) (1977), 51-56.
[6] Singer, I., Best Approximation in Vector Normed Spaces by Elements of Vector Subspaces (in Romanian) Ed. Acad., Bucuresti, 1967.

Paper (preprint) in HTML form

1994-Mustata-On the selections associated to the metric projection-Jnaat

ON THE SELECTIONS ASSOCIATED TO THE METRIC PROJECTION

COSTICA MUSTATA(Chuj-Napoca)

1. INTRODUCTION

Let X X XXX be a real normed space and M M MMM a closed subspace of X X XXX. The distance from a point x X x X x in Xx \in XxX to M M MMM is defined by
(1) d ( x , M ) := inf { x y : y M } . (1) d ( x , M ) := inf { x y : y M } . {:(1)d(x","M):=i n f{||x-y||:y in M}.:}\begin{equation*} d(x, M):=\inf \{\|x-y\|: y \in M\} . \tag{1} \end{equation*}(1)d(x,M):=inf{xy:yM}.
Let
(2) P M ( x ) := { y M : x y = d ( x , M ) } (2) P M ( x ) := { y M : x y = d ( x , M ) } {:(2)P_(M)(x):={y in M:||x-y||=d(x","M)}:}\begin{equation*} P_{M}(x):=\{y \in M:\|x-y\|=d(x, M)\} \tag{2} \end{equation*}(2)PM(x):={yM:xy=d(x,M)}
be the set of elements of best approximation for x x xxx in M M MMM. The subspace M M MMM is called proximinal (Chebyshevian) if P M ( x ) P M ( x ) P_(M)(x)!=O/P_{M}(x) \neq \varnothingPM(x) (respectively P M ( x ) P M ( x ) P_(M)(x)P_{M}(x)PM(x) is a singleton), for all x X x X x in Xx \in XxX. If M M MMM is a proximinal subspace of X X XXX, the multivalued operator P M : X 2 M P M : X 2 M P_(M):X rarr2^(M)P_{M}: X \rightarrow 2^{M}PM:X2M is called the metric projection of X X XXX onto M M MMM.
An application p : X M p : X M p:X-Mp: X-Mp:XM such that p ( x ) P M ( x ) p ( x ) P M ( x ) p(x)inP_(M)(x)p(x) \in P_{M}(x)p(x)PM(x), for all x X x X x in Xx \in XxX, is called a selection for P M P M P_(M)\boldsymbol{P}_{M}PM.
The set
(3) Ker P M := { x X : θ P M ( x ) } (3) Ker P M := x X : θ P M ( x ) {:(3)KerP_(M):={x in X:theta inP_(M)(x)}:}\begin{equation*} \operatorname{Ker} P_{M}:=\left\{x \in X: \theta \in P_{M}(x)\right\} \tag{3} \end{equation*}(3)KerPM:={xX:θPM(x)}
is called the kernel of the metric projection.
If K K KKK is a subset; of X X XXX and M M MMM is proximinal (Chebyshevian) only for the elements of K K KKK, then the subspace M M MMM is called K K KKK-proximinal (respectively K K KKK-Chebyshevian).
The restriction of the metric projection P M P M P_(M)P_{M}PM to K K KKK is denoted by P M / M P M / M P_(M//M)P_{M / M}PM/M
(4) K e x P M / M := { x K : θ P M ( x ) } (4) K e x P M / M := x K : θ P M ( x ) {:(4)KexP_(M//M):={x in K:theta inP_(M)(x)}:}\begin{equation*} K e x \mathbb{P}_{M / M}:=\left\{x \in K: \theta \in P_{M}(x)\right\} \tag{4} \end{equation*}(4)KexPM/M:={xK:θPM(x)}
is called the kernel of the metric projection relative to K K KKK.
For two subsets U , V U , V U,VU, VU,V of X X XXX, their sum is defined by U + V :== { u + v : u U , v V } U + V :== { u + v : u U , v V } U+V:=={u+v:u in U,v in V}U+V:= =\{u+v: u \in U, v \in V\}U+V:=={u+v:uU,vV}. If eyery x U + V x U + V x in U+Vx \in U+VxU+V can be uniquely written in the form x = u + v x = u + v x=u+vx=u+vx=u+v, for u U u U u in Uu \in UuU and v V v V v in Vv \in VvV, then this sum is called the algebraic direct sum of the sets U U UUU and V V VVV and is denoted by U + V U + V U^(**)+VU^{*}+VU+V. If K == U + V K == U + V K==U+VK= =U+VK==U+V and the application ( u , v ) u + v ( u , v ) u + v (u,v)rarr u+v(u, v) \rightarrow u+v(u,v)u+v is a topological homeonorphism between U × V U × V U xx VU \times VU×V and K K KKK, then K K KKK is called the topological direct sum of the set U U UUU and V V VVV and is denoted by K = U V K = U V K=U o+VK=U \oplus VK=UV.

MAIN THEOREM

Obviously that for K X K X K sub XK \subset XKX and a K K KKK-proximinal subspace M M MMM of X X XXX, the properties of the selection associated to the metric projection P M / K P M / K P_(M//K)P_{M / K}PM/K depend, on one side, on the properties of the subspace M M MMM and on the other side, on the properties of the set K K KKK.
F. Deutsch [1] characterized the proximinal subspace M M MMM of X X XXX for which the metric projection P M P M P_(M)P_{M}PM admits a linear and continuous selection : namely, P M P M P_(M)P_{M}PM admits a continuous linear selection if and only if Ker P M P M P_(M)P_{M}PM contains a closed subspace complementary to M M MMM (see [1], Theorem 2.2).
The aim of this paper is to answer the following question : For a closed cone K K KKK in X X XXX and a K K KKK-proximinal subspace M M MMM of X X XXX when does the metric projection P M / K P M / K P_(M//K)P_{M / K}PM/K admit a continuous, additive and positively homogeneous selection?
A cone is a nonvoid subset K K KKK of X X XXX such that : a a aaa ) x + y K x + y K x+y in Kx+y \in Kx+yK, for all x , y K i ; b ) λ x K x , y K i ; b λ x K {:x,y inK_(i);b)lambda x in K\left.x, y \in K_{i} ; b\right) \lambda x \in Kx,yKi;b)λxK, for all λ 0 λ 0 lambda >= 0\lambda \geqslant 0λ0 and x K x K x inKx \in \mathbb{K}xK.
A partial answer to this question is suggestod by the above quoted result of F. Deutsch and is given in the following:
Theorem A. Let K K KKK be a closed cone in X X XXX and M M MMM a K K KKK-proximinal subspace of X X XXX. If the subspace M M MMM contains a dosed cone U U UUU and Ker P a / a P a / a P_(a//a)P_{a / a}Pa/a contains a closed cone C C CCC such that
(5) K ˙ = U C , (5) K ˙ = U C , {:(5)K^(˙)=U o+C",":}\begin{equation*} \dot{K}=U \oplus C, \tag{5} \end{equation*}(5)K˙=UC,
then P M / K P M / K P_(M//K)P_{M / K}PM/K admits a positively homogeneous, additive and continuous selection.
Proof. Let U U UUU be a closed cone in M M MMM and C C CCC a closed cone in K o r P 1 / π K o r P 1 / π KorP_(1//pi)K o r P_{1 / \pi}KorP1/π such that K = U C K = U C K=U o+CK=U \oplus CK=UC.
Then, for h K h K h in Kh \in KhK, there exist uniquely devermined elements u h U u h U u_(h)in Uu_{h} \in UuhU and c h C c h C c_(h)in Cc_{h} \in CchC such that h = u h + c h h = u h + c h h=u_(h)+c_(h)h=u_{h}+c_{h}h=uh+ch.
Define the application q : K M I q : K M I q:K rarr MIq: K \rightarrow M Iq:KMI by
q ( h ) = u h , h K . q ( h ) = u h , h K . q(h)=u_(h),quad h inK.q(h)=u_{h}, \quad h \in \mathbb{K} .q(h)=uh,hK.
Since K K KKK is homeomorph to U × O U × O U xx OU \times OU×O it follows that the application q q qqq is continuous.
Let h 1 , h 2 K h 1 , h 2 K h_(1),h_(2)in Kh_{1}, h_{2} \in Kh1,h2K and u h 1 , u h 2 U u h 1 , u h 2 U u_(h_(1)),u_(h_(2))in Uu_{h_{1}}, u_{h_{2}} \in Uuh1,uh2U and c h 1 , e h 2 C c h 1 , e h 2 C c_(h_(1)),e_(h_(2))in Cc_{h_{1}}, e_{h_{2}} \in Cch1,eh2C be such that h 1 == u h 1 + e h 1 , h 2 = u h 1 + e h 2 h 1 == u h 1 + e h 1 , h 2 = u h 1 + e h 2 h_(1)==u_(h_(1))+e_(h_(1)),h_(2)=u_(h_(1))+e_(h_(2))h_{1}= =u_{h_{1}}+e_{h_{1}}, h_{2}=u_{h_{1}}+e_{h_{2}}h1==uh1+eh1,h2=uh1+eh2. Then
q ( h 1 + h 2 ) = u h 1 + u h 2 = q ( h 1 ) + q ( h 2 ) , q h 1 + h 2 = u h 1 + u h 2 = q h 1 + q h 2 , q(h_(1)+h_(2))=u_(h_(1))+u_(h_(2))=q(h_(1))+q(h_(2)),q\left(h_{1}+h_{2}\right)=u_{h_{1}}+u_{h_{2}}=q\left(h_{1}\right)+q\left(h_{2}\right),q(h1+h2)=uh1+uh2=q(h1)+q(h2),
showing that the application q q qqq is additive.
Also, for λ 0 λ 0 lambda >= 0\lambda \geqslant 0λ0 and h K h K h in Kh \in KhK it follows λ h K λ h K lambda h in K\lambda h \in KλhK and
q ( λ h ) = λ u t h = λ q ( h ) , q ( λ h ) = λ u t h = λ q ( h ) , q(lambda h)=lambdau_(th)=lambda q(h),q(\lambda h)=\lambda u_{t h}=\lambda q(h),q(λh)=λuth=λq(h),
showing that q q qqq is positively homogeneous.
The inclusion C C C subeC \subseteqC Ker P a / K P a / K P_(a//K)P_{a / K}Pa/K implies that for h K , h = u h + c h h K , h = u h + c h h in K,h=u_(h)+c_(h^('))h \in K, h=u_{h}+c_{h^{\prime}}hK,h=uh+ch, u h U , c h C u h U , c h C u_(h)in U,c_(h)in Cu_{h} \in U, c_{h} \in CuhU,chC, we have
u h = q ( h ) = q ( u h + c h ) = q ( u h ) + q ( c h ) = q ( u h ) u h = q ( h ) = q u h + c h = q u h + q c h = q u h u_(h)=q(h)=q(u_(h)+c_(h))=q(u_(h))+q(c_(h))=q(u_(h))u_{h}=q(h)=q\left(u_{h}+c_{h}\right)=q\left(u_{h}\right)+q\left(c_{h}\right)=q\left(u_{h}\right)uh=q(h)=q(uh+ch)=q(uh)+q(ch)=q(uh)
and therefore
h q ( h ) = u h + c h u h = c h = d ( c h , M ) . h q ( h ) = u h + c h u h = c h = d c h , M . ||h-q(h)||=||u_(h)+c_(h)-u_(h)||=||c_(h)||=d(c_(h),M).\|h-q(h)\|=\left\|u_{h}+c_{h}-u_{h}\right\|=\left\|c_{h}\right\|=d\left(c_{h}, M\right) .hq(h)=uh+chuh=ch=d(ch,M).
But
d ( u + c h , M ) = d ( c h , M ) d u + c h , M = d c h , M d(u^(')+c_(h),M)=d(c_(h),M)d\left(u^{\prime}+c_{h}, M\right)=d\left(c_{h}, M\right)d(u+ch,M)=d(ch,M)
for every u M u M u^(')in Mu^{\prime} \in MuM, so that
h q ( h ) = d ( c k , M ) = d ( u k + c k , M ) = d ( h , M ) , h q ( h ) = d c k , M = d u k + c k , M = d ( h , M ) , ||h-q(h)||=d(c_(k),M)=d(u_(k)+c_(k),M)=d(h,M),\|h-q(h)\|=d\left(c_{k}, M\right)=d\left(u_{k}+c_{k}, M\right)=d(h, M),hq(h)=d(ck,M)=d(uk+ck,M)=d(h,M),
which shows that q ( h ) q ( h ) q(h)q(h)q(h) is a best approximation element for h h hhh in M M MMM.
In conclusion, the application q : K M q : K M q:K rarr Mq: K \rightarrow Mq:KM is an additive, positively homogeneous and continuous selection of P M/K P M/K  P_("M/K ")P_{\text {M/K }}PM/K 

APPLICATIONS

1 1 1^(@)1^{\circ}1 Let X := Lip 0 [ 0 , 1 ] X := Lip 0 [ 0 , 1 ] X:=Lip_(0)[0,1]X:=\operatorname{Lip}_{0}[0,1]X:=Lip0[0,1] be the linear space
(6) Lip [ 0 , 1 ] := { f f : [ 0 , 1 ] R , f Lip [ 0 , 1 ] := { f f : [ 0 , 1 ] R , f Lip[0,1]:={f∣f:[0,1]rarrR,f\operatorname{Lip}[0,1]:=\{f \mid f:[0,1] \rightarrow \mathbb{R}, fLip[0,1]:={ff:[0,1]R,f is Lipschitz on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] and f ( 0 ) == 0 } f ( 0 ) == 0 } f(0)==0}f(0)= =0\}f(0)==0}, with the Lipschitz norm
(7) f L := sup { | f ( x ) f ( y ) | | x y | : x , y [ 0 , 1 ] , x y } (7) f L := sup | f ( x ) f ( y ) | | x y | : x , y [ 0 , 1 ] , x y {:(7)||f||_(L):=s u p{(|f(x)-f(y)|)/(|x-y|):x,y in[0,1],x!=y}:}\begin{equation*} \|f\|_{L}:=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \tag{7} \end{equation*}(7)fL:=sup{|f(x)f(y)||xy|:x,y[0,1],xy}
Let
M := { g Lip 0 [ 0 , 1 ] : g ( 1 ) = g ( 0 ) = 0 } M := g Lip 0 [ 0 , 1 ] : g ( 1 ) = g ( 0 ) = 0 M:={g inLip_(0)[0,1]:g(1)=g(0)=0}M:=\left\{g \in \operatorname{Lip}_{0}[0,1]: g(1)=g(0)=0\right\}M:={gLip0[0,1]:g(1)=g(0)=0}
K := { f Lip 0 [ 0 , 1 ] : f ( x ) 0 , for all x [ 0 , 1 ] } . K := f Lip 0 [ 0 , 1 ] : f ( x ) 0 ,  for all  x [ 0 , 1 ] . K:={f inLip_(0)[0,1]:f(x) >= 0," for all "x in[0,1]}.K:=\left\{f \in \operatorname{Lip}_{0}[0,1]: f(x) \geqslant 0, \text { for all } x \in[0,1]\right\} .K:={fLip0[0,1]:f(x)0, for all x[0,1]}.
Obviously that M M MMM is a K K KKK-proximinal closed subspace of Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] Lip_(0)[0,1]∼\operatorname{Lip}_{0}[0,1] \simLip0[0,1] if f K f K f in Kf \in KfK then g 0 M g 0 M g_(0)in Mg_{0} \in Mg0M is an element of best approximation for f f fff if and only if g 0 = f F g 0 = f F g_(0)=f-Fg_{0}=f-Fg0=fF, where F ( x ) = f ( 1 ) x , x [ 0 , 1 ] F ( x ) = f ( 1 ) x , x [ 0 , 1 ] F(x)=f(1)x,x in[0,1]F(x)=f(1) x, x \in[0,1]F(x)=f(1)x,x[0,1] ([4], Lemma 1).
In fact g 0 = f F g 0 = f F g_(0)=f-Fg_{0}=f-Fg0=fF, with F F FFF given above, is a unique element of best approximation for f f fff in M M MMM, which means that M M MMM is a K K KKK-Chebyshevian subspace of Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] Lip_(0)[0,1]\operatorname{Lip}_{0}[0,1]Lip0[0,1].
We have
f g 0 L = d ( f , M ) = inf { f g L : g M } = f ( 1 ) f g 0 L = d ( f , M ) = inf f g L : g M = f ( 1 ) ||f-g_(0)||_(L)=d(f,M)=i n f{||f-g||_(L):g in M}=f(1)\left\|f-g_{0}\right\|_{L}=d(f, M)=\inf \left\{\|f-g\|_{L}: g \in M\right\}=f(1)fg0L=d(f,M)=inf{fgL:gM}=f(1)
and
Ker P u / K = { f K : f L = f ( 1 ) } = Ker P u / K = f K : f L = f ( 1 ) = KerP_(u//K)={f in K:||f||_(L)=f(1)}=\operatorname{Ker} P_{u / K}=\left\{f \in K:\|f\|_{L}=f(1)\right\}=KerPu/K={fK:fL=f(1)}=
= { h K : h ( x ) = α x , x [ 0 , 1 ] , α 0 } = { h K : h ( x ) = α x , x [ 0 , 1 ] , α 0 } ={h in K:h(x)=alpha x,x in[0,1],alpha >= 0}=\{h \in K: h(x)=\alpha x, x \in[0,1], \alpha \geqslant 0\}={hK:h(x)=αx,x[0,1],α0}
In this case
C = Ker P u / κ C = Ker P u / κ C=Ker^(P_(u//kappa))C=\operatorname{Ker}^{P_{u / \kappa}}C=KerPu/κ
and every function f K f K f in Kf \in KfK can be uniquely written in the form f = g + h f = g + h f=g+hf=g+hf=g+h with g U g U g in Ug \in UgU and h C h C h in Ch \in ChC, where h ( x ) = f ( 1 ) x , x [ 0 , 1 ] h ( x ) = f ( 1 ) x , x [ 0 , 1 ] h(x)=f(1)x,x in[0,1]h(x)=f(1) x, x \in[0,1]h(x)=f(1)x,x[0,1] and
U = { g g ( x ) = f ( x ) f ( 1 ) x , x [ 0 , 1 ] , f K } C = { h h ( x ) = f ( 1 ) x , x [ 0 , 1 ] , f K } U = { g g ( x ) = f ( x ) f ( 1 ) x , x [ 0 , 1 ] , f K } C = { h h ( x ) = f ( 1 ) x , x [ 0 , 1 ] , f K } {:[U={g∣g(x)=f(x)-f(1)x","x in[0","1]","f in K}],[C={h∣h(x)=f(1)x","x in[0","1]","f in K}]:}\begin{gathered} U=\{g \mid g(x)=f(x)-f(1) x, x \in[0,1], f \in K\} \\ C=\{h \mid h(x)=f(1) x, x \in[0,1], f \in K\} \end{gathered}U={gg(x)=f(x)f(1)x,x[0,1],fK}C={hh(x)=f(1)x,x[0,1],fK}
Since M M MMM is K K KKK-Chebyshevian it follows that the metric projection operator P M / K P M / K P_(M//K)P_{M / K}PM/K is one-valued, continuous, additive and positively homogeneous.
2 2 2^(@)2^{\circ}2 For x 0 ( 0 , 1 ) x 0 ( 0 , 1 ) x_(0)in(0,1)x_{0} \in(0,1)x0(0,1) fixed, consider the linear space
(10) X := Lip x 0 [ 0 , 1 ] = { f / f : [ 0 , 1 ] R X := Lip x 0 [ 0 , 1 ] = { f / f : [ 0 , 1 ] R X:=Lip_(x_(0))[0,1]={f//f:[0,1]rarrRX:=\operatorname{Lip}_{x_{0}}[0,1]=\{f / f:[0,1] \rightarrow \mathbb{R}X:=Lipx0[0,1]={f/f:[0,1]R, f is Lipschitz on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] and f ( x 0 ) = 0 } f x 0 = 0 {:f(x_(0))=0}\left.f\left(x_{0}\right)=0\right\}f(x0)=0}, with the Lipschits norm (7).
Let
(11)
M := { g Lip x 0 [ 0 , 1 ] : g ( 0 ) = g ( x 0 ) = g ( 1 ) = 0 } , M := g Lip x 0 [ 0 , 1 ] : g ( 0 ) = g x 0 = g ( 1 ) = 0 , M:={g inLip_(x_(0))[0,1]:g(0)=g(x_(0))=g(1)=0},M:=\left\{g \in \operatorname{Lip}_{x_{0}}[0,1]: g(0)=g\left(x_{0}\right)=g(1)=0\right\},M:={gLipx0[0,1]:g(0)=g(x0)=g(1)=0},
the annihilator in Lip x 0 [ 0 , 1 ] Lip x 0 [ 0 , 1 ] Lip_(x_(0))[0,1]\operatorname{Lip}_{x_{0}}[0,1]Lipx0[0,1] of the set { 0 , x 0 , 1 } 0 , x 0 , 1 {0,x_(0),1}\left\{0, x_{0}, 1\right\}{0,x0,1}, and
(12) K := { f Lip x x 0 [ 0 , 1 ] : f ( x ) 0 K := f Lip x x 0 [ 0 , 1 ] : f ( x ) 0 K:={f in Lipx_(x_(0))[0,1]:f(x) >= 0:}K:=\left\{f \in \operatorname{Lip} x_{x_{0}}[0,1]: f(x) \geqslant 0\right.K:={fLipxx0[0,1]:f(x)0, for all x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] ).
Again, M M MMM is a K K KKK-proximinal subspace of Lip x 0 [ 0 , 1 ] Lip x 0 [ 0 , 1 ] Lip_(x_(0))[0,1]\mathrm{Lip}_{x_{0}}[0,1]Lipx0[0,1].
Indeed, for f K f K f in Kf \in KfK let
(13) E ( f ) = { F Iip x 0 [ 0 , 1 ] : F | { 0 , x 0 , 1 } = f | { 0 , x 0 , 1 } and F L = max { f ( 0 ) x 0 , f ( 1 ) 1 x 0 } (13) E ( f ) = F Iip x 0 [ 0 , 1 ] : F 0 , x 0 , 1 = f 0 , x 0 , 1  and  F L = max f ( 0 ) x 0 , f ( 1 ) 1 x 0 {:[(13)E(f)={F inIip_(x_(0))[0,1]:F|_({0,x_(0),1})=f|_({0,x_(0),1}):}" and "],[||F^(')||_(L)=max{(f(0))/(x_(0)),(f(1))/(1-x_(0))}]:}\begin{gather*} E(f)=\left\{F \in \operatorname{Iip}_{x_{0}}[0,1]:\left.F\right|_{\left\{0, x_{0}, 1\right\}}=\left.f\right|_{\left\{0, x_{0}, 1\right\}}\right. \text { and } \tag{13}\\ \left\|F^{\prime}\right\|_{L}=\max \left\{\frac{f(0)}{x_{0}}, \frac{f(1)}{1-x_{0}}\right\} \end{gather*}(13)E(f)={FIipx0[0,1]:F|{0,x0,1}=f|{0,x0,1} and FL=max{f(0)x0,f(1)1x0}
be the set of the extensions to [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] of the function f | { 0 , x 0 , 1 } f 0 , x 0 , 1 f|_({0,x_(0),1})\left.f\right|_{\left\{0, x_{0}, 1\right\}}f|{0,x0,1} which preserver the Lipschitz norm of f f fff on { 0 , x 0 , 1 } 0 , x 0 , 1 {0,x_(0),1}\left\{0, x_{0}, 1\right\}{0,x0,1}.
Then
(14)
and
P M / K ( f ) = f E ( f ) P M / K ( f ) = f E ( f ) P_(M//K)(f)=f-E(f)P_{M / K}(f)=f-E(f)PM/K(f)=fE(f)
Ker P M / K = { f K : f L = max { f ( 0 ) x 0 , f ( 1 ) 1 a ( j ) } } P M / K = f K : f L = max f ( 0 ) x 0 , f ( 1 ) 1 a ( j ) P_(M//K)={f inK:||f||_(L)=max{(f(0))/(x_(0)),(f(1))/(1-a_((j)))}}\mathbb{P}_{M / K}=\left\{f \in \mathbb{K}:\|f\|_{L}=\max \left\{\frac{f(0)}{x_{0}}, \frac{f(1)}{1-a_{(j)}}\right\}\right\}PM/K={fK:fL=max{f(0)x0,f(1)1a(j)}}
[4], Lemma 1).
In this case the cone C Ker P M / K C Ker P M / K C sub KerP_(M//K)C \subset \operatorname{Ker} P_{M / K}CKerPM/K is given by
(15) C := { h Ker r P M / K : h ( x ) = a ( x x 0 ) , for x [ 0 , x 0 ] (15) C := h Ker r P M / K : h ( x ) = a x x 0 ,  for  x 0 , x 0 {:(15)C:={h inKer^(r)P_(M//K):h(x)=a(x-x_(0))," for "x in[0,x_(0)]:}:}\begin{equation*} C:=\left\{h \in \mathrm{Ker}^{r} P_{M / K}: h(x)=a\left(x-x_{0}\right), \text { for } x \in\left[0, x_{0}\right]\right. \tag{15} \end{equation*}(15)C:={hKerrPM/K:h(x)=a(xx0), for x[0,x0]
and
h ( x ) = β ( x x 0 ) , for x ( x 0 , 1 ] , α 0 and β 0 } . h ( x ) = β x x 0 , for  x x 0 , 1 , α 0  and  β 0 . {:h(x)=beta(x-x_(0))", for "x in(x_(0),1],alpha <= 0" and "beta >= 0}.\left.h(x)=\beta\left(x-x_{0}\right) \text {, for } x \in\left(x_{0}, 1\right], \alpha \leqslant 0 \text { and } \beta \geqslant 0\right\} .h(x)=β(xx0), for x(x0,1],α0 and β0}.
Then every f K f K f in Kf \in KfK can be uniquely written in the form f = u f + c f f = u f + c f f=u_(f)+c_(f)f=u_{f}+c_{f}f=uf+cf, u f U u f U u_(f)in Uu_{f} \in UufU and c f C c f C c_(f)in Cc_{f} \in CcfC where
(16) c f ( x ) = f ( 0 ) x 0 ( x x 0 ) , fol x [ 0 , x 0 ] = f ( 1 ) 1 x 0 ( x x 0 ) , for x ( x 0 , 1 ] (16) c f ( x ) = f ( 0 ) x 0 x x 0 ,  fol  x 0 , x 0 = f ( 1 ) 1 x 0 x x 0 ,  for  x x 0 , 1 {:[(16)c_(f)(x)=-(f(0))/(x_(0))(x-x_(0))","" fol "x in[0,x_(0)]],[=(f(1))/(1-x_(0))(x-x_(0))","" for "x in(x_(0),1]]:}\begin{align*} & c_{f}(x)=-\frac{f(0)}{x_{0}}\left(x-x_{0}\right), \text { fol } x \in\left[0, x_{0}\right] \tag{16}\\ & =\frac{f(1)}{\mathbb{1}-x_{0}}\left(x-x_{0}\right), \text { for } x \in\left(x_{0}, 1\right] \end{align*}(16)cf(x)=f(0)x0(xx0), fol x[0,x0]=f(1)1x0(xx0), for x(x0,1]
and
(17) u f ( x ) = f ( x ) + f ( 0 ) x 0 ( x x 0 ) , u f ( x ) = f ( x ) + f ( 0 ) x 0 x x 0 , quadu_(f)(x)=f(x)+(f(0))/(x_(0))(x-x_(0)),quad\quad u_{f}(x)=f(x)+\frac{f(0)}{x_{0}}\left(x-x_{0}\right), \quaduf(x)=f(x)+f(0)x0(xx0), for x [ 0 , x 0 ] x 0 , x 0 quad x in[0,x_(0)]\quad x \in\left[0, x_{0}\right]x[0,x0]
= f ( x ) f ( 1 ) 1 x 0 ( x x 0 ) , for x [ x 0 , 1 ] . = f ( x ) f ( 1 ) 1 x 0 x x 0 ,  for  x x 0 , 1 . =f(x)-(f(1))/(1-x_(0))(x-x_(0))," for "x in[x_(0),1].=f(x)-\frac{f(1)}{1-x_{0}}\left(x-x_{0}\right), \text { for } x \in\left[x_{0}, 1\right] .=f(x)f(1)1x0(xx0), for x[x0,1].
In fact
U := { u f M u f defined by (17), f K } and C := { c f K c f defined by (16), f K } . U := u f M u f  defined by (17),  f K  and  C := c f K c f  defined by (16),  f K . {:[U:={u_(f)in M∣u_(f)" defined by (17), "f in K}" and "],[quad C:={c_(f)in K∣c_(f)" defined by (16), "f in K}.]:}\begin{gathered} U:=\left\{u_{f} \in M \mid u_{f} \text { defined by (17), } f \in K\right\} \text { and } \\ \quad C:=\left\{c_{f} \in K \mid c_{f} \text { defined by (16), } f \in K\right\} . \end{gathered}U:={ufMuf defined by (17), fK} and C:={cfKcf defined by (16), fK}.
A continuous, additive and positively homogeneous selection for P M / K P M / K P_(M//K)P_{M / K}PM/K is given by q ( f ) = u f , f K q ( f ) = u f , f K q(f)=u_(f),f in Kq(f)=u_{f}, f \in Kq(f)=uf,fK, a fact which can be immediately verified. Remarks. Theorem A gives only a sufficient condition for the existence of an additive, positively homogeneous and continuous selection for P M / K P M / K P_(M//K)P_{M / K}PM/K.
Simple examples show that this condition is not necessary for the existence of a selection with the above-mentioned properties.
Let X = R 2 X = R 2 X=R^(2)X=\mathbb{R}^{2}X=R2 endowed with the Enclidean norm and let
and
K := { ( x , y ) R 2 : y = 2 x , x 0 } K := ( x , y ) R 2 : y = 2 x , x 0 K:={(x,y)inR^(2):y=2x,x >= 0}K:=\left\{(x, y) \in \mathbb{R}^{2}: y=2 x, x \geqslant 0\right\}K:={(x,y)R2:y=2x,x0}
M := { ( x , 0 ) : x R } . M := { ( x , 0 ) : x R } . M:={(x,0):x inR}.M:=\{(x, 0): x \in \mathbb{R}\} .M:={(x,0):xR}.
Then, obviously, the subspace M M MMM is K K KKK-Chebyshevian and Ker P M / K = { ( 0 , 0 ) } P M / K = { ( 0 , 0 ) } P_(M//K)={(0,0)}P_{M / K}=\{(0,0)\}PM/K={(0,0)}.
In this case P m / k P m / k P_(m//k)P_{m / k}Pm/k is a continuous, positively homogeneous and additive application from K K KKK to M M MMM, but K K KKK does not admit any decomposition of the form (5).

REFERENCES

  1. Dentsch, F., Linear Selections for the Metric Projocion, J. Funct. Aralysis 49 (1982) 260-292.
  2. Deopent, Wu Li, Sung-Ho Park, Tietze Exlensions and Continuous Selcelions for Melric Prections, J.A.T. 64, (1991) 55-68.
  3. Muths, Revue d'Anal Nowed the Me Shone's Extension Thcorem for Lipschile Func-195-145.
    (1977) 222-230. Extension of Lipschils Functions, J.A.T. Ig Mustăla, C
    vue d'Analyse Numer. et debyshevian Subspace of Y1-type, Mathematica-Re6. Singer, 1., Best A pproximation in Vete Approx., 6 (1) (1977) 51-56.
Romanian), Ed. Acad., Bucuresti, 1967. Spaces by Elcments of Vector Subspaces (in Received & X 1993
Instilatal de Calcul
Oficial Postal 1
C. P. 0.8
3400 Cluj-Napaca
Romania
1994

Related Posts