Selections with values Bernstein polynomials associated to the extension operator for Lipschitz functions

Abstract

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romania Academy, Romania

Keywords

Paper coordinates

C. Mustăţa, Selections with values Bernstein polynomials associated to the extension operator for Lipschitz functions, Rev. Anal. Numér. Théor. Approx. 22 (1993) 2, 207-216 (MR # 96k: 41047).

PDF

About this paper

Journal

Revue d’Analyse Numer Theor. Approximation

Publisher Name

Romanian Academy

Print ISSN

2457-6794

Online ISSN

2501-059X

MR # 96k: 41047

google scholar link

[1] Brown, B.M., Elliot, D. and D.F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous funcitons, J. Approx. Theory 49 (1987), 196-199.
[2] Cobzas, S. and C. Mustata, Norm-Preserving Extension of Convex Lipschitz Functions, J. Approx. Theory 34 (1978), 236-244.
[3] Czipser, J. and L. Geher, Extension of Functions satisfying a Lipschitz Condition, Acta Math. Acad. Sci. Hungar 6(1955), 213-220.
[4] Deutsch, F., Li W. and S.H. Park, Tietze Extensions and Continuous Selections for Metric Projections, J. Approx. Theory 63 (1991), 55-88.
[5] Mc Shane, E.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[6] Mustat, C., Norm Preserving Extension of Starhaped Lipschitz Funcitons, Mathematica 19(42)2 (1977), 183-187.
[7]  Mustata C., Best Approximaiton and Uniquje Extension of Lipschitz Functions, J. Approx. Theory 19(1977), 222-230.
[8] Mustata C., M-ideals in Metric Spaces, “Babes-Bolyai” University, Fac. of Math. and Physics, Research Seminars, Seminar on Math. Analysis, Preprint nr.7 (1988), 65-74.
[9] Mustata, C., Selections Associated to Mc Shane’s Extension Theorem for Lipschitz Functions, Revue d’Analyse Numerique et de Theorie de l’Approximation, 21, 2 (1992), 135-145.

Paper (preprint) in HTML form

1993-Mustata-Selections with values Bernstein polynomials-Jnaat

SELECTIONS WITH VALUES BERNSTEIN POLYNOMIALS ASSOCIATED TO THE EXTENSION OPERATOR FOR LIPSCHITZ FUNCTIONS

COSTICA MUSTATTA(Cluj-Napoca)

  1. Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a metric space and Y Y YYY a subset of X X XXX, containing at least two points. A function f : Y R f : Y R f:Y rarr Rf: Y \rightarrow Rf:YR is called Lipschitz if there exists a constant K Y ( f ) 0 K Y ( f ) 0 K_(Y)(f) >= 0K_{Y}(f) \geqslant 0KY(f)0 such that
    for all x , y X x , y X x,y in Xx, y \in Xx,yX.
(1) | f ( x ) f ( y ) | K Y ( f ) d ( x , y ) (1) | f ( x ) f ( y ) | K Y ( f ) d ( x , y ) {:(1)|f(x)-f(y)| <= K_(Y)(f)*d(x","y):}\begin{equation*} |f(x)-f(y)| \leqslant K_{Y}(f) \cdot d(x, y) \tag{1} \end{equation*}(1)|f(x)f(y)|KY(f)d(x,y)
Let
(2) Lip Y = { f f : Y R , f is Lipschitz on Y } . (2)  Lip  Y = { f f : Y R , f  is Lipschitz on  Y } . {:(2)" Lip "Y={f∣f:Y rarr R","f" is Lipschitz on "Y}.:}\begin{equation*} \text { Lip } Y=\{f \mid f: Y \rightarrow R, f \text { is Lipschitz on } Y\} . \tag{2} \end{equation*}(2) Lip Y={ff:YR,f is Lipschitz on Y}.
Equipped with the pointwise operations of addition and multiplication by real scalars, Lip Y Y YYY is a real linear space. The smallest constant K Y ( f ) K Y ( f ) K_(Y)(f)K_{Y}(f)KY(f) verifying (1) is denoted by f Y f Y ||f||_(Y)\|f\|_{Y}fY and is called the Lipschitz norm of f f fff.
For Y = X Y = X Y=XY=XY=X one obtains the linear space Lip X X XXX and for F F F inF \inF Lip X X XXX, F X F X ||F^(')||_(X)\left\|F^{\prime}\right\|_{X}FX is the smallest Lipsehitz constant for F F F^(')F^{\prime}F (on X X XXX ).
Obviously that for F Lip X F Lip X F in Lip XF \in \operatorname{Lip} XFLipX and Y X , F | Y Lip Y Y X , F Y Lip Y Y sub X,F|_(Y)in Lip YY \subset X,\left.F\right|_{Y} \in \operatorname{Lip} YYX,F|YLipY and F | Y Y ⩽⩽ F X F Y Y ⩽⩽ F X ||F|_(Y)||_(Y)⩽⩽||F^(')||_(X)\left\|\left.F\right|_{Y}\right\|_{Y} \leqslant \leqslant\left\|F^{\prime}\right\|_{X}F|YY⩽⩽FX.
Let Y X Y X Y sube XY \subseteq XYX and f f f inf \inf Lip Y Y YYY. A function F F F inF \inF Lip X X XXX is called norm preserving Lipschitz extension of f f fff if
Let:
(3) F | Y = f and F X = f Y (3) F Y = f  and  F X = f Y {:(3)F|_(Y)=f" and "||F||_(X)=||f||_(Y):}\begin{equation*} \left.F\right|_{Y}=f \text { and }\|F\|_{X}=\|f\|_{Y} \tag{3} \end{equation*}(3)F|Y=f and FX=fY
(4) E ( f ) = { F Lip X : F | Y = f and F X = f Y } (4) E ( f ) = F Lip X : F Y = f  and  F X = f Y {:(4)E(f)={F in Lip X:F|_(Y)=f" and "||F||_(X)=||f||_(Y)}:}\begin{equation*} E(f)=\left\{F \in \operatorname{Lip} X:\left.F\right|_{Y}=f \text { and }\|F\|_{X}=\|f\|_{Y}\right\} \tag{4} \end{equation*}(4)E(f)={FLipX:F|Y=f and FX=fY}
be the set of all norm preserving Lipschitz extensions of f f f inf \inf Lip Y Y YYY.
By a result of Mc Shane [5], every f f f inf \inf Lip Y Y YYY has a least one norm preserving extension F Lip X F Lip X F in Lip XF \in \operatorname{Lip} XFLipX, i.e. E ( f ) E ( f ) E(f)!=O/E(f) \neq \emptysetE(f) for every f Lip Y f Lip Y f in Lip Yf \in \operatorname{Lip} YfLipY.
Since for every constant function c Lip Y , c Y = 0 c Lip Y , c Y = 0 c in Lip Y,||c||_(Y)=0c \in \operatorname{Lip} Y,\|c\|_{Y}=0cLipY,cY=0, it follows that the "norm" Y Y ||quad||_(Y)\|\quad\|_{Y}Y is only a seminorm on Lip Y Y YYY. In order to obtain a genuine norm, fix a point x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y and let
(5) Lip 0 Y = { f Lip Y : f ( x 0 ) = 0 } (5) Lip 0 Y = f Lip Y : f x 0 = 0 {:(5)Lip_(0)Y={f in Lip Y:f(x_(0))=0}:}\begin{equation*} \operatorname{Lip}_{0} Y=\left\{f \in \operatorname{Lip} Y: f\left(x_{0}\right)=0\right\} \tag{5} \end{equation*}(5)Lip0Y={fLipY:f(x0)=0}
Then Y Y ||||_(Y):}\left\|\|_{Y}\right.Y is a norm on Lip 0 Y Lip 0 Y Lip_(0)Y\operatorname{Lip}_{0} YLip0Y and Lip 0 Y Lip 0 Y Lip_(0)Y\operatorname{Lip}_{0} YLip0Y is a Banach space with respect to this norm.
Then, by the above quoted result of Me Shane, one obtains :
Theorem 1. Let ( X , d X , d X,dX, dX,d ) be a metric space, x 0 x 0 x_(0)x_{0}x0 a fixed point in X X XXX and Y Y YYY a subset of X X XXX containing x 0 x 0 x_(0)x_{0}x0. Then for every f Lip 0 Y f Lip 0 Y f inLip_(0)Yf \in \operatorname{Lip}_{0} YfLip0Y there exists F Lip 0 0 X F Lip 0 0 X F in Lip0_(0)XF \in \operatorname{Lip} 0_{0} XFLip00X such that H | Y = f H Y = f H^(')|_(Y)=f\left.H^{\prime}\right|_{Y}=fH|Y=f and F X = f Y F X = f Y ||F||_(X)=||f||_(Y)\|F\|_{X}=\|f\|_{Y}FX=fY.
It is easily seen (see [3], [5]) that the following functions:
F 1 ( x ) = sup { f ( y ) f Y d ( x , y ) : y Y } , x X (6) and F 2 ( x ) = inf { f ( y ) f Y d ( x , y ) : y Y } , x X F 1 ( x ) = sup f ( y ) f Y d ( x , y ) : y Y , x X (6)  and  F 2 ( x ) = inf f ( y ) f Y d ( x , y ) : y Y , x X {:[F_(1)(x)=s u p{f(y)-||f||_(Y)*d(x,y):y in Y}","quad x in X],[(6)" and "],[F_(2)(x)=i n f{f(y)-||f||_(Y)*d(x,y):y in Y}","quad x in X]:}\begin{align*} & F_{1}(x)=\sup \left\{f(y)-\|f\|_{Y} \cdot d(x, y): y \in Y\right\}, \quad x \in X \\ & \text { and } \tag{6}\\ & F_{2}(x)=\inf \left\{f(y)-\|f\|_{Y} \cdot d(x, y): y \in Y\right\}, \quad x \in X \end{align*}F1(x)=sup{f(y)fYd(x,y):yY},xX(6) and F2(x)=inf{f(y)fYd(x,y):yY},xX
are two norm preserving Lipschitz extension of f Lip 0 I f Lip 0 I f inLip_(0)If \in \operatorname{Lip}_{0} IfLip0I. The set W ( f ) Lip 0 X W ( f ) Lip 0 X W(f)subLip_(0)XW(f) \subset \operatorname{Lip}_{0} XW(f)Lip0X is nonempty, convex and bounded, such that the extension operator
(7) D : Lip 0 Y 2 Lip 0 X (7) D : Lip 0 Y 2 Lip 0 X {:(7)D:Lip_(0)Y rarr2^(Lip_(0)X):}\begin{equation*} D: \operatorname{Lip}_{0} Y \rightarrow 2^{\operatorname{Lip}_{0} X} \tag{7} \end{equation*}(7)D:Lip0Y2Lip0X
is well defined and multivalued.
The problem of the existence of a selection of the extension operator E E EEE (i.e. a function e : Lip 0 Y Lip 0 X e : Lip 0 Y Lip 0 X e:Lip_(0)Y rarrLip_(0)Xe: \operatorname{Lip}_{0} Y \rightarrow \operatorname{Lip}_{0} Xe:Lip0YLip0X such that e ( f ) E ( f ) e ( f ) E ( f ) e(f)in E(f)e(f) \in E(f)e(f)E(f), for all f Lip 0 Y f Lip 0 Y f inLip_(0)Yf \in \operatorname{Lip}_{0} YfLip0Y ) which is linear and continuous was considered in [9].
In the particular case X = R X = R X=RX=RX=R and Y = [ a , b ] , x 0 Y Y = [ a , b ] , x 0 Y Y=[a,b],x_(0)in YY=[a, b], x_{0} \in YY=[a,b],x0Y, a linear and continuous selection e e eee of E E EEE can be given explicitly (see [9]).
2. Suppose X X XXX is a normed space and Y X , x 0 X Y X , x 0 X Y sub X,x_(0)in XY \subset X, x_{0} \in XYX,x0X. In this case there exist functions in E ( f ) E ( f ) E(f)E(f)E(f) which preserve some properties of f f fff such as starshapedness or convexity (in these case Y Y YYY is supposed to be a starshaped, respectively a convex subset of X X XXX and x 0 = θ x 0 = θ x_(0)=thetax_{0}=\thetax0=θ ) (see [2], [6]). A natural question is to give explicit selections, with the values preserving some properties of the function f f fff and to study their linearity and continuity.
In the following we shall present an example of a homogeneous and continuous selection having values Bernstein polynomials.
Let X = [ 0 , 1 ] , Y = { 0 , 1 } , x 0 = 0 X = [ 0 , 1 ] , Y = { 0 , 1 } , x 0 = 0 X=[0,1],Y={0,1},x_(0)=0X=[0,1], Y=\{0,1\}, x_{0}=0X=[0,1],Y={0,1},x0=0 and d ( x , y ) = | x y | d ( x , y ) = | x y | d(x,y)=|x-y|d(x, y)=|x-y|d(x,y)=|xy|. Tri this case
Lip 0 I = Lip 0 { 0 , 1 } = { f : { 0 , 1 } R , f ( 0 ) = 0 } Lip 0 I = Lip 0 { 0 , 1 } = { f : { 0 , 1 } R , f ( 0 ) = 0 } Lip_(0)I=Lip_(0){0,1}={f:{0,1}rarr R,f(0)=0}\operatorname{Lip}_{0} I=\operatorname{Lip}_{0}\{0,1\}=\{f:\{0,1\} \rightarrow R, f(0)=0\}Lip0I=Lip0{0,1}={f:{0,1}R,f(0)=0}
and
(8) Lip 0 X = Lip 0 [ 0 , 1 ] = { F : [ 0 , 1 ] R , F ( 0 ) = 0 (8) Lip 0 X = Lip 0 [ 0 , 1 ] = { F : [ 0 , 1 ] R , F ( 0 ) = 0 {:(8)Lip_(0)X=Lip_(0)[0","1]={F:[0","1]rarr R","F(0)=0:}\begin{equation*} \operatorname{Lip}_{0} X=\operatorname{Lip}_{0}[0,1]=\{F:[0,1] \rightarrow R, F(0)=0 \tag{8} \end{equation*}(8)Lip0X=Lip0[0,1]={F:[0,1]R,F(0)=0
F F FFF is Lipschitz on [ 0 , 1 ] } [ 0 , 1 ] } [0,1]}[0,1]\}[0,1]}
For f Lip 0 Y f Lip 0 Y f inLip_(0)Yf \in \operatorname{Lip}_{0} YfLip0Y we have f Y = | f ( 1 ) | f Y = | f ( 1 ) | ||f||_(Y)=|f(1)|\|f\|_{Y}=|f(1)|fY=|f(1)| and
(9) T X = sup { | F ( x ) F ( y ) | / | x y | : x , y [ 0 , 1 ] , x y } . (9) T X = sup { | F ( x ) F ( y ) | / | x y | : x , y [ 0 , 1 ] , x y } . {:(9)||T||_(X)=s u p{|F(x)-F(y)|//|x-y|:x","y in[0","1]","x!=y}.:}\begin{equation*} \|T\|_{X}=\sup \{|F(x)-F(y)| /|x-y|: x, y \in[0,1], x \neq y\} . \tag{9} \end{equation*}(9)TX=sup{|F(x)F(y)|/|xy|:x,y[0,1],xy}.
for F Lip 0 X F Lip 0 X F inLip_(0)XF \in \operatorname{Lip}_{0} XFLip0X.
In this case E E EEE is single-valued, namely E ( f ) = { F } E ( f ) = { F } E(f)={F}E(f)=\{F\}E(f)={F} where F ( x ) == f ( 1 ) x , x [ 0 , 1 ] F ( x ) == f ( 1 ) x , x [ 0 , 1 ] F(x)==f(1)x,x in[0,1]F(x)= =f(1) x, x \in[0,1]F(x)==f(1)x,x[0,1] and the following result hold:
Theorem 2. The application E : Lip 0 Y Lip 0 X E : Lip 0 Y Lip 0 X E:Lip_(0)Y rarrLip_(0)XE: \operatorname{Lip}_{0} Y \rightarrow \operatorname{Lip}_{0} XE:Lip0YLip0X, where E ( f ) = { F } E ( f ) = { F } E(f)={F}E(f)=\{F\}E(f)={F} with F ( x ) = f ( 1 ) x , x [ 0 , 1 ] F ( x ) = f ( 1 ) x , x [ 0 , 1 ] F(x)=f(1)x,x in[0,1]F(x)=f(1) x, x \in[0,1]F(x)=f(1)x,x[0,1] is linear and continuous.
Proof. The functions F 1 F 1 F_(1)F_{1}F1 and F 2 F 2 F_(2)F_{2}F2 given by (6) are equals and F 1 ( x ) == F 2 ( x ) = f ( 1 ) x , x [ 0 , 1 ] F 1 ( x ) == F 2 ( x ) = f ( 1 ) x , x [ 0 , 1 ] F_(1)(x)==F_(2)(x)=f(1)x,x in[0,1]F_{1}(x)= =F_{2}(x)=f(1) x, x \in[0,1]F1(x)==F2(x)=f(1)x,x[0,1]. In [9, Th. 4 and Corollary 5] it was proved that e ( f ) = ( 1 / 2 ) ( F 1 + F 2 ) e ( f ) = ( 1 / 2 ) F 1 + F 2 e(f)=(1//2)(F_(1)+F_(2))e(f)=(1 / 2)\left(F_{1}+F_{2}\right)e(f)=(1/2)(F1+F2) is a linear and continuous selection for E E EEE, so that e ( f ) = E ( f ) e ( f ) = E ( f ) e(f)=E(f)e(f)=E(f)e(f)=E(f) is linear and continuous.
Remark 1. It is well known (see [1]) that for F Lip 0 [ 0 , 1 ] F Lip 0 [ 0 , 1 ] F inLip_(0)[0,1]F \in \operatorname{Lip}_{0}[0,1]FLip0[0,1] the Bernstein polynomial of degree n ( n 1 ) n ( n 1 ) n(n >= 1)n(n \geqslant 1)n(n1) given by
(10) B n ( F ; x ) = k = 0 n ( n k ) F ( k n ) x k ( 1 x ) n k , x [ 0 , 1 ] (10) B n ( F ; x ) = k = 0 n ( n k ) F k n x k ( 1 x ) n k , x [ 0 , 1 ] {:(10)B_(n)(F;x)=sum_(k=0)^(n)((n)/(k))F((k)/(n))x^(k)(1-x)^(n-k)","quad x in[0","1]:}\begin{equation*} B_{n}(F ; x)=\sum_{k=0}^{n}\binom{n}{k} F\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k}, \quad x \in[0,1] \tag{10} \end{equation*}(10)Bn(F;x)=k=0n(nk)F(kn)xk(1x)nk,x[0,1]
is Lipschitz and B n ( F ; ) X F X B n ( F ; ) X F X ||B_(n)(F;)||_(X) <= ||F||_(X)\left\|B_{n}(F ;)\right\|_{X} \leqslant\|F\|_{X}Bn(F;)XFX. Because B n ( F ; 0 ) = F ( 0 ) == f ( 0 ) B n ( F ; 0 ) = F ( 0 ) == f ( 0 ) B_(n)(F;0)=F(0)==f(0)B_{n}(F ; 0)=F(0)= =f(0)Bn(F;0)=F(0)==f(0) and B n ( l ; 1 ) = F ( 1 ) = f ( 1 ) B n l ; 1 = F ( 1 ) = f ( 1 ) B_(n)(l^(');1)=F(1)=f(1)B_{n}\left(l^{\prime} ; 1\right)=F(1)=f(1)Bn(l;1)=F(1)=f(1) for every F E ( f ) F E ( f ) F in E(f)F \in E(f)FE(f), it follows that B n ( F ; ) M ( f ) B n ( F ; ) M ( f ) B_(n)(F;)inM(f)B_{n}(F 😉 \in \mathcal{M}(f)Bn(F;)M(f), for every f Lip 0 Y f Lip 0 Y f inLip_(0)Yf \in \operatorname{Lip}_{0} YfLip0Y. In this case B n ( F ; x ) = f ( 1 ) x B n ( F ; x ) = f ( 1 ) x B_(n)(F;x)=f(1)xB_{n}(F ; x)=f(1) xBn(F;x)=f(1)x, for all n N , n 1 n N , n 1 n in N,n >= 1n \in N, n \geqslant 1nN,n1, so that the application
(11) f B n ( F ; ) = E ( f ) = B 1 ( F ; ) (11) f B n ( F ; ) = E ( f ) = B 1 ( F ; ) {:(11)f|->B_(n)(F;*)=E(f)=B_(1)(F;*):}\begin{equation*} f \mapsto B_{n}(F ; \cdot)=E(f)=B_{1}(F ; \cdot) \tag{11} \end{equation*}(11)fBn(F;)=E(f)=B1(F;)
is linear and continuous. Therefore, in this case, the extension operator E : Lip 0 Y 2 Lip 0 x E : Lip 0 Y 2 Lip  0 x E:Lip_(0)Y rarr2^("Lip "_(0)x)E: \operatorname{Lip}_{0} Y \rightarrow 2^{\text {Lip }_{0} x}E:Lip0Y2Lip 0x, admits a linear and continuous selection with values Bernstein polynomials (of a fixed, but arbitrary, degree n n nnn ).
It we are looking for a Lipschitz extension with a greater Lipschitz constant α y α y alpha||quad||_(y)\alpha\|\quad\|_{y}αy, where α > 1 α > 1 alpha > 1\alpha>1α>1 is fixed, then the extension operator denoted by E α E α E_(alpha)E_{\alpha}Eα, will be multivalued.
From Theorem 2 one obtains the following corollary :
Corollary 1. For every f Lip 0 Y f Lip 0 Y f inLip_(0)Yf \in \operatorname{Lip}_{0} YfLip0Y there exists F Lip 0 X F Lip 0 X F inLip_(0)XF \in \operatorname{Lip}_{0} XFLip0X such that
(12) F | Y = f and F X = α , | f ( 1 ) | = α f Y (12) F Y = f  and  F X = α , | f ( 1 ) | = α f Y {:(12)F|_(Y)=f" and "||F||_(X)=alpha","|f(1)|=alpha||f||_(Y):}\begin{equation*} \left.F\right|_{Y}=f \text { and }\|F\|_{X}=\alpha,|f(1)|=\alpha\|f\|_{Y} \tag{12} \end{equation*}(12)F|Y=f and FX=α,|f(1)|=αfY
Proof. It is easy to verify that the functions
x ¯ 1 ( x ) = max { f ( y ) α | f ( 1 ) | | x y | : y { 0 , 1 } } (13) and I ¯ 2 ( x ) = min { f ( y ) + α | f ( 1 ) | | x y | : y { 0 , 1 } } x ¯ 1 ( x ) = max { f ( y ) α | f ( 1 ) | | x y | : y { 0 , 1 } } (13)  and  I ¯ 2 ( x ) = min { f ( y ) + α | f ( 1 ) | | x y | : y { 0 , 1 } } {:[ bar(x)_(1)(x)=max{f(y)-alpha|f(1)||x-y|:y in{0","1}}],[(13)" and "],[ bar(I)_(2)(x)=min{f(y)+alpha|f(1)||x-y|:y in{0","1}}]:}\begin{align*} & \bar{x}_{1}(x)=\max \{f(y)-\alpha|f(1)||x-y|: y \in\{0,1\}\} \\ & \text { and } \tag{13}\\ & \bar{I}_{2}(x)=\min \{f(y)+\alpha|f(1)||x-y|: y \in\{0,1\}\} \end{align*}x¯1(x)=max{f(y)α|f(1)||xy|:y{0,1}}(13) and I¯2(x)=min{f(y)+α|f(1)||xy|:y{0,1}}
x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], have the properties
and
F ¯ 1 ( 0 ) = F ¯ 2 ( 0 ) = f ( 0 ) = 0 , F ¯ 1 ( 1 ) = F ¯ 2 ( 1 ) = f ( 1 ) F ¯ 1 ( 0 ) = F ¯ 2 ( 0 ) = f ( 0 ) = 0 , F ¯ 1 ( 1 ) = F ¯ 2 ( 1 ) = f ( 1 ) bar(F)_(1)(0)= bar(F)_(2)(0)=f(0)=0,quad bar(F)_(1)(1)= bar(F)_(2)(1)=f(1)\bar{F}_{1}(0)=\bar{F}_{2}(0)=f(0)=0, \quad \bar{F}_{1}(1)=\bar{F}_{2}(1)=f(1)F¯1(0)=F¯2(0)=f(0)=0,F¯1(1)=F¯2(1)=f(1)
Let
F ¯ 1 X = α | f ( 1 ) | = H ¯ 2 X F ¯ 1 X = α | f ( 1 ) | = H ¯ 2 X || bar(F)_(1)||_(X)=alpha|f(1)|=|| bar(H)_(2)||_(X)\left\|\bar{F}_{1}\right\|_{X}=\alpha|f(1)|=\left\|\bar{H}_{2}\right\|_{X}F¯1X=α|f(1)|=H¯2X
(14) E ( f ) = { F ¯ Lip p 0 X : H | Y = f , F ¯ | X α | f ( 1 ) | } (14) E ( f ) = F ¯ Lip p 0 X : H ¯ Y = f , F ¯ X α | f ( 1 ) | {:(14)E(f)={( bar(F))in Lipp_(0)X: bar(H^('))|_(Y)=f,||( bar(F))|_(X) <= alpha|f(1)|}:}\begin{equation*} E(f)=\left\{\bar{F} \in \operatorname{Lip} p_{0} X:\left.\overline{H^{\prime}}\right|_{Y}=f, \|\left.\bar{F}\right|_{X} \leqslant \alpha|f(1)|\right\} \tag{14} \end{equation*}(14)E(f)={F¯Lipp0X:H|Y=f,F¯|Xα|f(1)|}
denote the set of the Lipschitz extensions of the function f f fff which preserve the norm α f Y α f Y alpha||f||_(Y)\alpha\|f\|_{Y}αfY. Then F ¯ 1 , F ¯ 2 E α ( f ) F ¯ 1 , F ¯ 2 E α ( f ) bar(F)_(1), bar(F)_(2)inE_(alpha)(f)\bar{F}_{1}, \bar{F}_{2} \in E_{\alpha}(f)F¯1,F¯2Eα(f) and F ¯ 1 ( x ) F ¯ 2 ( x ) F ¯ 1 ( x ) F ¯ 2 ( x ) bar(F)_(1)(x)!= bar(F)_(2)(x)\bar{F}_{1}(x) \neq \bar{F}_{2}(x)F¯1(x)F¯2(x) for all x ( 0 , 1 ) x ( 0 , 1 ) x in(0,1)x \in(0,1)x(0,1), so that the extension operator
H α : Lip 0 Y 2 Lip 0 X H α : Lip 0 Y 2 Lip 0 X H_(alpha):Lip_(0)Y rarr2^(Lip_(0)X)H_{\alpha}: \operatorname{Lip}_{0} Y \rightarrow 2^{\operatorname{Lip}_{0} X}Hα:Lip0Y2Lip0X
is well defined and multivalued.
Concerning this operator E α E α E_(alpha)E_{\alpha}Eα one can prove the following theorem:
Theorem 3. a) The operator E α E α E_(alpha)E_{\alpha}Eα admits a homogeneous and continuous selection;
b) For every n N , n 1 n N , n 1 n in N,n >= 1n \in N, n \geqslant 1nN,n1, the operator E α E α E_(alpha)E_{\alpha}Eα admits a homogeneous and continuous selection with values Bernstein polynomials of degree n n nnn.
Proof. a) Consider the following two selections e 1 , e 2 e 1 , e 2 e_(1),e_(2)e_{1}, e_{2}e1,e2 defined by
(15) e 1 ( f ) = F ¯ 1 and e 2 ( f ) = F ¯ 2 , f Lip p 0 I , (15) e 1 ( f ) = F ¯ 1  and  e 2 ( f ) = F ¯ 2 , f Lip p 0 I , {:(15)e_(1)(f)= bar(F)_(1)" and "e_(2)(f)= bar(F)_(2)","f in Lipp_(0)I",":}\begin{equation*} e_{1}(f)=\bar{F}_{1} \text { and } e_{2}(f)=\bar{F}_{2}, f \in \operatorname{Lip} p_{0} I, \tag{15} \end{equation*}(15)e1(f)=F¯1 and e2(f)=F¯2,fLipp0I,
where
B 1 ( x ) = max { α | f ( 1 ) | x ; f ( 1 ) α | f ( 1 ) | ( 1 x } , a [ 0 , 1 ] B _ 1 ( x ) = max { α | f ( 1 ) | x ; f ( 1 ) α | f ( 1 ) | ( 1 x } , a [ 0 , 1 ] vec(B_)_(1)(x)=max{-alpha|f(1)|x;f(1)-alpha|f(1)|(1-x},a in[0,1]\overrightarrow{\underline{B}}_{1}(x)=\max \{-\alpha|f(1)| x ; f(1)-\alpha|f(1)|(1-x\}, a \in[0,1]B1(x)=max{α|f(1)|x;f(1)α|f(1)|(1x},a[0,1]
and
(16) E ¯ 2 ( x ) = min { a | f ( 1 ) | x ; f ( 1 ) + α | f ( 1 ) | ( 1 x ) } , x [ 0 , 1 ] . (16) E ¯ 2 ( x ) = min { a | f ( 1 ) | x ; f ( 1 ) + α | f ( 1 ) | ( 1 x ) } , x [ 0 , 1 ] . {:(16) bar(E)_(2)(x)=min{a|f(1)|x;f(1)+alpha|f(1)|(1-x)}","x in[0","1].:}\begin{equation*} \bar{E}_{2}(x)=\min \{a|f(1)| x ; f(1)+\alpha|f(1)|(1-x)\}, x \in[0,1] . \tag{16} \end{equation*}(16)E¯2(x)=min{a|f(1)|x;f(1)+α|f(1)|(1x)},x[0,1].
Then, for λ 0 , e 1 ( λ f ) = λ e 1 ( f ) λ 0 , e 1 ( λ f ) = λ e 1 ( f ) lambda >= 0,e_(1)(lambda f)=lambda*e_(1)(f)\lambda \geqslant 0, e_{1}(\lambda f)=\lambda \cdot e_{1}(f)λ0,e1(λf)=λe1(f) and e 2 ( λ f ) = λ e 2 ( f ) e 2 ( λ f ) = λ e 2 ( f ) e_(2)(lambda f)=lambda*e_(2)(f)e_{2}(\lambda f)=\lambda \cdot e_{2}(f)e2(λf)=λe2(f). By the definition of e 1 e 1 e_(1)e_{1}e1 and e 2 , e 1 ( f ) = e 2 ( f ) e 2 , e 1 ( f ) = e 2 ( f ) e_(2),e_(1)(f)=-e_(2)(-f)e_{2}, e_{1}(f)=-e_{2}(-f)e2,e1(f)=e2(f), implying that the selection
(17)
e ( f ) = ( 1 / 2 ) ( e 1 ( f ) + e 2 ( f ) . ) e ( f ) = ( 1 / 2 ) e 1 ( f ) + e 2 ( f ) . e(f)=(1//2)(e_(1)(f)+e_(2)(f).)e(f)=(1 / 2)\left(e_{1}(f)+e_{2}(f) .\right)e(f)=(1/2)(e1(f)+e2(f).)
is homogeneous, i.e.
e ( λ f ) = λ e ( f ) , λ R , f Lip 0 Y e ( λ f ) = λ e ( f ) , λ R , f Lip 0 Y e(lambda f)=lambda e(f),quad lambda in R,quad f inLip_(0)Ye(\lambda f)=\lambda e(f), \quad \lambda \in R, \quad f \in \operatorname{Lip}_{0} Ye(λf)=λe(f),λR,fLip0Y
Now, we show that e 1 , e 2 e 1 , e 2 e_(1),e_(2)e_{1}, e_{2}e1,e2 are continuous selections which will imply the continuity of e e eee, too.
Let ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 and 0 < δ < ε 0 < δ < ε 0 < delta < epsi0<\delta<\varepsilon0<δ<ε. We shall show that for f , g Lip p 0 Y f , g Lip p 0 Y f,g in Lipp_(0)Yf, g \in \operatorname{Lip} p_{0} Yf,gLipp0Y, a | f ( 1 ) g ( 1 ) | < δ a | f ( 1 ) g ( 1 ) | < δ a|f(1)-g(1)| < deltaa|f(1)-g(1)|<\deltaa|f(1)g(1)|<δ implies F ¯ 1 G ¯ 1 X < ε F ¯ 1 G ¯ 1 X < ε || bar(F)_(1)- bar(G)_(1)||_(X) < epsi\left\|\bar{F}_{1}-\bar{G}_{1}\right\|_{X}<\varepsilonF¯1G¯1X<ε where F ¯ 1 F ¯ 1 bar(F)_(1)\bar{F}_{1}F¯1 is defined by (16) and
G ¯ 1 ( x ) = max { α | g ( 1 ) | x ; g ( 1 ) α | g ( 1 ) | ( 1 x ) } , x [ 0 , 1 ] . G ¯ 1 ( x ) = max { α | g ( 1 ) | x ; g ( 1 ) α | g ( 1 ) | ( 1 x ) } , x [ 0 , 1 ] . bar(G)_(1)(x)=max{-alpha|g(1)|x;g(1)-alpha|g(1)|(1-x)},x in[0,1].\bar{G}_{1}(x)=\max \{-\alpha|g(1)| x ; g(1)-\alpha|g(1)|(1-x)\}, x \in[0,1] .G¯1(x)=max{α|g(1)|x;g(1)α|g(1)|(1x)},x[0,1].
We have to consider the following cases:
1 f ( 1 ) > r , g ( 1 ) > 0 1 f ( 1 ) > r , g ( 1 ) > 0 1^(@)f(1) > r,g(1) > 01^{\circ} f(1)>r, g(1)>01f(1)>r,g(1)>0.
In this case
F ¯ 1 ( x ) G ¯ 1 ( x ) = α [ g ( 1 ) f ( 1 ) ] x , for x [ 0 , α 1 2 α ] = f ( 1 ) g ( 1 ) α [ f ( 1 ) g ( 1 ) ] ( 1 x ) , for x ( α 1 2 α , 1 ] F ¯ 1 ( x ) G ¯ 1 ( x ) = α [ g ( 1 ) f ( 1 ) ] x ,  for  x 0 , α 1 2 α = f ( 1 ) g ( 1 ) α [ f ( 1 ) g ( 1 ) ] ( 1 x ) ,  for  x α 1 2 α , 1 {:[ bar(F)_(1)(x)- bar(G)_(1)(x)=alpha[g(1)-f(1)]x","" for "x in[0,(alpha-1)/(2alpha)]],[=f(1)-g(1)-alpha[f(1)-g(1)](1-x)","" for "x in((alpha-1)/(2alpha),1]]:}\begin{aligned} \bar{F}_{1}(x)-\bar{G}_{1}(x) & =\alpha[g(1)-f(1)] x, \text { for } x \in\left[0, \frac{\alpha-1}{2 \alpha}\right] \\ & =f(1)-g(1)-\alpha[f(1)-g(1)](1-x), \text { for } x \in\left(\frac{\alpha-1}{2 \alpha}, 1\right] \end{aligned}F¯1(x)G¯1(x)=α[g(1)f(1)]x, for x[0,α12α]=f(1)g(1)α[f(1)g(1)](1x), for x(α12α,1]
implying F ¯ 1 G ¯ 1 x = α | f ( 1 ) g ( 1 ) | < δ < ε F ¯ 1 G ¯ 1 x = α | f ( 1 ) g ( 1 ) | < δ < ε || bar(F)_(1)- bar(G)_(1)||_(x)=alpha|f(1)-g(1)| < delta < epsi\left\|\bar{F}_{1}-\bar{G}_{1}\right\|_{x}=\alpha|f(1)-g(1)|<\delta<\varepsilonF¯1G¯1x=α|f(1)g(1)|<δ<ε.
2 f ( 1 ) < 0 , g ( 1 ) < 0 2 f ( 1 ) < 0 , g ( 1 ) < 0 2^(@)f(1) < 0,g(1) < 02^{\circ} f(1)<0, g(1)<02f(1)<0,g(1)<0.
In this case
F 1 ( x ) G ¯ 1 ( x ) = α [ | f ( 1 ) | | g ( 1 ) | ] x , for x [ 0 , α + 1 2 α ] = = f ( 1 ) g ( 1 ) α [ | f ( 1 ) | | g ( 1 ) | ] ( 1 x ) , for x ( α + 1 2 α , 1 ] F 1 ( x ) G ¯ 1 ( x ) = α [ | f ( 1 ) | | g ( 1 ) | ] x ,  for  x 0 , α + 1 2 α = = f ( 1 ) g ( 1 ) α [ | f ( 1 ) | | g ( 1 ) | ] ( 1 x ) ,  for  x α + 1 2 α , 1 {:[ vec(F)_(1)(x)- bar(G)_(1)(x)=alpha[|f(1)|-|g(1)|]x","" for "x in[0,(alpha+1)/(2alpha)]=],[=f(1)-g(1)-alpha[|f(1)|-|g(1)|](1-x)","" for "x in((alpha+1)/(2alpha),1]]:}\begin{aligned} \vec{F}_{1}(x)-\bar{G}_{1}(x) & =\alpha[|f(1)|-|g(1)|] x, \text { for } x \in\left[0, \frac{\alpha+1}{2 \alpha}\right]= \\ & =f(1)-g(1)-\alpha[|f(1)|-|g(1)|](1-x), \text { for } x \in\left(\frac{\alpha+1}{2 \alpha}, 1\right] \end{aligned}F1(x)G¯1(x)=α[|f(1)||g(1)|]x, for x[0,α+12α]==f(1)g(1)α[|f(1)||g(1)|](1x), for x(α+12α,1]
implying P ¯ 1 G ¯ 1 X = α | | f ( 1 ) | | g ( 1 ) | | α | f ( 1 ) g ( 1 ) | < δ < ε P ¯ 1 G ¯ 1 X = α | | f ( 1 ) | | g ( 1 ) | | α | f ( 1 ) g ( 1 ) | < δ < ε || bar(P)_(1)- bar(G)_(1)||_(X)=alpha||f(1)|-|g(1)|| <= alpha|f(1)-g(1)| < delta < epsi\left\|\bar{P}_{1}-\bar{G}_{1}\right\|_{X}=\alpha| | f(1)|-|g(1)|| \leqslant \alpha|f(1)-g(1)|<\delta<\varepsilonP¯1G¯1X=α||f(1)||g(1)||α|f(1)g(1)|<δ<ε. 3 f ( 1 ) > 0 , g ( 1 ) < 0 ( 3 f ( 1 ) > 0 , g ( 1 ) < 0 ( 3^(@)f(1) > 0,g(1) < 0(3^{\circ} f(1)>0, g(1)<0(3f(1)>0,g(1)<0( or f ( 1 ) < 0 f ( 1 ) < 0 f(1) < 0f(1)<0f(1)<0 and g ( 1 ) > 0 ) g ( 1 ) > 0 ) g(1) > 0)g(1)>0)g(1)>0).
In this case
F ¯ 1 ( x ) G ¯ 1 ( x ) = α [ | g ( 1 ) | | f ( 1 ) | ] x , for x [ 0 , α 1 2 α ] = f ( 1 ) α f ( 1 ) + α [ | g ( 1 ) | f ( 1 ) ] x , for x ( α 1 2 α , α + 1 2 α ] = f ( 1 ) g ( 1 ) + α [ | g ( 1 ) | f ( 1 ) ] + α [ f ( 1 ) | g ( 1 ) | ] x for x ( α + 1 2 α , 1 ] F ¯ 1 ( x ) G ¯ 1 ( x ) = α [ | g ( 1 ) | | f ( 1 ) | ] x ,  for  x 0 , α 1 2 α = f ( 1 ) α f ( 1 ) + α [ | g ( 1 ) | f ( 1 ) ] x ,  for  x α 1 2 α , α + 1 2 α = f ( 1 ) g ( 1 ) + α [ | g ( 1 ) | f ( 1 ) ] + α [ f ( 1 ) | g ( 1 ) | ] x  for  x α + 1 2 α , 1 {:[ bar(F)_(1)(x)- bar(G)_(1)(x)=alpha[|g(1)|-|f(1)|]x","" for "x in[0,(alpha-1)/(2alpha)]],[=f(1)-alpha f(1)+alpha[|g(1)|-f(1)]*x","" for "x in((alpha-1)/(2alpha),(alpha+1)/(2alpha)]],[=f(1)-g(1)+alpha[|g(1)|-f(1)]+alpha[f(1)-|g(1)|]x],[" for "x in((alpha+1)/(2alpha),1]]:}\begin{aligned} & \bar{F}_{1}(x)-\bar{G}_{1}(x)=\alpha[|g(1)|-|f(1)|] x, \text { for } x \in\left[0, \frac{\alpha-1}{2 \alpha}\right] \\ &=f(1)-\alpha f(1)+\alpha[|g(1)|-f(1)] \cdot x, \text { for } x \in\left(\frac{\alpha-1}{2 \alpha}, \frac{\alpha+1}{2 \alpha}\right] \\ &=f(1)-g(1)+\alpha[|g(1)|-f(1)]+\alpha[f(1)-|g(1)|] x \\ & \text { for } x \in\left(\frac{\alpha+1}{2 \alpha}, 1\right] \end{aligned}F¯1(x)G¯1(x)=α[|g(1)||f(1)|]x, for x[0,α12α]=f(1)αf(1)+α[|g(1)|f(1)]x, for x(α12α,α+12α]=f(1)g(1)+α[|g(1)|f(1)]+α[f(1)|g(1)|]x for x(α+12α,1]
implying h ¯ 1 G ¯ 1 x = α | f ( 1 ) | g ( 1 ) | | α | f ( 1 ) g ( 1 ) | < δ < ε 4 f ( 1 ) = 0 h ¯ 1 G ¯ 1 x = α f ( 1 ) | g ( 1 ) | α | f ( 1 ) g ( 1 ) | < δ < ε 4 f ( 1 ) = 0 || bar(h)_(1)- bar(G)_(1)||_(x)=alpha|f^(')(1)-|g(1)|| <= alpha|f(1)-g(1)| < delta < epsi4^(@)f(1)=0\left\|\bar{h}_{1}-\bar{G}_{1}\right\|_{x}=\alpha\left|f^{\prime}(1)-|g(1)|\right| \leqslant \alpha|f(1)-g(1)|<\delta<\varepsilon 4^{\circ} f(1)=0h¯1G¯1x=α|f(1)|g(1)||α|f(1)g(1)|<δ<ε4f(1)=0 and g ( 1 ) 0 ( g ( 1 ) 0 ( g(1)!=0(g(1) \neq 0(g(1)0( or f ( 1 ) 0 f ( 1 ) 0 f(1)!=0f(1) \neq 0f(1)0 and g ( 1 ) = 0 ) g ( 1 ) = 0 ) g(1)=0)g(1)=0)g(1)=0)
In this case F ¯ 1 ( x ) = 0 , x [ 0 , 1 ] F ¯ 1 ( x ) = 0 , x [ 0 , 1 ] bar(F)_(1)(x)=0,x in[0,1]\bar{F}_{1}(x)=0, x \in[0,1]F¯1(x)=0,x[0,1] and F ¯ 1 G ¯ 1 X = G ¯ 1 X == a | g ( 1 ) | < δ < ε F ¯ 1 G ¯ 1 X = G ¯ 1 X == a | g ( 1 ) | < δ < ε || bar(F)_(1)- bar(G)_(1)||_(X)=|| bar(G)_(1)||_(X)==a|g(1)| < delta < epsi\left\|\bar{F}_{1}-\bar{G}_{1}\right\|_{X}=\left\|\bar{G}_{1}\right\|_{X}= =a|g(1)|<\delta<\varepsilonF¯1G¯1X=G¯1X==a|g(1)|<δ<ε.
It follows that e 1 e 1 e_(1)e_{1}e1 is a continuous selections. In a similar way one can show the continuty of the selection, e 2 e 2 e_(2)e_{2}e2, implying the continuity of the selection e e eee.
b) Let n N , n 1 n N , n 1 n in N,n >= 1n \in N, n \geqslant 1nN,n1, be a fixed and for f Lip 0 Y f Lip 0 Y f inLip_(0)Yf \in \mathrm{Lip}_{0} YfLip0Y let B n ( e ( f ) B n ( e ( f ) B_(n)(e(f)B_{n}(e(f)Bn(e(f); .) be the Bernstein operator asociated to the function e ( f ) e ( f ) e(f)e(f)e(f) :
(18) B n ( e ( f ) ; x ) = k = 0 n ( n k ) e ( f ) ( k n ) x k ( 1 x ) n k , x [ 0 , 1 ] (18) B n ( e ( f ) ; x ) = k = 0 n ( n k ) e ( f ) k n x k ( 1 x ) n k , x [ 0 , 1 ] {:(18)B_(n)(e(f);x)=sum_(k=0)^(n)((n)/(k))*e(f)((k)/(n))*x^(k)(1-x)^(n-k)","quad x in[0","1]:}\begin{equation*} B_{n}(e(f) ; x)=\sum_{k=0}^{n}\binom{n}{k} \cdot e(f)\left(\frac{k}{n}\right) \cdot x^{k}(1-x)^{n-k}, \quad x \in[0,1] \tag{18} \end{equation*}(18)Bn(e(f);x)=k=0n(nk)e(f)(kn)xk(1x)nk,x[0,1]
By the result from [1] it follows
B n ( e ( f ) ; . ) x e ( f ) x = a | f ( 1 ) | B n ( e ( f ) ; . ) x e ( f ) x = a | f ( 1 ) | ||B_(n)(e(f);.)||_(x) <= ||e(f)||_(x)=a|f(1)|\left\|B_{n}(e(f) ; .)\right\|_{x} \leqslant\|e(f)\|_{x}=a|f(1)|Bn(e(f);.)xe(f)x=a|f(1)|
Since B n ( e ( f ) ; 0 ) = e ( f ) ( 0 ) = f ( 0 ) = 0 B n ( e ( f ) ; 0 ) = e ( f ) ( 0 ) = f ( 0 ) = 0 B_(n)(e(f);0)=e(f)(0)=f(0)=0B_{n}(e(f) ; 0)=e(f)(0)=f(0)=0Bn(e(f);0)=e(f)(0)=f(0)=0 and B n ( e ( f ) ; 1 ) = e ( f ) ( 1 ) = f ( 1 ) B n ( e ( f ) ; 1 ) = e ( f ) ( 1 ) = f ( 1 ) B_(n)(e(f);1)=e(f)(1)=f(1)B_{n}(e(f) ; 1)=e(f)(1)=f(1)Bn(e(f);1)=e(f)(1)=f(1), it follows that B n ( e ( f ) ; . ) E α ( f ) B n ( e ( f ) ; . ) E α ( f ) B_(n)(e(f);.)inE_(alpha)(f)B_{n}(e(f) ;.) \in E_{\alpha}(f)Bn(e(f);.)Eα(f).
Define the selection
b n : Iip 0 { 0 , 1 } Lip 0 [ 0 , 1 ] b n : Iip 0 { 0 , 1 } Lip 0 [ 0 , 1 ] b_(n):Iip_(0){0,1}rarrLip_(0)[0,1]b_{n}: \operatorname{Iip}_{0}\{0,1\} \rightarrow \operatorname{Lip}_{0}[0,1]bn:Iip0{0,1}Lip0[0,1]
by
(19) b n ( f ) = B n ( e ( f ) ; . ) (19) b n ( f ) = B n ( e ( f ) ; . ) {:(19)b_(n)(f)=B_(n)(e(f);.):}\begin{equation*} b_{n}(f)=B_{n}(e(f) ; .) \tag{19} \end{equation*}(19)bn(f)=Bn(e(f);.)
As the Bernstein operator is linear it follows that for λ R λ R lambda inR\lambda \in \mathbb{R}λR, b n ( λ f ) = B n ( e ( λ f ) ; ) = . B n ( λ e ( f ) ; ) = . λ B n ( e ( f ) ; ) = . λ b n ( f ) b n ( λ f ) = B n ( e ( λ f ) ; ) = . B n ( λ e ( f ) ; ) = . λ B n ( e ( f ) ; ) = . λ b n ( f ) b_(n)(lambda f)=B_(n)(e(lambda f);)=.B_(n)(lambda e(f);)=.lambdaB_(n)(e(f);)=.lambdab_(n)(f)b_{n}(\lambda f)=B_{n}(e(\lambda f) ;)=.B_{n}(\lambda e(f) ;)=.\lambda B_{n}(e(f) ;)=.\lambda b_{n}(f)bn(λf)=Bn(e(λf);)=.Bn(λe(f);)=.λBn(e(f);)=.λbn(f), showing that b n b n b_(n)b_{n}bn is a homogeneous selection.
If f , g Lip 0 { 0 , 1 } f , g Lip 0 { 0 , 1 } f,g inLip_(0){0,1}f, g \in \operatorname{Lip}_{0}\{0,1\}f,gLip0{0,1} are such that α | f ( 1 ) g ( 1 ) | < δ < ε α | f ( 1 ) g ( 1 ) | < δ < ε alpha|f(1)-g(1)| < delta < epsi\alpha|f(1)-g(1)|<\delta<\varepsilonα|f(1)g(1)|<δ<ε then H ¯ 1 G ¯ 1 x < ε H ¯ 1 G ¯ 1 x < ε || bar(H)_(1)- bar(G)_(1)||_(x) < epsi\left\|\bar{H}_{1}-\bar{G}_{1}\right\|_{x}<\varepsilonH¯1G¯1x<ε and F ¯ 2 G ¯ 2 x < ε F ¯ 2 G ¯ 2 x < ε || bar(F)_(2)- bar(G)_(2)||_(x) < epsi\left\|\bar{F}_{2}-\bar{G}_{2}\right\|_{x}<\varepsilonF¯2G¯2x<ε, so that
b 18 ( f ) b n ( g ) X = B n ( e ( f ) ; . ) B n ( e ( g ) ; . ) X = b 18 ( f ) b n ( g ) X = B n ( e ( f ) ; . ) B n ( e ( g ) ; . ) X = ||b_(18)(f)-b_(n)(g)||_(X)=||B_(n)(e(f);.)-B_(n)(e(g);.)||_(X)=\left\|b_{18}(f)-b_{n}(g)\right\|_{X}=\left\|B_{n}(e(f) ; .)-B_{n}(e(g) ; .)\right\|_{X}=b18(f)bn(g)X=Bn(e(f);.)Bn(e(g);.)X=
= ( 1 / 2 ) B n ( F 1 G 1 ) + B n ( F 2 G 2 ) X ( 1 / 2 ) [ B n ( F 1 G 1 ) X + B ¯ n ( F 2 G 2 ) X ] ( 1 / 2 ) F ¯ 1 G ¯ 1 X + ( 1 / 2 ) F ¯ 2 G ¯ 2 X < ε , = ( 1 / 2 ) B n F 1 G 1 + B n F 2 G 2 X ( 1 / 2 ) B n F 1 G 1 X + B ¯ n F 2 G 2 X ( 1 / 2 ) F ¯ 1 G ¯ 1 X + ( 1 / 2 ) F ¯ 2 G ¯ 2 X < ε , {:[=(1//2)||B_(n)(F_(1)-G_(1))+B_(n)(F_(2)-G_(2))||_(X) <= ],[ <= (1//2)[||B_(n)(F_(1)-G_(1))||_(X)+|| bar(B)_(n)(F_(2)-G_(2))||_(X)] <= ],[ <= (1//2)|| bar(F)_(1)- bar(G)_(1)||_(X)+(1//2)|| bar(F)_(2)- bar(G)_(2)||_(X) < epsi","]:}\begin{aligned} & =(1 / 2)\left\|B_{n}\left(F_{1}-G_{1}\right)+B_{n}\left(F_{2}-G_{2}\right)\right\|_{X} \leqslant \\ & \leqslant(1 / 2)\left[\left\|B_{n}\left(F_{1}-G_{1}\right)\right\|_{X}+\left\|\bar{B}_{n}\left(F_{2}-G_{2}\right)\right\|_{X}\right] \leqslant \\ & \leqslant(1 / 2)\left\|\bar{F}_{1}-\bar{G}_{1}\right\|_{X}+(1 / 2)\left\|\bar{F}_{2}-\bar{G}_{2}\right\|_{X}<\varepsilon, \end{aligned}=(1/2)Bn(F1G1)+Bn(F2G2)X(1/2)[Bn(F1G1)X+B¯n(F2G2)X](1/2)F¯1G¯1X+(1/2)F¯2G¯2X<ε,
showing that the selection b n b n b_(n)b_{n}bn is also continuous.
Remark 2. (a) Let C + C + C^(+)C^{+}C+be the cone of positive functions in Lip 0 { 0 , 1 } Lip 0 { 0 , 1 } Lip_(0){0,1}\operatorname{Lip}_{0}\{0,1\}Lip0{0,1} and C C C^(-)C^{-}Cthe cone of negative functions, i.e.
C + = { f Lip 0 { 0 , 1 } : f ( 1 ) > 0 } (20) C = { f Lip 0 { 0 , 1 } : f ( 1 ) < 0 } C + = f Lip 0 { 0 , 1 } : f ( 1 ) > 0 (20) C = f Lip 0 { 0 , 1 } : f ( 1 ) < 0 {:[C^(+)={f inLip_(0){0,1}:f(1) > 0}],[(20)C^(-)={f inLip_(0){0,1}:f(1) < 0}]:}\begin{align*} & C^{+}=\left\{f \in \operatorname{Lip}_{0}\{0,1\}: f(1)>0\right\} \\ & C^{-}=\left\{f \in \operatorname{Lip}_{0}\{0,1\}: f(1)<0\right\} \tag{20} \end{align*}C+={fLip0{0,1}:f(1)>0}(20)C={fLip0{0,1}:f(1)<0}
Then e 1 ( C ) K e 1 C K e_(1)(C^(-))subeK^(-)e_{1}\left(C^{-}\right) \subseteq K^{-}e1(C)K, where K = { F Lip p 0 [ 0 , 1 ] , P K = F Lip p 0 [ 0 , 1 ] , P K^(-)={F in Lipp_(0)[0,1],P:}K^{-}=\left\{F \in \operatorname{Lip} p_{0}[0,1], P\right.K={FLipp0[0,1],P is negative } } }\}}, and e 2 ( C + ) K + e 2 C + K + e_(2)(C^(+))subeK^(+)e_{2}\left(C^{+}\right) \subseteq K^{+}e2(C+)K+, where K + = { F Lip 0 [ 0 , 1 ] , F K + = F Lip 0 [ 0 , 1 ] , F K^(+)={F in Lip_(0)[0,1],F:}K^{+}=\left\{F \in \operatorname{Lip}{ }_{0}[0,1], F\right.K+={FLip0[0,1],F is positive } } }\}}.
Let
(21) H α : C 2 K , E α + : C + 2 K + (21) H α : C 2 K , E α + : C + 2 K + {:(21)H_(alpha)^(-):C^(-)rarr2^(K-)","E_(alpha)^(+):C^(+)rarr2^(K+):}\begin{equation*} H_{\alpha}^{-}: C^{-} \rightarrow 2^{K-}, E_{\alpha}^{+}: C^{+} \rightarrow 2^{K+} \tag{21} \end{equation*}(21)Hα:C2K,Eα+:C+2K+
be the restrictions of E α E α E_(alpha)E_{\alpha}Eα to the cones C C C^(-)C^{-}Cand C + C + C^(+)C^{+}C+, respectively.
Obviously that E α ( f ) E α ( f ) E_(alpha)^(-)(f)!=O/E_{\alpha}^{-}(f) \neq \emptysetEα(f), for every f C f C f inC^(-)f \in C^{-}fC(the set E α ( f ) E α ( f ) E_(alpha)^(-)(f)E_{\alpha}^{-}(f)Eα(f) contains at least the function F ¯ 1 K F ¯ 1 K bar(F)_(1)inK^(-)\bar{F}_{1} \in K^{-}F¯1K) and E α + ( f ) 0 E α + ( f ) 0 E_(alpha)^(+)(f)!=0E_{\alpha}^{+}(f) \neq 0Eα+(f)0, for every f C + f C + f inC^(+)f \in C^{+}fC+(the set E α + ( f ) E α + ( f ) E_(alpha)^(+)(f)E_{\alpha}^{+}(f)Eα+(f) contains at least the function F ¯ 2 K + F ¯ 2 K + bar(F)_(2)inK^(+)\bar{F}_{2} \in K^{+}F¯2K+).
We have the following corollary
Corollary 2. a) The selection e 1 ( f ) = F ¯ 1 , f C e 1 ( f ) = F ¯ 1 , f C e_(1)^(-)(f)= bar(F)_(1),f inC^(-)e_{1}^{-}(f)=\bar{F}_{1}, f \in C^{-}e1(f)=F¯1,fC, associated to the operator E E E_(-)^(-)E_{-}^{-}Eis continuous, positively homogeneous and additive;
b) The selection e 2 + ( f ) = F ¯ 2 , f C + e 2 + ( f ) = F ¯ 2 , f C + e_(2)^(+)(f)= bar(F)_(2),f inC^(+)e_{2}^{+}(f)=\bar{F}_{2}, f \in C^{+}e2+(f)=F¯2,fC+, associated to the operator D α + D α + D_(alpha)^(+)D_{\alpha}^{+}Dα+is continuous, positively homogeneous and additive;
e) The selections b n ( f ) = B n ( e 1 ( f ) ; . ) b n ( f ) = B n e 1 ( f ) ; . b_(n)^(-)(f)=B_(n)(e_(1)^(-)(f);.)b_{n}^{-}(f)=B_{n}\left(e_{1}^{-}(f) ;.\right)bn(f)=Bn(e1(f);.) and b n + ( f ) = B n ( e 2 + ( f ) ; . ) b n + ( f ) = B n e 2 + ( f ) ; . b_(n)^(+)(f)=B_(n)(e_(2)^(+)(f);.)b_{n}^{+}(f)=B_{n}\left(e_{2}^{+}(f) ;.\right)bn+(f)=Bn(e2+(f);.) are continuous, positively homogeneous and additive.
Proof. The continuity and the positive homogeneity of the selections e 1 e 1 e_(1)^(-)e_{1}^{-}e1and e 2 + e 2 + e_(2)^(+)e_{2}^{+}e2+follow from the proofs of Cases 1 1 1^(@)1^{\circ}1 and 2 2 2^(@)2^{\circ}2 of Theorem 3.
If f ( 1 ) < 0 f ( 1 ) < 0 f(1) < 0f(1)<0f(1)<0 and g ( 1 ) < 0 g ( 1 ) < 0 g(1) < 0g(1)<0g(1)<0 then
F ¯ 1 ( x ) = α | f ( 1 ) | x , for a [ 0 , α + 1 2 α ] = f ( 1 ) α | f ( 1 ) | ( 1 x ) , for a ( α + 1 2 α , 1 ] F ¯ 1 ( x ) = α | f ( 1 ) | x ,  for  a 0 , α + 1 2 α = f ( 1 ) α | f ( 1 ) | ( 1 x ) ,  for  a α + 1 2 α , 1 {:[ bar(F)_(1)(x)=-alpha|f(1)|x","quad" for "quad a in[0,(alpha+1)/(2alpha)]],[=f(1)-alpha|f(1)|(1-x)","quad" for "quad a in((alpha+1)/(2alpha),1]]:}\begin{aligned} \bar{F}_{1}(x) & =-\alpha|f(1)| x, \quad \text { for } \quad a \in\left[0, \frac{\alpha+1}{2 \alpha}\right] \\ & =f(1)-\alpha|f(1)|(1-x), \quad \text { for } \quad a \in\left(\frac{\alpha+1}{2 \alpha}, 1\right] \end{aligned}F¯1(x)=α|f(1)|x, for a[0,α+12α]=f(1)α|f(1)|(1x), for a(α+12α,1]
and
G ¯ 1 ( x ) = α | g ( 1 ) | x , for x [ 0 , α + 1 2 α ] = g ( 1 ) α | g ( 1 ) | ( 1 x ) , for x ( α + 1 2 α , 1 ] G ¯ 1 ( x ) = α | g ( 1 ) | x ,  for  x 0 , α + 1 2 α = g ( 1 ) α | g ( 1 ) | ( 1 x ) ,  for  x α + 1 2 α , 1 {:[ bar(G)_(1)(x)=-alpha|g(1)|x","" for "quad x in[0,(alpha+1)/(2alpha)]],[=g(1)-alpha|g(1)|(1-x)","" for "x in((alpha+1)/(2alpha),1]]:}\begin{aligned} \bar{G}_{1}(x) & =-\alpha|g(1)| x, \text { for } \quad x \in\left[0, \frac{\alpha+1}{2 \alpha}\right] \\ & =g(1)-\alpha|g(1)|(1-x), \text { for } x \in\left(\frac{\alpha+1}{2 \alpha}, 1\right] \end{aligned}G¯1(x)=α|g(1)|x, for x[0,α+12α]=g(1)α|g(1)|(1x), for x(α+12α,1]
implying e 1 ( f + g ) = e 1 ( f ) + e 1 ( g ) e 1 ( f + g ) = e 1 ( f ) + e 1 ( g ) e_(1)^(-)(f+g)=e_(1)^(-)(f)+e_(1)^(-)(g)e_{1}^{-}(f+g)=e_{1}^{-}(f)+e_{1}^{-}(g)e1(f+g)=e1(f)+e1(g)
Similarly for f ( 1 ) > 0 f ( 1 ) > 0 f(1) > 0f(1)>0f(1)>0 and g ( 1 ) > 0 g ( 1 ) > 0 g(1) > 0g(1)>0g(1)>0 one obtains e 2 + ( f + g ) === e 2 + ( f ) + e 2 + ( g ) e 2 + ( f + g ) === e 2 + ( f ) + e 2 + ( g ) e_(2)^(+)(f+g)===e_(2)^(+)(f)+e_(2)^(+)(g)e_{2}^{+}(f+g)== =e_{2}^{+}(f)+e_{2}^{+}(g)e2+(f+g)===e2+(f)+e2+(g).
Assertion c) follows from the fact that the Bernstein operator is linear and positive.
(b) Remark that the selections e 1 e 1 e_(1)^(-)e_{1}^{-}e1and e 1 + e 1 + e_(1)^(+)e_{1}^{+}e1+are monotonically increasing with respect to the pointwise order, i.e. 0 < f ( 1 ) < g ( 1 ) 0 < f ( 1 ) < g ( 1 ) 0 < f(1) < g(1)0<f(1)<g(1)0<f(1)<g(1) implies F ¯ 2 ( a ) ⩽⩽ G ¯ 2 ( x ) , x [ 0 , 1 ] F ¯ 2 ( a ) ⩽⩽ G ¯ 2 ( x ) , x [ 0 , 1 ] bar(F)_(2)(a)⩽⩽ bar(G)_(2)(x),x in[0,1]\bar{F}_{2}(a) \leqslant \leqslant \bar{G}_{2}(x), x \in[0,1]F¯2(a)⩽⩽G¯2(x),x[0,1] and 0 > f ( 1 ) > g ( 1 ) 0 > f ( 1 ) > g ( 1 ) 0 > f(1) > g(1)0>f(1)>g(1)0>f(1)>g(1) implies F 1 ( x ) G 1 ( x ) , x [ 0 , 1 ] F 1 ( x ) G 1 ( x ) , x [ 0 , 1 ] F_(1)(x) >= G_(1)(x),x in[0,1]F_{1}(x) \geqslant G_{1}(x), x \in[0,1]F1(x)G1(x),x[0,1]
Furthermore, e 1 ( f ) e 1 ( f ) e_(1)^(-)(f)e_{1}^{-}(f)e1(f) is a convex lunction for f C f C f inC^(-)f \in C^{-}fCand e 2 + ( f ) e 2 + ( f ) e_(2)^(+)(f)e_{2}^{+}(f)e2+(f) is a concave function for f C + f C + f inC^(+)f \in C^{+}fC+.
3. Selections associated to the operator of metric projection
Let Y Y Y^(_|_)Y^{\perp}Y be the anihilator of the set Y = { 0 , 1 } Y = { 0 , 1 } Y={0,1}Y=\{0,1\}Y={0,1} in Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] Lip_(0)[0,1]\operatorname{Lip}_{0}[0,1]Lip0[0,1], i.e.
(22) Y ⊥= { G Lip 0 [ 0 , 1 ] : G ( 0 ) = G ( 1 ) = 0 } (22) Y ⊥= G Lip 0 [ 0 , 1 ] : G ( 0 ) = G ( 1 ) = 0 {:(22)Y⊥={G inLip_(0)[0,1]:G(0)=G(1)=0}:}\begin{equation*} Y \perp=\left\{G \in \operatorname{Lip}_{0}[0,1]: G(0)=G(1)=0\right\} \tag{22} \end{equation*}(22)Y⊥={GLip0[0,1]:G(0)=G(1)=0}
Then X X X^(_|_)X^{\perp}X is a closed ideal in Lip p 0 [ 0 , 1 ] Lip p 0 [ 0 , 1 ] Lipp_(0)[0,1]\operatorname{Lip} p_{0}[0,1]Lipp0[0,1]. For X 1 Lip p 0 [ 0 , 1 ] X 1 Lip p 0 [ 0 , 1 ] X^(1)in Lipp_(0)[0,1]X^{1} \in \operatorname{Lip} p_{0}[0,1]X1Lipp0[0,1] let
(23) d ( F , Y ) = inf { I Y G X : G Y } (23) d F , Y = inf I Y G X : G Y {:(23)d(F,Y^(_|_))=i n f{||I^(Y)-G||_(X):quad G inY^(_|_)}:}\begin{equation*} d\left(F, Y^{\perp}\right)=\inf \left\{\left\|I^{Y}-G\right\|_{X}: \quad G \in Y^{\perp}\right\} \tag{23} \end{equation*}(23)d(F,Y)=inf{IYGX:GY}
An element G 0 Y G 0 Y G_(0)inY^(_|_)G_{0} \in Y^{\perp}G0Y for which the infimum in (23) is attained is called the nearest point to F 1 F 1 F^(1)F^{1}F1 in Y Y Y^(_|_)Y^{\perp}Y.
Let
(24) P Y : lip 0 [ 0 , 1 ] 2 Y (24) P Y : lip 0 [ 0 , 1 ] 2 Y {:(24)P_(Y^(_|_)):lip_(0)[0","1]rarr2^(Y^(_|_)):}\begin{equation*} P_{Y^{\perp}}: \operatorname{lip}_{0}[0,1] \rightarrow 2^{Y^{\perp}} \tag{24} \end{equation*}(24)PY:lip0[0,1]2Y
be the operator of metric projection on Y Y Y _|_Y \perpY, defined by
P Y ( F ) = { G Y : F G X = d ( F , Y ) } P Y F = G Y : F G X = d F , Y P_(Y^(_|_))(F^(TT))={G inY^(_|_):||F^(TT)-G||_(X)=d(F^(TT),Y^(_|_))}P_{Y^{\perp}}\left(F^{\top}\right)=\left\{G \in Y^{\perp}:\left\|F^{\top}-G\right\|_{X}=d\left(F^{\top}, Y^{\perp}\right)\right\}PY(F)={GY:FGX=d(F,Y)}
for all F Lip 0 [ 0 , 1 ] F Lip 0 [ 0 , 1 ] F inLip_(0)[0,1]F \in \operatorname{Lip}_{0}[0,1]FLip0[0,1].
X X X^(_|_)X^{\perp}X is called proximinal (resp. Chebyshev) if for each F Jip 0 [ 0 , 1 ] F Jip 0 [ 0 , 1 ] F inJip_(0)[0,1]F \in \mathrm{Jip}_{0}[0,1]FJip0[0,1] the set P Y ( F r ) P Y F r P_(Y^(_|_))(F^(r))P_{Y^{\perp}}\left(F^{r}\right)PY(Fr) is nonempty (resp. a singleton).
The following proposition holds :
Proposition 1. a) The formula
(25)
d ( F , Y ) = | B ( 1 ) | d F , Y = | B ( 1 ) | d(F,Y^(_|_))=| vec(B)(1)|d\left(F, Y^{\perp}\right)=|\vec{B}(1)|d(F,Y)=|B(1)|
is valid for every H Lip 0 H Lip 0 H^(')inLip_(0)H^{\prime} \in \operatorname{Lip}_{0}HLip0 [0,1]. In particular Y Y Y^(_|_)Y^{\perp}Y is a proximinal subspace of Lip Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] Lip_(0)[0,1]\operatorname{Lip}_{0}[0,1]Lip0[0,1];
b) If G P x ( F ) G P x ( F ) G inP_(x^(_|_))(F)G \in P_{x^{\perp}}(F)GPx(F) then G = H H G = H H G=H^(TT)-HG=H^{\top}-HG=HH, where H E α ( F | Y ) H E α F Y H inE_(alpha)(F^(TT)|_(Y))∣H \in E_{\alpha}\left(\left.F^{\top}\right|_{Y}\right) \midHEα(F|Y) is such that H X = | F ( 1 ) | : H X = | F ( 1 ) | : ||H||_(X)=|F(1)|:\|H\|_{X}=|F(1)|:HX=|F(1)|:
c) There holds the equality:
(26) d ( F , X ) = d ( F , F E x ( F | Y ) ) (26) d ( F , X ) = d F , F E x F Y {:(26)d(F","X _|_)=d(F,F-E_(x)(F|_(Y))):}\begin{equation*} d(F, X \perp)=d\left(F, F-E_{x}\left(\left.F\right|_{Y}\right)\right) \tag{26} \end{equation*}(26)d(F,X)=d(F,FEx(F|Y))
where F D α ( F | X ) = { F Π : H E α ( F | Y ) } , F Lip 0 [ 0 , 1 ] ; F D α F X = F Π : H E α F Y , F Lip 0 [ 0 , 1 ] ; F-D_(alpha)(F|_(X))={F-Pi:H inE_(alpha)(F|_(Y))},quad F in Lip_(0)[0,1];F-D_{\alpha}\left(\left.F\right|_{X}\right)=\left\{F-\Pi: H \in E_{\alpha}\left(\left.F\right|_{Y}\right)\right\}, \quad F \in \operatorname{Lip}{ }_{0}[0,1] ;FDα(F|X)={FΠ:HEα(F|Y)},FLip0[0,1];
d) The equality
(27) sup { F G X : G F W α ( F | Y ) } = α | F ( 1 ) | (27) sup F G X : G F W α F Y = α | F ( 1 ) | {:(27)s u p{||F-G||_(X):G in F-W_(alpha)(F|_(Y))}=alpha|F(1)|:}\begin{equation*} \sup \left\{\|F-G\|_{X}: G \in F-W_{\alpha}\left(\left.F\right|_{Y}\right)\right\}=\alpha|F(1)| \tag{27} \end{equation*}(27)sup{FGX:GFWα(F|Y)}=α|F(1)|
holds for every W Lip 0 [ 0 , 1 ] W Lip 0 [ 0 , 1 ] W inLip_(0)[0,1]W \in \operatorname{Lip}_{0}[0,1]WLip0[0,1].
Proof. a) Let F Lip p 0 [ 0 , 1 ] F Lip p 0 [ 0 , 1 ] F in Lipp_(0)[0,1]F \in \operatorname{Lip} p_{0}[0,1]FLipp0[0,1]. Then for every G Y G Y G in Y _|_G \in Y \perpGY one has | G ( 1 ) | == | F ( 1 ) G ( 1 ) | F G X | G ( 1 ) | == | F ( 1 ) G ( 1 ) | F G X |G(1)|==|F(1)-G(1)| <= ||F-G||_(X)|G(1)|= =|F(1)-G(1)| \leqslant\|F-G\|_{X}|G(1)|==|F(1)G(1)|FGX. Taking the infimum with respect to G Y G Y G inY^(_|_)G \in Y^{\perp}GY one obtains
F ( 1 ) ∣⩽ d ( F , X ) F ( 1 ) ∣⩽ d F , X F^(')(1)∣⩽d(F,X^(_|_))F^{\prime}(1) \mid \leqslant d\left(F, X^{\perp}\right)F(1)∣⩽d(F,X)
Let G 0 ( x ) = H ( x ) H ( 1 ) x , x [ 0 , 1 ] G 0 ( x ) = H ( x ) H ( 1 ) x , x [ 0 , 1 ] G_(0)(x)=H(x)-H(1)x,x in[0,1]G_{0}(x)=H(x)-H(1) x, x \in[0,1]G0(x)=H(x)H(1)x,x[0,1]. It follows that G 0 Y ( G 0 ( 0 ) = 0 = = G 0 ( 1 ) G 0 Y G 0 ( 0 ) = 0 = = G 0 ( 1 ) G_(0)in Y _|_(G_(0)(0)=0=:}=G_(0)(1)G_{0} \in Y \perp\left(G_{0}(0)=0=\right. =G_{0}(1)G0Y(G0(0)=0==G0(1) and. F G 0 X = | F ( 1 ) | F G 0 X = F ( 1 ) ||F-G_(0)||_(X)=|F^(')(1)|\left\|F-G_{0}\right\|_{X}=\left|F^{\prime}(1)\right|FG0X=|F(1)| so that F G 0 X = d ( F I , Y ) F G 0 X = d F I , Y ||F^(')-G_(0)||_(X)=d(F^(I),Y _|_)\left\|F^{\prime}-G_{0}\right\|_{X}=d\left(F^{I}, Y \perp\right)FG0X=d(FI,Y). This shows that Y Y Y^(_|_)Y^{\perp}Y is a proximinal subspace of Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] Lip_(0)[0,1]\operatorname{Lip}_{0}[0,1]Lip0[0,1].
b) If G P Y ( F l ) G P Y F l G inP_(Y^(_|_))(F^(l))G \in P_{Y^{\perp}}\left(F^{l}\right)GPY(Fl), then
F G x = d ( F , Y 1 ) = | F ( 1 ) | α | F ( 1 ) | , F G x = d F , Y 1 = | F ( 1 ) | α F ( 1 ) , ||F-G||_(x)=d(F,Y^(1))=|F(1)| <= alpha|F^(')(1)|,\|F-G\|_{x}=d\left(F, Y^{1}\right)=|F(1)| \leqslant \alpha\left|F^{\prime}(1)\right|,FGx=d(F,Y1)=|F(1)|α|F(1)|,
and
( F G ) | Y = F | Y , ( F G ) Y = F Y , (F-G)|_(Y)=F^(')|_(Y),\left.(F-G)\right|_{Y}=\left.F^{\prime}\right|_{Y},(FG)|Y=F|Y,
showing that F G E x ( P | Y ) F G E x P Y F-G inE_(x)(P^(')|_(Y))F-G \in E_{x}\left(\left.P^{\prime}\right|_{Y}\right)FGEx(P|Y). If follows that there exists U U UUU in E α ( F | Y ) E α F Y E_(alpha)(F|_(Y^(')))E_{\alpha}\left(\left.F\right|_{Y^{\prime}}\right)Eα(F|Y) such that F G = H F G = H F^(')-G=HF^{\prime}-G=HFG=H and W x = I G x ˙ = | H ( 1 ) | W x = I G x ˙ = H ( 1 ) ||W||_(x)=||I-G_(x^(˙))=|H^(')(1)|\|W\|_{x}=\| I-G_{\dot{x}}=\left|H^{\prime}(1)\right|Wx=IGx˙=|H(1)|.
c) Follows from a) and b).
d) For every G F H 3 ( F | Y ) G F H 3 F Y G in F-H_(3)(F|_(Y))G \in F-H_{3}\left(\left.F\right|_{Y}\right)GFH3(F|Y) we have
F G X = F ( F H ) X = H X α | F ( 1 ) | , F G X = F ( F H ) X = H X α | F ( 1 ) | , ||F-G||_(X)=||F-(F-H)||_(X)=||H||_(X) <= alpha|F(1)|,\|F-G\|_{X}=\|F-(F-H)\|_{X}=\|H\|_{X} \leqslant \alpha|F(1)|,FGX=F(FH)X=HXα|F(1)|,
where H D α ( H J ) H D α H J H inD_(alpha)(H_(∣J))H \in D_{\alpha}\left(H_{\mid J}\right)HDα(HJ).
Taking the supremum with respect to G I E α ( F | x ) G I E α F x G in I-E_(alpha)(F|_(x))G \in I-E_{\alpha}\left(\left.F\right|_{x}\right)GIEα(F|x) we find
sup { F G X : G F D α ( F | Y ) } α | F ( 1 ) | . sup F G X : G F D α F Y α | F ( 1 ) | . s u p{||F-G||_(X):G in F-D_(alpha)(F|_(Y))} <= alpha|F(1)|.\sup \left\{\|F-G\|_{X}: G \in F-D_{\alpha}\left(\left.F\right|_{Y}\right)\right\} \leqslant \alpha|F(1)| .sup{FGX:GFDα(F|Y)}α|F(1)|.
Let
G 1 ( x ) = H ( x ) max { α | H ( 1 ) | x ; H ( 1 ) α | H ( 1 ) | ( 1 x ) } , G 1 ( x ) = H ( x ) max α H ( 1 ) x ; H ( 1 ) α H ( 1 ) ( 1 x ) , G_(1)(x)=H^(')(x)-max{-alpha|H^(')(1)|x;H^(')(1)-alpha|H^(')(1)|(1-x)},G_{1}(x)=H^{\prime}(x)-\max \left\{-\alpha\left|H^{\prime}(1)\right| x ; H^{\prime}(1)-\alpha\left|H^{\prime}(1)\right|(1-x)\right\},G1(x)=H(x)max{α|H(1)|x;H(1)α|H(1)|(1x)},
and
G 2 ( x ) = l ( x ) min { α | F ( 1 ) | x ; l ( 1 ) + α | F ( 1 ) | ( 1 x ) } , G 2 ( x ) = l ( x ) min α F ( 1 ) x ; l ( 1 ) + α F ( 1 ) ( 1 x ) , G_(2)(x)=l^(')(x)-min{alpha|F^(')(1)|x;l^(')(1)+alpha|F^(')(1)|(1-x)},G_{2}(x)=l^{\prime}(x)-\min \left\{\alpha\left|F^{\prime}(1)\right| x ; l^{\prime}(1)+\alpha\left|F^{\prime}(1)\right|(1-x)\right\},G2(x)=l(x)min{α|F(1)|x;l(1)+α|F(1)|(1x)},
x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1].
Obviously that G 1 , G 2 F H 2 ( I | Y ) G 1 , G 2 F H 2 I Y G_(1),G_(2)in F-H_(2)(I^(')|_(Y))G_{1}, G_{2} \in F-H_{2}\left(\left.I^{\prime}\right|_{Y}\right)G1,G2FH2(I|Y) and,
F G ^ 1 x = F G 2 x = α | F ( 1 ) | , F G ^ 1 x = F G 2 x = α | F ( 1 ) | , ||F- hat(G)_(1)||_(x)=||F-G_(2)||_(x)=alpha|F(1)|,\left\|F-\hat{G}_{1}\right\|_{x}=\left\|F-G_{2}\right\|_{x}=\alpha|F(1)|,FG^1x=FG2x=α|F(1)|,
proving the assertion d d ddd ).
Remark 3. By Proposition 1 it follows that the nearest points to F Lip [ 0 , 1 ] F Lip [ 0 , 1 ] F in Lip[0,1]F \in \operatorname{Lip}[0,1]FLip[0,1] in Y Y Y _|_Y \perpY are the functions G F E α ( F | Y ) Y , G = F H G F E α F Y Y , G = F H G in F-E_(alpha)(F|_(Y))subY^(_|_),G=F-HG \in F-E_{\alpha}\left(\left.F\right|_{Y}\right) \subset Y^{\perp}, G=F-HGFEα(F|Y)Y,G=FH with H E α ( F | Y ) H E α F Y H inE_(alpha)(F|_(Y))H \in \mathbb{E}_{\alpha}\left(\left.F\right|_{Y}\right)HEα(F|Y) of minimal Lipsehitz norm and the farthest points for F F F^(')F^{\prime}F in F E a ( F | Y ) X F E a F Y X F^(')-E_(a)(F^(')|_(Y))subX^(_|_)F^{\prime}-E_{a}\left(\left.F^{\prime}\right|_{Y}\right) \subset X^{\perp}FEa(F|Y)X are the functions G = F I G = F I G=F-I^(')G=F-I^{\prime}G=FI, with H B a ( H Y | Y ) H B a H Y Y H inB_(a)(H^(Y)|_(Y))H \in B_{a}\left(\left.H^{Y}\right|_{Y}\right)HBa(HY|Y) of the maximal norm ( H X = α H ( 1 ) H X = α H ( 1 ) ||H||_(X)=alpha∣H(1)||\|H\|_{X}=\alpha \mid H(1) \|HX=αH(1) ).
Let r : Lip 0 [ 0 , 1 ] Lip 0 { 0 , 1 } r : Lip 0 [ 0 , 1 ] Lip 0 { 0 , 1 } r:Lip_(0)[0,1]rarrLip_(0){0,1}r: \operatorname{Lip}_{0}[0,1] \rightarrow \operatorname{Lip}_{0}\{0,1\}r:Lip0[0,1]Lip0{0,1} be the restriction operator
(28) r ( F ) = I | { 0 , 1 } Lip 0 { 0 , 1 } , F Lip 0 [ 0 , 1 ] . (28) r ( F ) = I { 0 , 1 } Lip 0 { 0 , 1 } , F Lip 0 [ 0 , 1 ] . {:(28)r(F)=I^(')|_({0,1})inLip_(0){0","1}","quadF^(')inLip_(0)[0","1].:}\begin{equation*} r(F)=\left.I^{\prime}\right|_{\{0,1\}} \in \operatorname{Lip}_{0}\{0,1\}, \quad F^{\prime} \in \operatorname{Lip}_{0}[0,1] . \tag{28} \end{equation*}(28)r(F)=I|{0,1}Lip0{0,1},FLip0[0,1].
Then the operator Q α : Lip 0 [ 0 , 1 ] 2 Y Q α : Lip 0 [ 0 , 1 ] 2 Y Q_(alpha):Lip_(0)[0,1]rarr2^(Y^(_|_))Q_{\alpha}: \operatorname{Lip}_{0}[0,1] \rightarrow 2^{Y^{\perp}}Qα:Lip0[0,1]2Y, defined by
Q α = I E α r , Q α = I E α r , Q_(alpha)=I-E_(alpha)@r,Q_{\alpha}=I-E_{\alpha} \circ r,Qα=IEαr,
where I : Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] I : Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] I:Lip_(0)[0,1]rarrLip_(0)[0,1]I: \operatorname{Lip}_{0}[0,1] \rightarrow \operatorname{Lip}_{0}[0,1]I:Lip0[0,1]Lip0[0,1] is the identity operator, i.e.
is a multivalued operator for α > 1 α > 1 alpha > 1\alpha>1α>1.
(29) Q α ( l ) = F k α ( l | l ) , F Lip 0 [ 0 , 1 ] (29) Q α l = F k α l l , F Lip 0 [ 0 , 1 ] {:(29)Q_(alpha)(l^('))=F^(')-k_(alpha)(l^(')|_(l^(')))","quadF^(')inLip_(0)[0","1]:}\begin{equation*} Q_{\alpha}\left(l^{\prime}\right)=F^{\prime}-k_{\alpha}\left(\left.l^{\prime}\right|_{l^{\prime}}\right), \quad F^{\prime} \in \operatorname{Lip}_{0}[0,1] \tag{29} \end{equation*}(29)Qα(l)=Fkα(l|l),FLip0[0,1]
Since the metric projection operator on X X X^(-_|_)X^{-\perp}X verifies the equality
P Y ( l ) = { G Q α ( I ) : G I x = d ( F , I ) } , P Y l = G Q α I : G I x = d F , I , P_(Y^(_|_))(l^('))={G inQ_(alpha)(I^(')):||G-I^(')||_(x)=d(F,I^(_|_))},P_{Y^{\perp}}\left(l^{\prime}\right)=\left\{G \in Q_{\alpha}\left(I^{\prime}\right):\left\|G-I^{\prime}\right\|_{x}=d\left(F, I^{\perp}\right)\right\},PY(l)={GQα(I):GIx=d(F,I)},
it follows that P Y ( Y r ) Q χ ( Y r ) P Y Y r Q χ Y r P_(Y^(_|_))(Y^(r))subeQ_(chi)(Y^(r))P_{Y^{\perp}}\left(Y^{r}\right) \subseteq Q_{\chi}\left(Y^{r}\right)PY(Yr)Qχ(Yr), for all F Lip P 0 [ 0 , 1 ] F Lip P 0 [ 0 , 1 ] F in LipP_(0)[0,1]F \in \operatorname{Lip} P_{0}[0,1]FLipP0[0,1].
Let T α : Lip 0 [ 0 , 1 ] 2 r T α : Lip 0 [ 0 , 1 ] 2 r T_(alpha):Lip_(0)[0,1]rarr2r^(_|_)T_{\alpha}: \operatorname{Lip}_{0}[0,1] \rightarrow 2 r^{\perp}Tα:Lip0[0,1]2r be defined by
(30) T α ( H ) = { I I Q α ( I ) : I I H X = sup { U I X : U Q α ( I ) } } . (30) T α H = I I Q α ( I ) : I I H X = sup U I X : U Q α I . {:(30)T_(alpha)(H^('))={II inQ_(alpha)(I):||II-H^(')||_(X)=s u p{||U-I^(')||_(X):U inQ_(alpha)(I^('))}}.:}\begin{equation*} T_{\alpha}\left(H^{\prime}\right)=\left\{I I \in Q_{\alpha}(I):\left\|I I-H^{\prime}\right\|_{X}=\sup \left\{\left\|U-I^{\prime}\right\|_{X}: U \in Q_{\alpha}\left(I^{\prime}\right)\right\}\right\} . \tag{30} \end{equation*}(30)Tα(H)={IIQα(I):IIHX=sup{UIX:UQα(I)}}.
The following theorem holds:
Teorem 1. a) The operator P Σ P Σ P_(Sigma^(_|_))P_{\Sigma^{\perp}}PΣ is a linear and continuous selection of the operator Q α Q α Q_(alpha)Q_{\alpha}Qα;
b) The subspace I I I^(_|_)I^{\perp}I is complemented in L 1 P 0 [ 0 , 1 ] L 1 P 0 [ 0 , 1 ] L_(1)P_(0)[0,1]L_{1} P_{0}[0,1]L1P0[0,1] by the subspace
(31) W = { H Lip 0 [ 0 , 1 ] : H ( x ) = a α , α [ 0 , 1 ] , a R j ; (31) W = H Lip 0 [ 0 , 1 ] : H ( x ) = a α , α [ 0 , 1 ] , a R j ; {:(31)W={H in Lip0[0,1]:H(x)=a alpha,alpha in[0,1],a inR_(j);:}:}\begin{equation*} W=\left\{H \in \operatorname{Lip} 0[0,1]: H(x)=a \alpha, \alpha \in[0,1], a \in R_{j} ;\right. \tag{31} \end{equation*}(31)W={HLip0[0,1]:H(x)=aα,α[0,1],aRj;
tions.
c) The operators T α T α T_(alpha)T_{\alpha}Tα and Q α Q α Q_(alpha)Q_{\alpha}Qα admit continuous and homogeneous selec-
Proof. a) The operator P y P y P_(y^(_|_))P_{y^{\perp}}Py is single-valued since for every F Lip 0 [ 0 , 1 ] F Lip 0 [ 0 , 1 ] F inLip_(0)[0,1]F \in \operatorname{Lip}_{0}[0,1]FLip0[0,1] there exists a unique element H U x ( F | Y ) H U x F Y H inU_(x)(F|_(Y^(')))H \in U_{x}\left(\left.F\right|_{Y^{\prime}}\right)HUx(F|Y) such that U X =∣ F ( 1 ) U X =∣ F ( 1 ) ||U||_(X)=∣F^(')(1)\|U\|_{X}= \mid F^{\prime}(1)UX=∣F(1) and by Proposition 1. b), it tollows that I I I^(')I^{\prime}I has a unique nearest point in Y Y Y _|_Y \perpY. Then
P Y ( λ M ) ( x ) = λ I ( x ) λ W ( 1 ) x = λ P Y ( W ) ( x ) , P Y λ M ( x ) = λ I ( x ) λ W ( 1 ) x = λ P Y W ( x ) , P_(Y^(_|_))(lambdaM^('))(x)=lambdaI^(')(x)-lambdaW^(')(1)x=lambdaP_(Y^(_|_))(W^(TT))(x),P_{Y^{\perp}}\left(\lambda M^{\prime}\right)(x)=\lambda I^{\prime}(x)-\lambda W^{\prime}(1) x=\lambda P_{Y^{\perp}}\left(W^{\top}\right)(x),PY(λM)(x)=λI(x)λW(1)x=λPY(W)(x),
for x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and λ R λ R lambda in R\lambda \in RλR.
For F 1 , F 2 Lip 0 [ 0 , 1 ] F 1 , F 2 Lip 0 [ 0 , 1 ] F_(1),F_(2)inLip_(0)[0,1]F_{1}, F_{2} \in \operatorname{Lip}_{0}[0,1]F1,F2Lip0[0,1] we have
P I ( F 1 + F 2 ) ( x ) = F 1 ( x ) + F 2 ( x ) ( H 1 ( 1 ) + F 2 ( 1 ) ) x = = F 1 ( x ) F 1 ( 1 ) x + F 2 ( x ) F 2 ( 1 ) x = P Y ( F 1 ) ( x ) + P Y ( F 2 ) ( x ) . P I F 1 + F 2 ( x ) = F 1 ( x ) + F 2 ( x ) H 1 ( 1 ) + F 2 ( 1 ) x = = F 1 ( x ) F 1 ( 1 ) x + F 2 ( x ) F 2 ( 1 ) x = P Y F 1 ( x ) + P Y F 2 ( x ) . {:[P_(I^(_|_))(F_(1)+F_(2))(x)=F_(1)(x)+F_(2)(x)-(H_(1)(1)+F_(2)(1))x=],[=F_(1)(x)-F_(1)(1)x+F_(2)(x)-F_(2)(1)x=P_(Y^(_|_))(F_(1))(x)+P_(Y^(_|_))(F_(2))(x).]:}\begin{gathered} P_{I^{\perp}}\left(F_{1}+F_{2}\right)(x)=F_{1}(x)+F_{2}(x)-\left(H_{1}(1)+F_{2}(1)\right) x= \\ =F_{1}(x)-F_{1}(1) x+F_{2}(x)-F_{2}(1) x=P_{Y^{\perp}}\left(F_{1}\right)(x)+P_{Y^{\perp}}\left(F_{2}\right)(x) . \end{gathered}PI(F1+F2)(x)=F1(x)+F2(x)(H1(1)+F2(1))x==F1(x)F1(1)x+F2(x)F2(1)x=PY(F1)(x)+PY(F2)(x).
Therefore P Y P Y P_(Y^(_|_))P_{Y^{\perp}}PY is homogeneous and additive.
Also
P I ( d r ) P X ( G ) 2 M r G X P I d r P X ( G ) 2 M r G X ||P_(I^(_|_))(d^(r))-P_(X^(_|_))(G)|| <= 2||M^(r)-G||_(X)\left\|P_{I^{\perp}}\left(d^{r}\right)-P_{X^{\perp}}(G)\right\| \leqslant 2\left\|M^{r}-G\right\|_{X}PI(dr)PX(G)2MrGX
so that P Y ( F ) P Y ( G ) X < 2 P Y F P Y ( G ) X < 2 ||P_(Y^(_|_))(F^('))-P_(Y^(_|_))(G)||_(X) < 2\left\|P_{Y^{\perp}}\left(F^{\prime}\right)-P_{Y^{\perp}}(G)\right\|_{X}<2PY(F)PY(G)X<2 e for I G X < ε I G X < ε ||I^(')-G||_(X) < epsi\left\|I^{\prime}-G\right\|_{X}<\varepsilonIGX<ε, proving the continuity of the operator P γ P γ P_(gamma _|_)P_{\gamma \perp}Pγ.
b) Let F Lip 0 [ 0 , 1 ] F Lip 0 [ 0 , 1 ] F inLip_(0)[0,1]F \in \operatorname{Lip}_{0}[0,1]FLip0[0,1]. Then G ( x ) = F ( x ) W ( 1 ) x , x [ 0 , 1 ] G ( x ) = F ( x ) W ( 1 ) x , x [ 0 , 1 ] G(x)=F(x)-W(1)x,x in[0,1]G(x)=F(x)-W(1) x, x \in[0,1]G(x)=F(x)W(1)x,x[0,1] is an element of Y Y Y^(_|_)Y^{\perp}Y and, since F ( 1 ) x F ( 1 ) x F(1)xF(1) xF(1)x is an element of W W WWW it follows that P ( x ) === G ( x ) + E ( 1 ) x , x [ 0 , 1 ] P ( x ) === G ( x ) + E ( 1 ) x , x [ 0 , 1 ] P(x)===G(x)+E(1)x,quad x in[0,1]P(x)== =G(x)+E(1) x, \quad x \in[0,1]P(x)===G(x)+E(1)x,x[0,1].
If F n F F n F F_(n)rarrF^(')F_{n} \rightarrow F^{\prime}FnF in Lip 0 [ 0 , 1 ] 0 [ 0 , 1 ] _(0)[0,1]{ }_{0}[0,1]0[0,1], i.e. F n F x 0 F n F x 0 ||F_(n)-F^(')||_(x)rarr0\left\|F_{n}-F^{\prime}\right\|_{x} \rightarrow 0FnFx0, then the inequality
| F n ( 1 ) H ( 1 ) | F n F x F n ( 1 ) H ( 1 ) F n F x |F_(n)(1)-H(1)| <= ||F_(n)^(')-F||_(x)\left|F_{n}(1)-H(1)\right| \leqslant\left\|F_{n}^{\prime}-F\right\|_{x}|Fn(1)H(1)|FnFx
implies | F n ( 1 ) | | F ( 1 ) | F n ( 1 ) | F ( 1 ) | |F_(n)(1)|rarr|F(1)|\left|F_{n}(1)\right| \rightarrow|F(1)||Fn(1)||F(1)|, showing that the projection operator on W W WWW is continuous. Consequently Lip 0 [ 0 , 1 ] = Y W Lip 0 [ 0 , 1 ] = Y W Lip_(0)[0,1]=Y _|_ o+W\operatorname{Lip}_{0}[0,1]=Y \perp \oplus WLip0[0,1]=YW.
c) Consider the selections of the metric projections
t α , 1 ( F ) = F e 1 ( F | Y ) , F Lip 0 [ 0 , 1 ] , t α , 2 ( F ) = F e 2 ( F Y ) , F Lip 0 [ 0 , 1 ] , t α , 1 ( F ) = F e 1 F Y , F Lip 0 [ 0 , 1 ] , t α , 2 ( F ) = F e 2 F Y , F Lip 0 [ 0 , 1 ] , {:[t_(alpha,1)(F)=F-e_(1)(F|_(Y))","quad F inLip_(0)[0","1]","],[t_(alpha,2)(F)=F-e_(2)(F_(Y)∣)","quad F inLip_(0)[0","1]","]:}\begin{aligned} & t_{\alpha, 1}(F)=F-e_{1}\left(\left.F\right|_{Y}\right), \quad F \in \operatorname{Lip}_{0}[0,1], \\ & t_{\alpha, 2}(F)=F-e_{2}\left(F_{Y} \mid\right), \quad F \in \operatorname{Lip}_{0}[0,1], \end{aligned}tα,1(F)=Fe1(F|Y),FLip0[0,1],tα,2(F)=Fe2(FY),FLip0[0,1],
where e 1 , e 2 e 1 , e 2 e_(1),e_(2)e_{1}, e_{2}e1,e2 are the selections defined by formulae (15) and (16) (with f = F | Y f = F Y f=F^(')|_(Y)f=\left.F^{\prime}\right|_{Y}f=F|Y ). Then the selection
(32) t α = ( 1 / 2 ) ( t α , 1 + t α , 2 ) (32) t α = ( 1 / 2 ) t α , 1 + t α , 2 {:(32)t_(alpha)=(1//2)(t_(alpha,1)+t_(alpha,2)):}\begin{equation*} t_{\alpha}=(1 / 2)\left(t_{\alpha, 1}+t_{\alpha, 2}\right) \tag{32} \end{equation*}(32)tα=(1/2)(tα,1+tα,2)
is homogeneous and continuous (according to assertion a of Theorem 3).
Since T α ( F ) Q α ( F ) T α ( F ) Q α ( F ) T_(alpha)(F)subeQ_(alpha)(F)T_{\alpha}(F) \subseteq Q_{\alpha}(F)Tα(F)Qα(F), for all F Lip 0 [ 0 , 1 ] F Lip 0 [ 0 , 1 ] F inLip_(0)[0,1]F \in \operatorname{Lip}_{0}[0,1]FLip0[0,1], it follows that the selection t α t α t_(alpha)t_{\alpha}tα defined by (32) is a selection for Q α Q α Q_(alpha)Q_{\alpha}Qα, too.
Remark 4. For α = 1 α = 1 alpha=1\alpha=1α=1 one obtains P x = T 1 = Q 1 P x = T 1 = Q 1 P_(x^(_|_))=T_(1)=Q_(1)P_{x^{\perp}}=T_{1}=Q_{1}Px=T1=Q1 implying that T 1 T 1 T_(1)T_{1}T1 and Q 1 Q 1 Q_(1)Q_{1}Q1 are single valued and therefore are linear and continuous applications from Lip 0 [ 0 , 1 ] Lip 0 [ 0 , 1 ] Lip_(0)[0,1]\operatorname{Lip}_{0}[0,1]Lip0[0,1] to Y Y Y^(_|_)Y^{\perp}Y.

REFERENCES

  1. Brown, B. M., Elliot, D. and D. F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous functions, J. Approx. Theory 49 (1987), 196-199.
  2. Cobzaş, S. and C. Mustăţa, Norm-Preserving Extension of Convex Lipschitz Functions, J. Approx. Theory 34 (1978), 236-244.
  3. Czipser, J. and L. Géher, Extension of Functions satisfying a Lipschitz Condition, Acta Math. Acad. Sci. Hungar 6(1955), 213-220.
  4. Deutsch, F., Li, W. and S. H. Park, Tielze Extensions and Conlinuous Selections for Metric Projections, J. Approx. Theory 63 (1991), 55-88.
  5. Mc Shane, E. J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
  6. Mustăta, C., Norm Preserving Extension of Starshaped Lipschitz Functions, Mathematica 19(42)2 (1977), 183-187.
  7. Mustăţa, C., Best Approximation and Unique Extension of Lipschilz Funclions, J. Approx. Theory 19(1977), 222-230.
  8. Mustăta, C., M-ideals in Metric Spaces, „Babeş-Bolyai" Universily, Fac. of Math. and Physics, Research Seminars, Seminar on Math. Analysis, Preprint № 7 (1988), 65-74.
  9. Mustăţa, C., Selections Associated to Mc Shane's Extension Theorem for Lipschitz Functions, Revue d'Analyse Numérique et de Théorie de l'Approx. 21, 2 (1992), 135-145.
Received 2.IV,1993
Institutul de Calcul
Str. Republicii Nr. 37
Oficiul Postal 1
3400 Cluj-Napoca
România
1993

Related Posts