1. Benacchio, T., Bonaventura, L.: Absorbing boundary conditions: a spectral collocation approach. Int.
J. Numer. Meth. Fluids (2013). doi:10.1002/fld.3768
2. Bernardy, C., Maday, Y. In: Ciarlet, P., Lions, J.L. (eds.): Spectral methods, vol. 5 (Part 2). NorthHolland
(1997)
3. Boyd, J.P.: Chebyshev and fourier spectral methods. Dover Publications, New-York (2000)
4. Boyd, J.P., Rangan, C., Bucksbaum, P.H.: Pseudospectral methods on a semi-infinite interval with
applications to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre
series and rational Chebyshev expansions. J. Comput. Phys. 188, 56–74 (2003)
5. Boyd, J.P.: Chebyshev spectral methods and the lane-emden problem. Numer. Math. Theor. Meth.
Appl. 4, 142–157 (2011)
6. Dragomirescu, I.F., Gheorghiu, C.I.: Analytical and numerical solutions to an electrohydrodynamic
stability problem. Appl. Math. Comput. 216, 3718–3727 (2010). doi:10.1016/j.amc.2010.05.028
7. Fazio, R.: A novel approach to the numerical solution of boundary value problems on infinite intervals.
SIAM J. Numer. Anal. 33, 1473–1483 (1996)
8. Gheorghiu, C.I.: Spectral methods for differential problems. Casa Cartii de Stiinta Publishing House,
Cluj-Napoca, Romania (2007)
9. Gheorghiu, C.I., Dragomirescu, I.F.: Spectral methods in linear stability. Application to thermal
convection with variable gravity field. Appl. Numer. Math 59, 1290–1302 (2009)
10. Gheorghiu, C.I., Hochstenbach, M.E., Plestenjak, B., Rommes, J.: Spectral collocation solutions
to multiparameter Mathieu’s system. Appl. Math. Comput 218, 11990–12000 (2012).
doi:10.1016/j.acm.2012.05.068
11. Gheorghiu, C.I.: Laguerre collocation solutions to boundary layer type problems. Numer. Algor 64,
385–401 (2013). doi:10.1007/s11075-012-9670-y
12. Gheorghiu, C.I.: Pseudospectral solutions to some singular nonlinear BVPs. Applications in nonlinear
mechanics. Numer. Algor. 68, 1–14 (2015). doi:10.1007/s11075-014-9834-z
13. Gheorghiu, C.I.: Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural
Mechanics and Beyond. Springer Cham Heidelberg New York Dordrecht London (2014)
14. Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. SIAM,
Philadelphia (1977)
15. Hoepffner, J.: Implementation of boundary conditions. http://www.lmm.jussieu.fr/∼hoepffner/
research/realizing.pdf, Accessed 2 Feb 2015 (2010)
16. Iacono, R., Boyd, J.P.: The Kidder Equation: uxx + 2xux /
√1 − αu = 0. Stud. Appl. Math. 135, 63–
85 (2014)
17. Liao, S.-J.: A challenging nonlinear problem for numerical techniques. J. Comput. Appl. Math. 181,
467–472 (2005)
18. Liao, S.-J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate.
Int. J. Heat Mass Transfer 48, 2529–2539 (2005)
19. Liao, S.-J.: A new branch of solutions of boundary-layer flows over a permeable stretching plate. Int.
J. Nonlinear Mech. 42, 819–830 (2007)
20. Magyari, E., Keller, B.: Heat transfer characteristics of the separation boundary flow induced by a
continuous stretching surface. J. Phys. D: Appl. Phys. 32, 2876–2881 (1999)
21. Magyari, E., Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable
stretching walls. Eur. J. Mech. B – Fluids 19, 109–122 (2000)
22. Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with
applications to nonlinear ODEs. Comput. Phys. Commun. 141, 268–281 (2001)
23. Ockendon, H., Ockendon, J.R.: Viscous flow. Cambridge University Press, Cambridge (1995)
24. O’Neil, M.E., Chorlton, F.: Viscous and compressible fluid dynamics, p. 395. Wiley, New York
(1989)
25. Pantokratoras, A., Fang, T.: Blasius flow with non-linear Rosseland thermal radiation. Meccanica 49,
1539–1545 (2014)
26. Plestenjak, B., Gheorghiu, C.I., Hochstenbach, M.E.: Spectral collocation for multiparameter eigenvalue
problems arising from separable boundary value problems. J. Comput. Phys. 298, 585–601
(2015). doi:10.1016/j.jcp.2015.06.015
27. Rosales-Vera, M., Valencia, A.: Solutions of Falkner-Skan equation with heat transfer by Fourier
series. Int. Commun. Heat Mass 37, 761–765 (2010)
28. Shen, J., Tang, T., Wang, L.-L.: Spectral methods. Algorithms, analysis and applications. Springer,
Berlin (2011)
29. Wang, L.-L.: Discrete transform of Laguerre function approach. http://www.ntu.edu.sg/home/lilian/
book.htm, Accessed 5 May 2014 (2011)
30. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math.
Software 26, 465–519 (2000)
31. von Winckel, G.: Fast Chebyshev Transform. http://www.mathworks.com/matlabcentral/
fileexchange/4591-fast-chebyshev-transform–1d-, Accessed 15 May 2015 (2004)