Steffensen type methods for approximating solutions of differential equations

Abstract

The implicit methods for numerical solving of ODEs lead to nonlinear equations which are usually solved by the Newton method. We study the use of a Steffensen type method instead, and we give conditions under which this method provides bilateral approximations for the solution of these equations; this approach offers a more rigorous control of the errors. Moreover, the method can be applied even in the case when certain functions are not differentiable on the definition domain. The convergence order is the same as for Newton method.

Authors

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy)

Keywords

initial value problems; stiff equations; Steffensen method; Newton method; convergence order

Cite this paper as

F. Pătrulescu, Steffensen type methods for approximating solutions of differential equations, Studia Universitatis Babeş-Bolyai, seria Mathematica, vol. 56, no. 2 (2011), pp. 505-515.

PDF

About this paper

Publisher Name

Universitatea Babeş-Bolyai, Cluj-Napoca; Cluj University Press, Cluj-Napoca

Print ISSN

0252-1938

Online ISSN

2065-961x

MR

2843708

ZBL

?

Google Scholar

[1] Agratini, I. Chiorean, Gh. Coman, R. Trimbitas, Numerical Analysis and Approximation Theory III, Presa Universitara Clujeana, Cluj-Napoca (2002) .
[2] C. Butcher, Numerical Methods for Ordinary Differential Equations, John Willey & Sons, Chichester (2003).
[3] Catinas, Methods of Newton and Newton-Krylov Type, Risoprint, Cluj-Napoca (2007).
[4] Crouzeix, A.L. Mignot, Analyse numerique des equations differentielles, Masson, Paris (1989).
[5] D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Chichester (1990).
[6] Matheij, J. Molennar, Ordinary Differential Equations in Theory and Practice, SIAM, Philadelphia (2002).
[7] Pavaloiu, On the monotonicity of the sequences of approximations obtained by Steffensen’s method, Mathematica, 35, no. 1 (1993), 95-101.
[8] Pavaloiu,Bilateral approximation for the solution of scalar Equations, Rev. Anal. Numer. Theor. Approx.,23, no. 1 (1994), 95-101.
[9] Pavaloiu, Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32 (1995), 69-82.
[10] Pavaloiu, Aitken-Steffensen type methods for nonsmooth functions(III), Rev. Anal. Numer. Theor. Approx., 32, no. 1 (2003), 73-77.

 

Paper (preprint) in HTML form

2011_Patrulescu_STUDIA_Steffensen_type_methods_differential_eq

Steffensen type methods for approximating solutions of differential equations

F. Pătrulescu

Tiberiu Popoviciu Institute of Numerical AnalysisP.O. Box 68-1, 400110 Cluj-Napoca, Romania, fpatrulescu@ictp.acad.ro

2010 Mathematics Subject Classification : 65 L 04 , 65 L 05 , 65 H 05 65 L 04 , 65 L 05 , 65 H 05 65L04,65L05,65H0565 \mathrm{~L} 04,65 \mathrm{~L} 05,65 \mathrm{H} 0565 L04,65 L05,65H05
Keywords: initial value problems, stiff equations, Steffensen method, Newton method, convergence order

Abstract

The implicit methods for numerical solving of ODEs lead to nonlinear equations which are usually solved by the Newton method. We study the use of a Steffensen type method instead, and we give conditions under which this method provides bilateral approximations for the solution of these equations; this approach offers a more rigorous control of the errors. Moreover, the method can be applied even in the case when certain functions are not differentiable on the definition domain. The convergence order is the same as for Newton method.

1 Introduction

The mathematical modeling of many problems in physics, engineering, chemistry, biology, etc. gives rise to ordinary differential equations or systems of ordinary differential equations.
It is known that a high-order initial value problem (IVP) for differential equations or systems of equations can be rewritten as a first-order IVP system (see e.g. [4, [5]) so that the standard IVP can be written in the form:
(1) { y = f ( x , y ) , x I y ( a ) = y 0 , (1) y = f ( x , y ) , x I y ( a ) = y 0 , {:(1){[y^(')=f(x","y)","quad x in I],[y(a)=y_(0)","]:}:}\left\{\begin{array}{l} y^{\prime}=f(x, y), \quad x \in I \tag{1}\\ y(a)=y_{0}, \end{array}\right.(1){y=f(x,y),xIy(a)=y0,
where: I R , y 0 R m , f : I × R m R m I R , y 0 R m , f : I × R m R m I subeR,y_(0)inR^(m),f:I xxR^(m)rarrR^(m)I \subseteq \mathbb{R}, y_{0} \in \mathbb{R}^{m}, f: I \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}IR,y0Rm,f:I×RmRm and a I a I a in Ia \in IaI.
A solution is sought on the interval [ a , b ] I [ a , b ] I [a,b]sub I[a, b] \subset I[a,b]I, where a , b a , b a,ba, ba,b are finite. In this paper we consider only the scalar case, i.e., m = 1 m = 1 m=1m=1m=1.
In practice, the number of cases where an exact solution can be found by analytical means is very limited, so that one uses numerical methods for the approximation of the solution.
Integrating (1), for m = 1 m = 1 m=1m=1m=1, using an implicit linear multistep method with step-size h h hhh, leads to the solving at each step of an equation of the form:
(2) y = h A ϕ ( x , y ) + ψ . (2) y = h A ϕ ( x , y ) + ψ . {:(2)y=hA phi(x","y)+psi.:}\begin{equation*} y=h A \phi(x, y)+\psi . \tag{2} \end{equation*}(2)y=hAϕ(x,y)+ψ.
Here A A AAA is a constant determined by the numerical method and ψ ψ psi\psiψ is a known value.
This equation can be solved by the fixed point iteration
(3) y ( ν + 1 ) = h A ϕ ( x , y ( ν ) ) + ψ , y ( 0 ) arbitrary , ν = 0 , 1 , (3) y ( ν + 1 ) = h A ϕ x , y ( ν ) + ψ , y ( 0 )  arbitrary  , ν = 0 , 1 , {:(3)y^((nu+1))=hA phi(x,y^((nu)))+psi","quady^((0))quad" arbitrary "","quad nu=0","1","dots:}\begin{equation*} y^{(\nu+1)}=h A \phi\left(x, y^{(\nu)}\right)+\psi, \quad y^{(0)} \quad \text { arbitrary }, \quad \nu=0,1, \ldots \tag{3} \end{equation*}(3)y(ν+1)=hAϕ(x,y(ν))+ψ,y(0) arbitrary ,ν=0,1,
which converges to the unique solution of (2) provided that:
(4) h < 1 | A | L , (4) h < 1 | A | L , {:(4)h < (1)/(|A|L)",":}\begin{equation*} h<\frac{1}{|A| L}, \tag{4} \end{equation*}(4)h<1|A|L,
where L L LLL is the Lipschitz constant of ϕ ϕ phi\phiϕ with respect to the second variable.
Condition (4) becomes too restrictive for stiff problems. Thus, if we use an explicit method to solve a stiff equation, we have to use an excessively small step-size to avoid instability; if we use an implicit method with an absolute stability region large enough to impose no stability restriction, we can choose a step-size as large as we want, but we will not be able to solve the implicit equation (2) by the iteration (33) unless the step-size is excessively small.
In order to overcome this difficulty one uses the Newton iteration instead of the fixed point iteration. Newton iteration applied to the equation:
(5) F ( y ) = 0 (5) F ( y ) = 0 {:(5)F(y)=0:}\begin{equation*} F(y)=0 \tag{5} \end{equation*}(5)F(y)=0
where F : [ c , d ] R , c , d R , c < d F : [ c , d ] R , c , d R , c < d F:[c,d]rarrR,c,d inR,c < dF:[c, d] \rightarrow \mathbb{R}, c, d \in \mathbb{R}, c<dF:[c,d]R,c,dR,c<d, has the form:
(6) y ( ν + 1 ) = y ( ν ) F ( y ( ν ) ) / F ( y ( ν ) ) , ν = 0 , 1 , 2 , , y ( 0 ) [ c , d ] (6) y ( ν + 1 ) = y ( ν ) F y ( ν ) / F y ( ν ) , ν = 0 , 1 , 2 , , y ( 0 ) [ c , d ] {:(6)y^((nu+1))=y^((nu))-F(y^((nu)))//F^(')(y^((nu)))","quad nu=0","1","2","dots","quady^((0))in[c","d]:}\begin{equation*} y^{(\nu+1)}=y^{(\nu)}-F\left(y^{(\nu)}\right) / F^{\prime}\left(y^{(\nu)}\right), \quad \nu=0,1,2, \ldots, \quad y^{(0)} \in[c, d] \tag{6} \end{equation*}(6)y(ν+1)=y(ν)F(y(ν))/F(y(ν)),ν=0,1,2,,y(0)[c,d]
When applied to the equation (2), where F ( y ) = y h A ϕ ( x , y ) ψ F ( y ) = y h A ϕ ( x , y ) ψ F(y)=y-hA phi(x,y)-psiF(y)=y-h A \phi(x, y)-\psiF(y)=yhAϕ(x,y)ψ, we get:
(7) y ( ν + 1 ) = y ( ν ) ( y ( ν ) h A ϕ ( x , y ( ν ) ) ψ ) / ( 1 h A ϕ y ( x , y ( ν ) ) ) (7) y ( ν + 1 ) = y ( ν ) y ( ν ) h A ϕ x , y ( ν ) ψ / 1 h A ϕ y x , y ( ν ) {:(7)y^((nu+1))=y^((nu))-(y^((nu))-hA phi(x,y^((nu)))-psi)//(1-hAphi_(y)^(')(x,y^((nu)))):}\begin{equation*} y^{(\nu+1)}=y^{(\nu)}-\left(y^{(\nu)}-h A \phi\left(x, y^{(\nu)}\right)-\psi\right) /\left(1-h A \phi_{y}^{\prime}\left(x, y^{(\nu)}\right)\right) \tag{7} \end{equation*}(7)y(ν+1)=y(ν)(y(ν)hAϕ(x,y(ν))ψ)/(1hAϕy(x,y(ν)))
i.e.,
(8) y ( ν + 1 ) = ( h A ( ϕ ( x , y ( ν ) ) y ( ν ) ϕ y ( x , y ( ν ) ) ) + ψ ) / ( 1 h A ϕ y ( x , y ( ν ) ) ) (8) y ( ν + 1 ) = h A ϕ x , y ( ν ) y ( ν ) ϕ y x , y ( ν ) + ψ / 1 h A ϕ y x , y ( ν ) {:(8)y^((nu+1))=(hA(phi(x,y^((nu)))-y^((nu))phi_(y)^(')(x,y^((nu))))+psi)//(1-hAphi_(y)^(')(x,y^((nu)))):}\begin{equation*} y^{(\nu+1)}=\left(h A\left(\phi\left(x, y^{(\nu)}\right)-y^{(\nu)} \phi_{y}^{\prime}\left(x, y^{(\nu)}\right)\right)+\psi\right) /\left(1-h A \phi_{y}^{\prime}\left(x, y^{(\nu)}\right)\right) \tag{8} \end{equation*}(8)y(ν+1)=(hA(ϕ(x,y(ν))y(ν)ϕy(x,y(ν)))+ψ)/(1hAϕy(x,y(ν)))
One step of Newton iteration requests considerably more computing time than one step of fixed point iteration. Each step of the latter costs one function evaluation, whereas each step of the former calls for the updating of the derivative.
In this paper we approximate the solution of equation (5) using the Steffensen type method:
(9) y ( ν + 1 ) = y ( ν ) F ( y ( ν ) ) [ y ( ν ) , g ( y ( ν ) ) ; F ] , ν = 0 , 1 , (9) y ( ν + 1 ) = y ( ν ) F y ( ν ) y ( ν ) , g y ( ν ) ; F , ν = 0 , 1 , {:(9)y^((nu+1))=y^((nu))-(F(y^((nu))))/([y^((nu)),g(y^((nu)));F])","quad nu=0","1","dots:}\begin{equation*} y^{(\nu+1)}=y^{(\nu)}-\frac{F\left(y^{(\nu)}\right)}{\left[y^{(\nu)}, g\left(y^{(\nu)}\right) ; F\right]}, \quad \nu=0,1, \ldots \tag{9} \end{equation*}(9)y(ν+1)=y(ν)F(y(ν))[y(ν),g(y(ν));F],ν=0,1,
where g : [ c , d ] [ c , d ] g : [ c , d ] [ c , d ] g:[c,d]rarr[c,d]g:[c, d] \rightarrow[c, d]g:[c,d][c,d] is an auxiliary function such that the equation:
(10) y g ( y ) = 0 (10) y g ( y ) = 0 {:(10)y-g(y)=0:}\begin{equation*} y-g(y)=0 \tag{10} \end{equation*}(10)yg(y)=0
is equivalent to (5), and [ u , v ; F ] [ u , v ; F ] [u,v;F][u, v ; F][u,v;F] represents the first order divided difference of F F FFF at the points u , v [ c , d ] u , v [ c , d ] u,v in[c,d]u, v \in[c, d]u,v[c,d]. This method does not require the calculation of the derivative of the function F F FFF.
Let y ( c , d ) y ( c , d ) y^(**)in(c,d)y^{*} \in(c, d)y(c,d) be the root of equation (5). If the elements of the sequence ( y ( ν ) ) ν 0 y ( ν ) ν 0 (y^((nu)))_(nu >= 0)\left(y^{(\nu)}\right)_{\nu \geq 0}(y(ν))ν0 belong to the interval [ c , d ] [ c , d ] [c,d][c, d][c,d] then from Newton identity and (9) we obtain:
y y ( ν + 1 ) = [ y , y ( ν ) , g ( y ( ν ) ) ; F ] ( y y ( ν ) ) ( y g ( y ( ν ) ) ) [ y ( ν ) , g ( y ( ν ) ) ; F ] y y ( ν + 1 ) = y , y ( ν ) , g y ( ν ) ; F y y ( ν ) y g y ( ν ) y ( ν ) , g y ( ν ) ; F y^(**)-y^((nu+1))=-([y^(**),y^((nu)),g(y^((nu)));F](y^(**)-y^((nu)))(y^(**)-g(y^((nu)))))/([y^((nu)),g(y^((nu)));F])y^{*}-y^{(\nu+1)}=-\frac{\left[y^{*}, y^{(\nu)}, g\left(y^{(\nu)}\right) ; F\right]\left(y^{*}-y^{(\nu)}\right)\left(y^{*}-g\left(y^{(\nu)}\right)\right)}{\left[y^{(\nu)}, g\left(y^{(\nu)}\right) ; F\right]}yy(ν+1)=[y,y(ν),g(y(ν));F](yy(ν))(yg(y(ν)))[y(ν),g(y(ν));F]
where [ u , v , w ; F ] [ u , v , w ; F ] [u,v,w;F][u, v, w ; F][u,v,w;F] represents the second order divided difference of F F FFF at the points u , v , w [ c , d ] u , v , w [ c , d ] u,v,w in[c,d]u, v, w \in[c, d]u,v,w[c,d]. If g g ggg is Lipschitz on [ c , d ] [ c , d ] [c,d][c, d][c,d] with constant L L LLL and if we assume that there exist the real numbers M , m > 0 M , m > 0 M,m > 0M, m>0M,m>0 such that:
| [ u , v , w ; F ] | < M and | [ u , v ; F ] | > m , | [ u , v , w ; F ] | < M  and  | [ u , v ; F ] | > m , |[u,v,w;F]| < M quad" and "quad|[u,v;F]| > m,|[u, v, w ; F]|<M \quad \text { and } \quad|[u, v ; F]|>m,|[u,v,w;F]|<M and |[u,v;F]|>m,
for all u , v , w [ c , d ] u , v , w [ c , d ] u,v,w in[c,d]u, v, w \in[c, d]u,v,w[c,d], then:
| y y ( ν + 1 ) | M L | y y ( ν ) | 2 m y y ( ν + 1 ) M L y y ( ν ) 2 m |y^(**)-y^((nu+1))| <= (ML|y^(**)-y^((nu))|^(2))/(m)\left|y^{*}-y^{(\nu+1)}\right| \leq \frac{M L\left|y^{*}-y^{(\nu)}\right|^{2}}{m}|yy(ν+1)|ML|yy(ν)|2m
which shows that the q q qqq-convergence order for the method (9) is 2 , i.e., the same as for the Newton method.
In 77 are given conditions for the convergence of the sequences generated by relation (9), and the function g g ggg is defined such that the sequences ( y ( ν ) ) ν 0 y ( ν ) ν 0 (y^((nu)))_(nu >= 0)\left(y^{(\nu)}\right)_{\nu \geq 0}(y(ν))ν0 and ( g ( y ( ν ) ) ) ν 0 g y ( ν ) ν 0 (g(y^((nu))))_(nu >= 0)\left(g\left(y^{(\nu)}\right)\right)_{\nu \geq 0}(g(y(ν)))ν0 approximate bilaterally the exact solution y y y^(**)y^{*}y. Thus, we have an a posteriori error control.
For the functions F F FFF and g g ggg we suppose the following hypothesis:
( α α alpha\alphaα ) the equations (5) and (10) are equivalent;
( β ) ( β ) (beta)(\beta)(β) the function g g ggg is continuous and decreasing on [ c , d ] [ c , d ] [c,d][c, d][c,d];
( γ γ gamma\gammaγ ) the equation (5) has a unique solution y ( c , d ) y ( c , d ) y^(**)in(c,d)y^{*} \in(c, d)y(c,d).
The following theorem holds (see [7]):
Theorem 1 If the functions F F FFF and g g ggg satisfy the conditions ( α ) ( γ ) ( α ) ( γ ) (alpha)-(gamma)(\alpha)-(\gamma)(α)(γ) and moreover the following conditions hold:
(i) F F FFF is increasing and convex on [ c , d ] [ c , d ] [c,d][c, d][c,d];
(ii) F ( y 0 ) < 0 F y 0 < 0 F(y_(0)) < 0F\left(y_{0}\right)<0F(y0)<0;
(iii) g ( y 0 ) d g y 0 d g(y_(0)) <= dg\left(y_{0}\right) \leq dg(y0)d,
then the elements of the sequences ( y ( ν ) ) ν 0 y ( ν ) ν 0 (y^((nu)))_(nu >= 0)\left(y^{(\nu)}\right)_{\nu \geq 0}(y(ν))ν0 and ( g ( y ( ν ) ) ) ν 0 g y ( ν ) ν 0 (g(y^((nu))))_(nu >= 0)\left(g\left(y^{(\nu)}\right)\right)_{\nu \geq 0}(g(y(ν)))ν0 belong to the interval [ c , d ] [ c , d ] [c,d][c, d][c,d] and the following properties hold:
( j j jjj ) the sequence ( y ( ν ) ) ν 0 y ( ν ) ν 0 (y^((nu)))_(nu >= 0)\left(y^{(\nu)}\right)_{\nu \geq 0}(y(ν))ν0 is increasing and convergent;
(jj) the sequence ( g ( y ( ν ) ) ) ν 0 g y ( ν ) ν 0 (g(y^((nu))))_(nu >= 0)\left(g\left(y^{(\nu)}\right)\right)_{\nu \geq 0}(g(y(ν)))ν0 is decreasing and convergent;
(jjj) y ( ν ) y g ( y ( ν ) ) , ν = 0 , 1 , y ( ν ) y g y ( ν ) , ν = 0 , 1 , y^((nu)) <= y^(**) <= g(y^((nu))),quad nu=0,1,dotsy^{(\nu)} \leq y^{*} \leq g\left(y^{(\nu)}\right), \quad \nu=0,1, \ldotsy(ν)yg(y(ν)),ν=0,1,.
(jv) lim ν y ( ν ) = lim ν g ( y ( ν ) ) = y lim ν y ( ν ) = lim ν g y ( ν ) = y lim_(nu rarr oo)y^((nu))=lim_(nu rarr oo)g(y^((nu)))=y^(**)\lim _{\nu \rightarrow \infty} y^{(\nu)}=\lim _{\nu \rightarrow \infty} g\left(y^{(\nu)}\right)=y^{*}limνy(ν)=limνg(y(ν))=y;
(vj) | y y ( ν ) | | g ( y ( ν ) ) y ( ν ) | , ν = 0 , 1 , y y ( ν ) g y ( ν ) y ( ν ) , ν = 0 , 1 , |y^(**)-y^((nu))| <= |g(y^((nu)))-y^((nu))|,quad nu=0,1,dotsquad\left|y^{*}-y^{(\nu)}\right| \leq\left|g\left(y^{(\nu)}\right)-y^{(\nu)}\right|, \quad \nu=0,1, \ldots \quad|yy(ν)||g(y(ν))y(ν)|,ν=0,1,.
In the above theorem the auxiliary function g g ggg can be taken as: g ( y ) = y F ( y ) F ( c ) g ( y ) = y F ( y ) F ( c ) g(y)=y-(F(y))/(F^(')(c))g(y)=y-\frac{F(y)}{F^{\prime}(c)}g(y)=yF(y)F(c). Similar results have been obtained in [7] if F F FFF verifies the properties:
-F is increasing and concave; g g ggg can be taken as g ( y ) = y F ( y ) F ( d ) g ( y ) = y F ( y ) F ( d ) g(y)=y-(F(y))/(F^(')(d))g(y)=y-\frac{F(y)}{F^{\prime}(d)}g(y)=yF(y)F(d);
-F is decreasing and concave; g g ggg can be taken as g ( y ) = y F ( y ) F ( c ) g ( y ) = y F ( y ) F ( c ) g(y)=y-(F(y))/(F^(')(c))g(y)=y-\frac{F(y)}{F^{\prime}(c)}g(y)=yF(y)F(c);
-F is decreasing and convex; g g ggg can be taken as g ( y ) = y F ( y ) F ( d ) g ( y ) = y F ( y ) F ( d ) g(y)=y-(F(y))/(F^(')(d))g(y)=y-\frac{F(y)}{F^{\prime}(d)}g(y)=yF(y)F(d).
The interval [ a , b ] [ a , b ] [a,b][a, b][a,b] is partitioned by the point set { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} defined by x n = a + n h , n = 0 , 1 , , N , h = ( b a ) / N , x n = a + n h , n = 0 , 1 , , N , h = ( b a ) / N , x_(n)=a+nh,n=0,1,dots,N,h=(b-a)//N,quadx_{n}=a+n h, n=0,1, \ldots, N, h=(b-a) / N, \quadxn=a+nh,n=0,1,,N,h=(ba)/N, and y n y n quady_(n)quad\quad y_{n} \quadyn denotes an approximation to the exact solution y y yyy of (1) at x n x n x_(n)x_{n}xn.
If we use an implicit linear multistep method then y n , n = 1 , , N y n , n = 1 , , N y_(n),n=1,dots,Ny_{n}, n=1, \ldots, Nyn,n=1,,N, are the solutions of the equation:
(11) y = h A ϕ ( x n , y ) + ψ n (11) y = h A ϕ x n , y + ψ n {:(11)y=hA phi(x_(n),y)+psi_(n):}\begin{equation*} y=h A \phi\left(x_{n}, y\right)+\psi_{n} \tag{11} \end{equation*}(11)y=hAϕ(xn,y)+ψn
where ψ n = ψ n ( a , h , y n 1 , y n 2 , , y 0 ) ψ n = ψ n a , h , y n 1 , y n 2 , , y 0 psi_(n)=psi_(n)(a,h,y_(n-1),y_(n-2),dots,y_(0))\psi_{n}=\psi_{n}\left(a, h, y_{n-1}, y_{n-2}, \ldots, y_{0}\right)ψn=ψn(a,h,yn1,yn2,,y0). We call this equation as approximant equation and we denote by y n ( c , d ) , n = 1 , , N y n ( c , d ) , n = 1 , , N y_(n)^(**)in(c,d),n=1,dots,Ny_{n}^{*} \in(c, d), n=1, \ldots, Nyn(c,d),n=1,,N, the exact solution.
For each n = 1 , , N n = 1 , , N n=1,dots,Nn=1, \ldots, Nn=1,,N let F n : [ c , d ] R F n : [ c , d ] R F_(n):[c,d]rarrRF_{n}:[c, d] \rightarrow \mathbb{R}Fn:[c,d]R be defined by
(12) F n ( y ) = y h A ϕ ( x n , y ) ψ n (12) F n ( y ) = y h A ϕ x n , y ψ n {:(12)F_(n)(y)=y-hA phi(x_(n),y)-psi_(n):}\begin{equation*} F_{n}(y)=y-h A \phi\left(x_{n}, y\right)-\psi_{n} \tag{12} \end{equation*}(12)Fn(y)=yhAϕ(xn,y)ψn
Then equation (11) can be rewritten in the form F n ( y ) = 0 F n ( y ) = 0 F_(n)(y)=0F_{n}(y)=0Fn(y)=0.
To approximate bilaterally the solution y n , n = 1 , , N y n , n = 1 , , N y_(n)^(**),n=1,dots,Ny_{n}^{*}, n=1, \ldots, Nyn,n=1,,N, we generate the sequence ( y n ( ν ) ) ν 0 y n ( ν ) ν 0 (y_(n)^((nu)))_(nu >= 0)\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}(yn(ν))ν0, by:
(13) y n ( ν + 1 ) = y n ( ν ) F n ( y n ( ν ) ) [ y n ( ν ) , g ( y n ( ν ) ) ; F n ] , ν = 0 , 1 , (13) y n ( ν + 1 ) = y n ( ν ) F n y n ( ν ) y n ( ν ) , g y n ( ν ) ; F n , ν = 0 , 1 , {:(13)y_(n)^((nu+1))=y_(n)^((nu))-(F_(n)(y_(n)^((nu))))/([y_(n)^((nu)),g(y_(n)^((nu)));F_(n)])","quad nu=0","1","dots:}\begin{equation*} y_{n}^{(\nu+1)}=y_{n}^{(\nu)}-\frac{F_{n}\left(y_{n}^{(\nu)}\right)}{\left[y_{n}^{(\nu)}, g\left(y_{n}^{(\nu)}\right) ; F_{n}\right]}, \quad \nu=0,1, \ldots \tag{13} \end{equation*}(13)yn(ν+1)=yn(ν)Fn(yn(ν))[yn(ν),g(yn(ν));Fn],ν=0,1,
or, using (12),
(14) y n ( ν + 1 ) = h A ( ϕ ( x n , y n ( ν ) ) y n ( ν ) [ y n ( ν ) , g ( y n ( ν ) ) ; ϕ ( x n , ) ] ) + ψ n 1 h A [ y n ( ν ) , g ( y n ( ν ) ) ; ϕ ( x n , ) ] (14) y n ( ν + 1 ) = h A ϕ x n , y n ( ν ) y n ( ν ) y n ( ν ) , g y n ( ν ) ; ϕ x n , + ψ n 1 h A y n ( ν ) , g y n ( ν ) ; ϕ x n , {:(14)y_(n)^((nu+1))=(hA(phi(x_(n),y_(n)^((nu)))-y_(n)^((nu))[y_(n)^((nu)),g(y_(n)^((nu)));phi(x_(n),*)])+psi_(n))/(1-hA[y_(n)^((nu)),g(y_(n)^((nu)));phi(x_(n),*)]):}\begin{equation*} y_{n}^{(\nu+1)}=\frac{h A\left(\phi\left(x_{n}, y_{n}^{(\nu)}\right)-y_{n}^{(\nu)}\left[y_{n}^{(\nu)}, g\left(y_{n}^{(\nu)}\right) ; \phi\left(x_{n}, \cdot\right)\right]\right)+\psi_{n}}{1-h A\left[y_{n}^{(\nu)}, g\left(y_{n}^{(\nu)}\right) ; \phi\left(x_{n}, \cdot\right)\right]} \tag{14} \end{equation*}(14)yn(ν+1)=hA(ϕ(xn,yn(ν))yn(ν)[yn(ν),g(yn(ν));ϕ(xn,)])+ψn1hA[yn(ν),g(yn(ν));ϕ(xn,)]
From Theorem 1.1, if F n F n F_(n)F_{n}Fn is increasing and convex, and the initial guess y n ( 0 ) y n ( 0 ) y_(n)^((0))y_{n}^{(0)}yn(0) satisfy F n ( y n ( 0 ) ) < 0 F n y n ( 0 ) < 0 F_(n)(y_(n)^((0))) < 0F_{n}\left(y_{n}^{(0)}\right)<0Fn(yn(0))<0, then the sequences ( y n ( ν ) ) ν 0 , ( g ( y n ( ν ) ) ) ν 0 y n ( ν ) ν 0 , g y n ( ν ) ν 0 (y_(n)^((nu)))_(nu >= 0),(g(y_(n)^((nu))))_(nu >= 0)\left(y_{n}^{(\nu)}\right)_{\nu \geq 0},\left(g\left(y_{n}^{(\nu)}\right)\right)_{\nu \geq 0}(yn(ν))ν0,(g(yn(ν)))ν0 converge to y n y n y_(n)^(**)y_{n}^{*}yn and we have the inequalities:
y n ( ν ) y n g ( y n ( ν ) ) , ν = 0 , 1 , y n ( ν ) y n g y n ( ν ) , ν = 0 , 1 , y_(n)^((nu)) <= y_(n)^(**) <= g(y_(n)^((nu))),quad nu=0,1,dotsy_{n}^{(\nu)} \leq y_{n}^{*} \leq g\left(y_{n}^{(\nu)}\right), \quad \nu=0,1, \ldotsyn(ν)yng(yn(ν)),ν=0,1,
The rest of the cases can be treated in a similar fashion.

2 Application to the trapezoidal rule

We consider the trapezoidal rule to integrate the initial value problem (1), for m = 1 m = 1 m=1m=1m=1, and the Steffensen method described above to solve the approximant equation (11).
The trapezoidal rule is a 1 -step Adams-Moulton method (an implicit method), and for (1) is defined by:
y n = y n 1 + h 2 ( f ( x n , y n ) + f ( x n 1 , y n 1 ) ) , n = 1 , , N . y n = y n 1 + h 2 f x n , y n + f x n 1 , y n 1 , n = 1 , , N . y_(n)=y_(n-1)+(h)/(2)(f(x_(n),y_(n))+f(x_(n-1),y_(n-1))),n=1,dots,N.y_{n}=y_{n-1}+\frac{h}{2}\left(f\left(x_{n}, y_{n}\right)+f\left(x_{n-1}, y_{n-1}\right)\right), n=1, \ldots, N .yn=yn1+h2(f(xn,yn)+f(xn1,yn1)),n=1,,N.
It is known that the trapezoidal rule is an A A AAA-stable method and has order 2 (see [5]).
For any point x n , n = 1 , , N x n , n = 1 , , N x_(n),n=1,dots,Nx_{n}, n=1, \ldots, Nxn,n=1,,N, we have:
(15) y n h 2 f ( x n , y n ) h 2 f ( x n 1 , y n 1 ) y n 1 = 0 (15) y n h 2 f x n , y n h 2 f x n 1 , y n 1 y n 1 = 0 {:(15)y_(n)-(h)/(2)f(x_(n),y_(n))-(h)/(2)f(x_(n-1),y_(n-1))-y_(n-1)=0:}\begin{equation*} y_{n}-\frac{h}{2} f\left(x_{n}, y_{n}\right)-\frac{h}{2} f\left(x_{n-1}, y_{n-1}\right)-y_{n-1}=0 \tag{15} \end{equation*}(15)ynh2f(xn,yn)h2f(xn1,yn1)yn1=0
and in this case F n ( y ) = y h 2 f ( x n , y ) h 2 f ( x n 1 , y n 1 ) y n 1 F n ( y ) = y h 2 f x n , y h 2 f x n 1 , y n 1 y n 1 F_(n)(y)=y-(h)/(2)f(x_(n),y)-(h)/(2)f(x_(n-1),y_(n-1))-y_(n-1)F_{n}(y)=y-\frac{h}{2} f\left(x_{n}, y\right)-\frac{h}{2} f\left(x_{n-1}, y_{n-1}\right)-y_{n-1}Fn(y)=yh2f(xn,y)h2f(xn1,yn1)yn1. Thus, in (11) we have A = 1 2 A = 1 2 A=(1)/(2)A=\frac{1}{2}A=12, ϕ ( x n , y ) = f ( x n , y ) ϕ x n , y = f x n , y phi(x_(n),y)=f(x_(n),y)\phi\left(x_{n}, y\right)=f\left(x_{n}, y\right)ϕ(xn,y)=f(xn,y) and ψ n = h 2 f ( x n 1 , y n 1 ) + y n 1 , n = 1 , , N ψ n = h 2 f x n 1 , y n 1 + y n 1 , n = 1 , , N psi_(n)=(h)/(2)f(x_(n-1),y_(n-1))+y_(n-1),n=1,dots,N\psi_{n}=\frac{h}{2} f\left(x_{n-1}, y_{n-1}\right)+y_{n-1}, n=1, \ldots, Nψn=h2f(xn1,yn1)+yn1,n=1,,N.
For simplicity we consider only the autonomous case, i.e. f = f ( y ) f = f ( y ) f=f(y)f=f(y)f=f(y), and in this case equation (15) becomes:
(16) y n h 2 f ( y n ) h 2 f ( y n 1 ) y n 1 = 0 (16) y n h 2 f y n h 2 f y n 1 y n 1 = 0 {:(16)y_(n)-(h)/(2)f(y_(n))-(h)/(2)f(y_(n-1))-y_(n-1)=0:}\begin{equation*} y_{n}-\frac{h}{2} f\left(y_{n}\right)-\frac{h}{2} f\left(y_{n-1}\right)-y_{n-1}=0 \tag{16} \end{equation*}(16)ynh2f(yn)h2f(yn1)yn1=0
and F n ( y ) = y h 2 f ( y ) ψ n , ψ n = h 2 f ( y n 1 ) + y n 1 , n = 1 , , N F n ( y ) = y h 2 f ( y ) ψ n , ψ n = h 2 f y n 1 + y n 1 , n = 1 , , N F_(n)(y)=y-(h)/(2)f(y)-psi_(n),psi_(n)=(h)/(2)f(y_(n-1))+y_(n-1),n=1,dots,NF_{n}(y)=y-\frac{h}{2} f(y)-\psi_{n}, \psi_{n}=\frac{h}{2} f\left(y_{n-1}\right)+y_{n-1}, n=1, \ldots, NFn(y)=yh2f(y)ψn,ψn=h2f(yn1)+yn1,n=1,,N.
Using the fact that
(17) [ u , v ; F n ] = 1 h 2 [ u , v ; f ] , for all u , v [ c , d ] , (17) u , v ; F n = 1 h 2 [ u , v ; f ] ,  for all  u , v [ c , d ] , {:(17)[u,v;F_(n)]=1-(h)/(2)[u","v;f]","" for all "u","v in[c","d]",":}\begin{equation*} \left[u, v ; F_{n}\right]=1-\frac{h}{2}[u, v ; f], \text { for all } u, v \in[c, d], \tag{17} \end{equation*}(17)[u,v;Fn]=1h2[u,v;f], for all u,v[c,d],
and
(18) [ u , v , w ; F n ] = h 2 [ u , v , w ; f ] , for all u , v , w [ c , d ] (18) u , v , w ; F n = h 2 [ u , v , w ; f ] ,  for all  u , v , w [ c , d ] {:(18)[u,v,w;F_(n)]=-(h)/(2)[u","v","w;f]","" for all "u","v","w in[c","d]:}\begin{equation*} \left[u, v, w ; F_{n}\right]=-\frac{h}{2}[u, v, w ; f], \text { for all } u, v, w \in[c, d] \tag{18} \end{equation*}(18)[u,v,w;Fn]=h2[u,v,w;f], for all u,v,w[c,d]
n = 1 , , N n = 1 , , N n=1,dots,Nn=1, \ldots, Nn=1,,N, we obtain that the auxiliary function g g ggg can be taken as (see 10):
g ( y ) = h 2 ( f ( y ) y [ d ε , d ; f ] ) + ψ n 1 h 2 [ d ε , d ; f ] ; g ( y ) = h 2 ( f ( y ) y [ d ε , d ; f ] ) + ψ n 1 h 2 [ d ε , d ; f ] ; g(y)=((h)/(2)(f(y)-y[d-epsi,d;f])+psi_(n))/(1-(h)/(2)[d-epsi,d;f]);g(y)=\frac{\frac{h}{2}(f(y)-y[d-\varepsilon, d ; f])+\psi_{n}}{1-\frac{h}{2}[d-\varepsilon, d ; f]} ;g(y)=h2(f(y)y[dε,d;f])+ψn1h2[dε,d;f];
or
g ( y ) = h 2 ( f ( y ) y [ c , c + ε ; f ] ) + ψ n 1 h 2 [ c , c + ε ; f ] , g ( y ) = h 2 ( f ( y ) y [ c , c + ε ; f ] ) + ψ n 1 h 2 [ c , c + ε ; f ] , g(y)=((h)/(2)(f(y)-y[c,c+epsi;f])+psi_(n))/(1-(h)/(2)[c,c+epsi;f]),g(y)=\frac{\frac{h}{2}(f(y)-y[c, c+\varepsilon ; f])+\psi_{n}}{1-\frac{h}{2}[c, c+\varepsilon ; f]},g(y)=h2(f(y)y[c,c+ε;f])+ψn1h2[c,c+ε;f],
where ε ε epsi\varepsilonε is sufficiently small such that the exact solution y n y n y_(n)^(**)y_{n}^{*}yn of the equation F n ( y n ) = 0 , n = 1 , , N F n y n = 0 , n = 1 , , N F_(n)(y_(n))=0,n=1,dots,NF_{n}\left(y_{n}\right)=0, n=1, \ldots, NFn(yn)=0,n=1,,N, belongs to the interval [ c + ε , d ε ] [ c + ε , d ε ] [c+epsi,d-epsi][c+\varepsilon, d-\varepsilon][c+ε,dε].
For each n = 1 , , N n = 1 , , N n=1,dots,Nn=1, \ldots, Nn=1,,N we denote:
ψ max n = max { y k + h 2 f ( y k ) | k = 0 , , n 1 } ψ min n = min { y k + h 2 f ( y k ) | k = 0 , , n 1 } ψ max n = max y k + h 2 f y k k = 0 , , n 1 ψ min n = min y k + h 2 f y k k = 0 , , n 1 {:[psi_(max)^(n)=max{y_(k)+(h)/(2)f(y_(k))|k=0,dots,n-1}],[psi_(min)^(n)=min{y_(k)+(h)/(2)f(y_(k))|k=0,dots,n-1}]:}\begin{aligned} \psi_{\max }^{n} & =\max \left\{\left.y_{k}+\frac{h}{2} f\left(y_{k}\right) \right\rvert\, k=0, \ldots, n-1\right\} \\ \psi_{\min }^{n} & =\min \left\{\left.y_{k}+\frac{h}{2} f\left(y_{k}\right) \right\rvert\, k=0, \ldots, n-1\right\} \end{aligned}ψmaxn=max{yk+h2f(yk)|k=0,,n1}ψminn=min{yk+h2f(yk)|k=0,,n1}
We are lead to the main results of this work:
Theorem 2 If the function f f fff, the step-size h h hhh, and the initial guesses y n ( 0 ) , n = 1 , , N y n ( 0 ) , n = 1 , , N y_(n)^((0)),n=1,dots,Ny_{n}^{(0)}, n=1, \ldots, Nyn(0),n=1,,N, satisfy the following conditions:
(i) [ u , v , w , f ] 0 [ u , v , w , f ] 0 [u,v,w,f] <= 0[u, v, w, f] \leq 0[u,v,w,f]0, for all u , v , w [ c , d ] u , v , w [ c , d ] u,v,w in[c,d]u, v, w \in[c, d]u,v,w[c,d];
(ii) ( m [ u , v , f ] M 0 m [ u , v , f ] M 0 m <= [u,v,f] <= M <= 0m \leq[u, v, f] \leq M \leq 0m[u,v,f]M0, for all u , v [ c , d ] u , v [ c , d ] u,v in[c,d]u, v \in[c, d]u,v[c,d] ) or ( 0 m [ u , v , f ] M 0 m [ u , v , f ] M 0 <= m <= [u,v,f] <= M0 \leq m \leq[u, v, f] \leq M0m[u,v,f]M, for all u , v [ c , d ] u , v [ c , d ] u,v in[c,d]u, v \in[c, d]u,v[c,d], and h 2 M ) ; h 2 M ; {:h <= (2)/(M));\left.h \leq \frac{2}{M}\right) ;h2M);
(iii) y n ( 0 ) h 2 f ( y n ( 0 ) ) < ψ min n y n ( 0 ) h 2 f y n ( 0 ) < ψ min n y_(n)^((0))-(h)/(2)f(y_(n)^((0))) < psi_(min)^(n)y_{n}^{(0)}-\frac{h}{2} f\left(y_{n}^{(0)}\right)<\psi_{\min }^{n}yn(0)h2f(yn(0))<ψminn;
(iv) y n ( 0 ) M f ( y n ( 0 ) ) 2 h [ d ( M h 2 1 ) + ψ max n ] y n ( 0 ) M f y n ( 0 ) 2 h d M h 2 1 + ψ max n y_(n)^((0))M-f(y_(n)^((0))) >= (2)/(h)[d(M(h)/(2)-1)+psi_(max)^(n)]y_{n}^{(0)} M-f\left(y_{n}^{(0)}\right) \geq \frac{2}{h}\left[d\left(M \frac{h}{2}-1\right)+\psi_{\max }^{n}\right]yn(0)Mf(yn(0))2h[d(Mh21)+ψmaxn],
then the elements of the sequences ( y n ( ν ) ) ν 0 , ( g ( y n ( ν ) ) ν 0 , n = 1 , , N y n ( ν ) ν 0 , g y n ( ν ) ν 0 , n = 1 , , N (y_(n)^((nu)))_(nu >= 0),(g(y_(n)^((nu)))_(nu >= 0),n=1,dots,N:}\left(y_{n}^{(\nu)}\right)_{\nu \geq 0},\left(g\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}, n=1, \ldots, N\right.(yn(ν))ν0,(g(yn(ν))ν0,n=1,,N, belong to the interval [ c , d ] [ c , d ] [c,d][c, d][c,d] and the following properties hold:
(j) ( y n ( ν ) ) ν 0 y n ( ν ) ν 0 (y_(n)^((nu)))_(nu >= 0)\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}(yn(ν))ν0 is increasing and convergent;
(jj) ( g ( y n ( ν ) ) ) ν 0 g y n ( ν ) ν 0 (g(y_(n)^((nu))))_(nu >= 0)\left(g\left(y_{n}^{(\nu)}\right)\right)_{\nu \geq 0}(g(yn(ν)))ν0 is decreasing and convergent;
(jjj) y n ( ν ) y n g ( y n ( ν ) ) , ν = 0 , 1 , y n ( ν ) y n g y n ( ν ) , ν = 0 , 1 , y_(n)^((nu)) <= y_(n)^(**) <= g(y_(n)^((nu))),nu=0,1,dotsy_{n}^{(\nu)} \leq y_{n}^{*} \leq g\left(y_{n}^{(\nu)}\right), \nu=0,1, \ldotsyn(ν)yng(yn(ν)),ν=0,1,;
( j v ) lim ν y n ( ν ) = lim ν g ( y n ( ν ) ) = y n ( j v ) lim ν y n ( ν ) = lim ν g y n ( ν ) = y n (jv)lim_(nu rarr oo)y_(n)^((nu))=lim_(nu rarr oo)g(y_(n)^((nu)))=y_(n)^(**)(j v) \lim _{\nu \rightarrow \infty} y_{n}^{(\nu)}=\lim _{\nu \rightarrow \infty} g\left(y_{n}^{(\nu)}\right)=y_{n}^{*}(jv)limνyn(ν)=limνg(yn(ν))=yn;
(v) | y n y n ( ν ) | | g ( y n ( ν ) ) y n ( ν ) | , ν = 0 , 1 , y n y n ( ν ) g y n ( ν ) y n ( ν ) , ν = 0 , 1 , |y_(n)^(**)-y_(n)^((nu))| <= |g(y_(n)^((nu)))-y_(n)^((nu))|,quad nu=0,1,dotsquad\left|y_{n}^{*}-y_{n}^{(\nu)}\right| \leq\left|g\left(y_{n}^{(\nu)}\right)-y_{n}^{(\nu)}\right|, \quad \nu=0,1, \ldots \quad|ynyn(ν)||g(yn(ν))yn(ν)|,ν=0,1,.
Proof: 1 From (17), (18) and (i), (ii) we have [ u , v ; F n ] 0 , [ u , v , w ; F n ] 0 , n = 1 , , N u , v ; F n 0 , u , v , w ; F n 0 , n = 1 , , N [u,v;F_(n)] >= 0,[u,v,w;F_(n)] >= 0,n=1,dots,N\left[u, v ; F_{n}\right] \geq 0,\left[u, v, w ; F_{n}\right] \geq 0, n=1, \ldots, N[u,v;Fn]0,[u,v,w;Fn]0,n=1,,N, for all u , v , w [ c , d ] u , v , w [ c , d ] u,v,w in[c,d]u, v, w \in[c, d]u,v,w[c,d], and we deduce that F n F n F_(n)F_{n}Fn is increasing and convex.
Also, from (iii) and (iv) we obtain that the initial guesses satisfy the inequalities: F ( y n ( 0 ) ) < 0 F y n ( 0 ) < 0 F(y_(n)^((0))) < 0F\left(y_{n}^{(0)}\right)<0F(yn(0))<0 and g ( y n ( 0 ) ) d , n = 1 , , N g y n ( 0 ) d , n = 1 , , N g(y_(n)^((0))) <= d,n=1,dots,Ng\left(y_{n}^{(0)}\right) \leq d, n=1, \ldots, Ng(yn(0))d,n=1,,N.
Using Theorem 1.1 we deduce that the properties ( j ) ( v ) ( j ) ( v ) (j)-(v)(j)-(v)(j)(v) hold.
The following theorems can be proved in a similar manner:
Theorem 3 If the function f f fff, the step-size h h hhh, and the initial guesses y n ( 0 ) , n = 1 , , N y n ( 0 ) , n = 1 , , N y_(n)^((0)),n=1,dots,Ny_{n}^{(0)}, n=1, \ldots, Nyn(0),n=1,,N, satisfy the following conditions:
(i) [ u , v , w , f ] 0 [ u , v , w , f ] 0 [u,v,w,f] <= 0[u, v, w, f] \leq 0[u,v,w,f]0, for all u , v , w [ c , d ] u , v , w [ c , d ] u,v,w in[c,d]u, v, w \in[c, d]u,v,w[c,d];
(ii) 0 m [ u , v , f ] M 0 m [ u , v , f ] M 0 <= m <= [u,v,f] <= M0 \leq m \leq[u, v, f] \leq M0m[u,v,f]M, for all u , v [ c , d ] u , v [ c , d ] u,v in[c,d]u, v \in[c, d]u,v[c,d];
(iii) y n ( 0 ) h 2 f ( y n ( 0 ) ) < ψ min n y n ( 0 ) h 2 f y n ( 0 ) < ψ min n y_(n)^((0))-(h)/(2)f(y_(n)^((0))) < psi_(min)^(n)y_{n}^{(0)}-\frac{h}{2} f\left(y_{n}^{(0)}\right)<\psi_{\min }^{n}yn(0)h2f(yn(0))<ψminn;
(iv) y n ( 0 ) m f ( y n ( 0 ) ) 2 h [ c ( m h 2 1 ) + ψ max n ] y n ( 0 ) m f y n ( 0 ) 2 h c m h 2 1 + ψ max n y_(n)^((0))m-f(y_(n)^((0))) >= (2)/(h)[c(m(h)/(2)-1)+psi_(max)^(n)]y_{n}^{(0)} m-f\left(y_{n}^{(0)}\right) \geq \frac{2}{h}\left[c\left(m \frac{h}{2}-1\right)+\psi_{\max }^{n}\right]yn(0)mf(yn(0))2h[c(mh21)+ψmaxn];
(v) 2 m h 2 m h (2)/(m) <= h\frac{2}{m} \leq h2mh,
then the elements of the sequences ( y n ( ν ) ) ν 0 , ( g ( y n ( ν ) ) ν 0 , n = 1 , , N y n ( ν ) ν 0 , g y n ( ν ) ν 0 , n = 1 , , N (y_(n)^((nu)))_(nu >= 0),(g(y_(n)^((nu)))_(nu >= 0),n=1,dots,N:}\left(y_{n}^{(\nu)}\right)_{\nu \geq 0},\left(g\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}, n=1, \ldots, N\right.(yn(ν))ν0,(g(yn(ν))ν0,n=1,,N, belong to the interval [ c , d ] [ c , d ] [c,d][c, d][c,d] and the following properties hold:
(j) ( y n ( ν ) ) ν 0 y n ( ν ) ν 0 (y_(n)^((nu)))_(nu >= 0)\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}(yn(ν))ν0 is decreasing and convergent;
(jj) ( g ( y n ( ν ) ) ) ν 0 g y n ( ν ) ν 0 (g(y_(n)^((nu))))_(nu >= 0)\left(g\left(y_{n}^{(\nu)}\right)\right)_{\nu \geq 0}(g(yn(ν)))ν0 is increasing and convergent;
( ( ((( jjj ) g ( y n ( ν ) ) y n y n ( ν ) , ν = 0 , 1 , ) g y n ( ν ) y n y n ( ν ) , ν = 0 , 1 , )g(y_(n)^((nu))) <= y_(n)^(**) <= y_(n)^((nu)),nu=0,1,dots) g\left(y_{n}^{(\nu)}\right) \leq y_{n}^{*} \leq y_{n}^{(\nu)}, \nu=0,1, \ldots)g(yn(ν))ynyn(ν),ν=0,1,;
( j v ) lim ν y n ( ν ) = lim ν g ( y n ( ν ) ) = y n ; ( j v ) lim ν y n ( ν ) = lim ν g y n ( ν ) = y n ; (jv)lim_(nu rarr oo)y_(n)^((nu))=lim_(nu rarr oo)g(y_(n)^((nu)))=y_(n)^(**);(j v) \lim _{\nu \rightarrow \infty} y_{n}^{(\nu)}=\lim _{\nu \rightarrow \infty} g\left(y_{n}^{(\nu)}\right)=y_{n}^{*} ;(jv)limνyn(ν)=limνg(yn(ν))=yn;
(v) | y n y n ( ν ) | | g ( y n ( ν ) ) y n ( ν ) | , ν = 0 , 1 , y n y n ( ν ) g y n ( ν ) y n ( ν ) , ν = 0 , 1 , |y_(n)^(**)-y_(n)^((nu))| <= |g(y_(n)^((nu)))-y_(n)^((nu))|,quad nu=0,1,dotsquad\left|y_{n}^{*}-y_{n}^{(\nu)}\right| \leq\left|g\left(y_{n}^{(\nu)}\right)-y_{n}^{(\nu)}\right|, \quad \nu=0,1, \ldots \quad|ynyn(ν)||g(yn(ν))yn(ν)|,ν=0,1,.
Theorem 4 If the function f f fff, the step-size h h hhh and the initial guesses y n ( 0 ) , n = 1 , , N y n ( 0 ) , n = 1 , , N y_(n)^((0)),n=1,dots,Ny_{n}^{(0)}, n=1, \ldots, Nyn(0),n=1,,N, satisfy the following conditions:
(i) [ u , v , w , f ] 0 [ u , v , w , f ] 0 [u,v,w,f] >= 0[u, v, w, f] \geq 0[u,v,w,f]0, for all u , v , w [ c , d ] u , v , w [ c , d ] u,v,w in[c,d]u, v, w \in[c, d]u,v,w[c,d];
(ii) ( m [ u , v , f ] M 0 m [ u , v , f ] M 0 m <= [u,v,f] <= M <= 0m \leq[u, v, f] \leq M \leq 0m[u,v,f]M0, for all u , v [ c , d ] u , v [ c , d ] u,v in[c,d]u, v \in[c, d]u,v[c,d] ) or ( 0 m [ u , v , f ] M 0 m [ u , v , f ] M 0 <= m <= [u,v,f] <= M0 \leq m \leq[u, v, f] \leq M0m[u,v,f]M, for all u , v [ c , d ] u , v [ c , d ] u,v in[c,d]u, v \in[c, d]u,v[c,d], and h 2 M ) ; h 2 M ; {:h <= (2)/(M));\left.h \leq \frac{2}{M}\right) ;h2M);
(iii) y n ( 0 ) h 2 f ( y n ( 0 ) ) > ψ max n y n ( 0 ) h 2 f y n ( 0 ) > ψ max n y_(n)^((0))-(h)/(2)f(y_(n)^((0))) > psi_(max)^(n)y_{n}^{(0)}-\frac{h}{2} f\left(y_{n}^{(0)}\right)>\psi_{\max }^{n}yn(0)h2f(yn(0))>ψmaxn;
(iv) y n ( 0 ) M f ( y n ( 0 ) ) 2 h [ c ( M h 2 1 ) + ψ min n ] y n ( 0 ) M f y n ( 0 ) 2 h c M h 2 1 + ψ min n y_(n)^((0))M-f(y_(n)^((0))) <= (2)/(h)[c(M(h)/(2)-1)+psi_(min)^(n)]y_{n}^{(0)} M-f\left(y_{n}^{(0)}\right) \leq \frac{2}{h}\left[c\left(M \frac{h}{2}-1\right)+\psi_{\min }^{n}\right]yn(0)Mf(yn(0))2h[c(Mh21)+ψminn],
then the elements of the sequences ( y n ( ν ) ) ν 0 , ( g ( y n ( ν ) ) ν 0 , n = 1 , , N y n ( ν ) ν 0 , g y n ( ν ) ν 0 , n = 1 , , N (y_(n)^((nu)))_(nu >= 0),(g(y_(n)^((nu)))_(nu >= 0),n=1,dots,N:}\left(y_{n}^{(\nu)}\right)_{\nu \geq 0},\left(g\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}, n=1, \ldots, N\right.(yn(ν))ν0,(g(yn(ν))ν0,n=1,,N, belong to the interval [ c , d ] [ c , d ] [c,d][c, d][c,d] and the following properties hold:
(j) ( y n ( ν ) ) ν 0 y n ( ν ) ν 0 (y_(n)^((nu)))_(nu >= 0)\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}(yn(ν))ν0 is decreasing and convergent;
(jj) ( g ( y n ( ν ) ) ) ν 0 g y n ( ν ) ν 0 (g(y_(n)^((nu))))_(nu >= 0)\left(g\left(y_{n}^{(\nu)}\right)\right)_{\nu \geq 0}(g(yn(ν)))ν0 is increasing and convergent;
( j j j ) g ( y n ( ν ) ) y n y n ( ν ) , ν = 0 , 1 , ; ( j j j ) g y n ( ν ) y n y n ( ν ) , ν = 0 , 1 , ; (jjj)g(y_(n)^((nu))) <= y_(n)^(**) <= y_(n)^((nu)),nu=0,1,dots;(j j j) g\left(y_{n}^{(\nu)}\right) \leq y_{n}^{*} \leq y_{n}^{(\nu)}, \nu=0,1, \ldots ;(jjj)g(yn(ν))ynyn(ν),ν=0,1,;
( j v ) lim ν y n ( ν ) = lim ν g ( y n ( ν ) ) = y n ; ( j v ) lim ν y n ( ν ) = lim ν g y n ( ν ) = y n ; (jv)lim_(nu rarr oo)y_(n)^((nu))=lim_(nu rarr oo)g(y_(n)^((nu)))=y_(n)^(**);(j v) \lim _{\nu \rightarrow \infty} y_{n}^{(\nu)}=\lim _{\nu \rightarrow \infty} g\left(y_{n}^{(\nu)}\right)=y_{n}^{*} ;(jv)limνyn(ν)=limνg(yn(ν))=yn;
(v) | y n y n ( ν ) | | g ( y n ( ν ) ) y n ( ν ) | , ν = 0 , 1 , y n y n ( ν ) g y n ( ν ) y n ( ν ) , ν = 0 , 1 , |y_(n)^(**)-y_(n)^((nu))| <= |g(y_(n)^((nu)))-y_(n)^((nu))|,quad nu=0,1,dotsquad\left|y_{n}^{*}-y_{n}^{(\nu)}\right| \leq\left|g\left(y_{n}^{(\nu)}\right)-y_{n}^{(\nu)}\right|, \quad \nu=0,1, \ldots \quad|ynyn(ν)||g(yn(ν))yn(ν)|,ν=0,1,.
Theorem 5 If the function f f fff, the step-size h h hhh and the initial guesses y n ( 0 ) , n = 1 , , N y n ( 0 ) , n = 1 , , N y_(n)^((0)),n=1,dots,Ny_{n}^{(0)}, n=1, \ldots, Nyn(0),n=1,,N, satisfy the following conditions:
(i) [ u , v , w , f ] 0 [ u , v , w , f ] 0 [u,v,w,f] >= 0[u, v, w, f] \geq 0[u,v,w,f]0, for all u , v , w [ c , d ] u , v , w [ c , d ] u,v,w in[c,d]u, v, w \in[c, d]u,v,w[c,d];
(ii) 0 m [ u , v , f ] M 0 m [ u , v , f ] M 0 <= m <= [u,v,f] <= M0 \leq m \leq[u, v, f] \leq M0m[u,v,f]M, for all u , v [ c , d ] u , v [ c , d ] u,v in[c,d]u, v \in[c, d]u,v[c,d];
(iii) y n ( 0 ) h 2 f ( y n ( 0 ) ) > ψ max n y n ( 0 ) h 2 f y n ( 0 ) > ψ max n y_(n)^((0))-(h)/(2)f(y_(n)^((0))) > psi_(max)^(n)y_{n}^{(0)}-\frac{h}{2} f\left(y_{n}^{(0)}\right)>\psi_{\max }^{n}yn(0)h2f(yn(0))>ψmaxn;
(iv) y n ( 0 ) m f ( y n ( 0 ) ) 2 h [ d ( m h 2 1 ) + ψ min n ] y n ( 0 ) m f y n ( 0 ) 2 h d m h 2 1 + ψ min n y_(n)^((0))m-f(y_(n)^((0))) <= (2)/(h)[d(m(h)/(2)-1)+psi_(min)^(n)]y_{n}^{(0)} m-f\left(y_{n}^{(0)}\right) \leq \frac{2}{h}\left[d\left(m \frac{h}{2}-1\right)+\psi_{\min }^{n}\right]yn(0)mf(yn(0))2h[d(mh21)+ψminn];
(v) 2 m h 2 m h (2)/(m) <= h\frac{2}{m} \leq h2mh,
then the elements of the sequences ( y n ( ν ) ) ν 0 , ( g ( y n ( ν ) ) ν 0 , n = 1 , , N y n ( ν ) ν 0 , g y n ( ν ) ν 0 , n = 1 , , N (y_(n)^((nu)))_(nu >= 0),(g(y_(n)^((nu)))_(nu >= 0),n=1,dots,N:}\left(y_{n}^{(\nu)}\right)_{\nu \geq 0},\left(g\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}, n=1, \ldots, N\right.(yn(ν))ν0,(g(yn(ν))ν0,n=1,,N, belong to the interval [ c , d ] [ c , d ] [c,d][c, d][c,d] and the following properties hold:
(j) ( y n ( ν ) ) ν 0 y n ( ν ) ν 0 (y_(n)^((nu)))_(nu >= 0)\left(y_{n}^{(\nu)}\right)_{\nu \geq 0}(yn(ν))ν0 is increasing and convergent;
(jj) ( g ( y n ( ν ) ) ) ν 0 g y n ( ν ) ν 0 (g(y_(n)^((nu))))_(nu >= 0)\left(g\left(y_{n}^{(\nu)}\right)\right)_{\nu \geq 0}(g(yn(ν)))ν0 is decreasing and convergent;
( j j j ) y n ( ν ) y n g ( y n ( ν ) ) , ν = 0 , 1 , ( j j j ) y n ( ν ) y n g y n ( ν ) , ν = 0 , 1 , (jjj)y_(n)^((nu)) <= y_(n)^(**) <= g(y_(n)^((nu))),nu=0,1,dots(j j j) y_{n}^{(\nu)} \leq y_{n}^{*} \leq g\left(y_{n}^{(\nu)}\right), \nu=0,1, \ldots(jjj)yn(ν)yng(yn(ν)),ν=0,1,;
( j v ) lim ν y n ( ν ) = lim ν g ( y n ( ν ) ) = y n ( j v ) lim ν y n ( ν ) = lim ν g y n ( ν ) = y n (jv)lim_(nu rarr oo)y_(n)^((nu))=lim_(nu rarr oo)g(y_(n)^((nu)))=y_(n)^(**)(j v) \lim _{\nu \rightarrow \infty} y_{n}^{(\nu)}=\lim _{\nu \rightarrow \infty} g\left(y_{n}^{(\nu)}\right)=y_{n}^{*}(jv)limνyn(ν)=limνg(yn(ν))=yn;
( v ) | y n y n ( ν ) | | g ( y n ( ν ) ) y n ( ν ) | , ν = 0 , 1 , ( v ) y n y n ( ν ) g y n ( ν ) y n ( ν ) , ν = 0 , 1 , (v)|y_(n)^(**)-y_(n)^((nu))| <= |g(y_(n)^((nu)))-y_(n)^((nu))|,quad nu=0,1,dotsquad(v)\left|y_{n}^{*}-y_{n}^{(\nu)}\right| \leq\left|g\left(y_{n}^{(\nu)}\right)-y_{n}^{(\nu)}\right|, \quad \nu=0,1, \ldots \quad(v)|ynyn(ν)||g(yn(ν))yn(ν)|,ν=0,1,.

3 Numerical example

We consider the autonomous initial value problem:
(19) { y ( x ) = cos 2 ( y ( x ) ) , x [ 0 , 1 ] y ( 0 ) = 0 (19) y ( x ) = cos 2 ( y ( x ) ) , x [ 0 , 1 ] y ( 0 ) = 0 {:(19){[y^(')(x)=cos^(2)(y(x))","quad x in[0","1]],[y(0)=0]:}:}\left\{\begin{array}{l} y^{\prime}(x)=\cos ^{2}(y(x)), \quad x \in[0,1] \tag{19}\\ y(0)=0 \end{array}\right.(19){y(x)=cos2(y(x)),x[0,1]y(0)=0
The exact solution is y : [ 0 , 1 ] R , y ( x ) = arctan ( x ) y : [ 0 , 1 ] R , y ( x ) = arctan ( x ) y:[0,1]rarrR,y(x)=arctan(x)y:[0,1] \rightarrow \mathbb{R}, y(x)=\arctan (x)y:[0,1]R,y(x)=arctan(x), and it is plotted in Figure 1 ( a ) 1 ( a ) 1(a)1(a)1(a) with continuous line.
If we use the trapezoidal rule to integrate the above initial value problem we must solve for each mesh point x n = n h , n = 1 , , N , h = 1 / N , N N x n = n h , n = 1 , , N , h = 1 / N , N N x_(n)=nh,n=1,dots,N,h=1//N,N inNx_{n}=n h, n=1, \ldots, N, h=1 / N, N \in \mathbb{N}xn=nh,n=1,,N,h=1/N,NN, the nonlinear equation:
(20) y n = y n 1 + h 2 ( cos 2 y n + cos 2 y n 1 ) , (20) y n = y n 1 + h 2 cos 2 y n + cos 2 y n 1 , {:(20)y_(n)=y_(n-1)+(h)/(2)(cos^(2)y_(n)+cos^(2)y_(n-1))",":}\begin{equation*} y_{n}=y_{n-1}+\frac{h}{2}\left(\cos ^{2} y_{n}+\cos ^{2} y_{n-1}\right), \tag{20} \end{equation*}(20)yn=yn1+h2(cos2yn+cos2yn1),
where x 0 = 0 x 0 = 0 x_(0)=0x_{0}=0x0=0 and we choose y 0 = 0 y 0 = 0 y_(0)=0y_{0}=0y0=0.
According to the above sections we can write (20) in the form
F n ( y ) = 0 F n ( y ) = 0 F_(n)(y)=0F_{n}(y)=0Fn(y)=0
where F n ( y ) = y h 2 cos 2 ( y ) ψ n F n ( y ) = y h 2 cos 2 ( y ) ψ n F_(n)(y)=y-(h)/(2)cos^(2)(y)-psi_(n)F_{n}(y)=y-\frac{h}{2} \cos ^{2}(y)-\psi_{n}Fn(y)=yh2cos2(y)ψn, and ψ n = y n 1 + h 2 cos 2 ( y n 1 ) , n = 1 , N ψ n = y n 1 + h 2 cos 2 y n 1 , n = 1 , N psi_(n)=y_(n-1)+(h)/(2)cos^(2)(y_(n-1)),n=1dots,N\psi_{n}=y_{n-1}+\frac{h}{2} \cos ^{2}\left(y_{n-1}\right), n=1 \ldots, Nψn=yn1+h2cos2(yn1),n=1,N. It is easy to show that equation (20) has a unique solution y n ( 0 , π 4 ) y n 0 , π 4 y_(n)^(**)quad inquad(0,(pi)/(4))y_{n}^{*} \quad \in \quad\left(0, \frac{\pi}{4}\right)yn(0,π4), n = 1 , , N n = 1 , , N n=1,dots,Nn=1, \ldots, Nn=1,,N, and we will use a Steffensen type method to obtain a numerical approximation, y ~ n y ~ n tilde(y)_(n)\tilde{y}_{n}y~n, for this solution.
From F n ( y ) = 1 + h 2 sin ( 2 y ) 0 F n ( y ) = 1 + h 2 sin ( 2 y ) 0 F_(n)^(')(y)=1+(h)/(2)sin(2y) >= 0F_{n}^{\prime}(y)=1+\frac{h}{2} \sin (2 y) \geq 0Fn(y)=1+h2sin(2y)0 and F n ( y ) = h cos ( 2 y ) 0 , y [ 0 , π 4 ] , n = 1 , , N F n ( y ) = h cos ( 2 y ) 0 , y 0 , π 4 , n = 1 , , N F_(n)^('')(y)=h cos(2y) >= 0,y in[0,(pi)/(4)],n=1,dots,NF_{n}^{\prime \prime}(y)=h \cos (2 y) \geq 0, y \in\left[0, \frac{\pi}{4}\right], n=1, \ldots, NFn(y)=hcos(2y)0,y[0,π4],n=1,,N, we deduce that F n F n F_(n)F_{n}Fn is increasing and convex. Thus, we can define the decreasing function g g ggg as:
g ( y ) = y F n ( y ) F n ( 0 ) = y F n ( y ) = h 2 cos 2 ( y ) + ψ n , n = 1 , , N g ( y ) = y F n ( y ) F n ( 0 ) = y F n ( y ) = h 2 cos 2 ( y ) + ψ n , n = 1 , , N g(y)=y-(F_(n)(y))/(F_(n)^(')(0))=y-F_(n)(y)=(h)/(2)cos^(2)(y)+psi_(n),quad n=1,dots,Ng(y)=y-\frac{F_{n}(y)}{F_{n}^{\prime}(0)}=y-F_{n}(y)=\frac{h}{2} \cos ^{2}(y)+\psi_{n}, \quad n=1, \ldots, Ng(y)=yFn(y)Fn(0)=yFn(y)=h2cos2(y)+ψn,n=1,,N
Also, from Theorem 2.1, choosing for each n = 1 , , N n = 1 , , N n=1,dots,Nn=1, \ldots, Nn=1,,N the initial guesses y n ( 0 ) y n ( 0 ) y_(n)^((0))y_{n}^{(0)}yn(0) such that it verifies the conditions (iii) and (iv) we obtain bilateral approximations of the solution y n y n y_(n)^(**)y_{n}^{*}yn and an a posteriori error control.
The numerical solution, obtained with the method described above, for the step size h = 0.05 h = 0.05 h=0.05h=0.05h=0.05 is also plotted in Figure 1(a) with circle marker. The values of the errors ε n = | y ( x n ) y ~ n | , n = 1 , , N ε n = y x n y ~ n , n = 1 , , N epsi_(n)=|y(x_(n))- tilde(y)_(n)|,n=1,dots,N\varepsilon_{n}=\left|y\left(x_{n}\right)-\tilde{y}_{n}\right|, n=1, \ldots, Nεn=|y(xn)y~n|,n=1,,N, are presented in the following table. They are also plotted in Figure 1(b). We observe a very good agreement when we compare the numerical with the analytical solution.
Table 1: The values of the errors
x n x n x_(n)x_{n}xn ε n ε n epsi_(n)\varepsilon_{n}εn x n x n x_(n)x_{n}xn ε n ε n epsi_(n)\varepsilon_{n}εn
0.05 0.00002068828052 0.55 0.00010932962999
0.1 0.00004056160110 0.6 0.00010478854028
0.15 0.00005887122616 0.65 0.00009889278012
0.2 0.00007499149969 0.7 0.00009200032239
0.25 0.00008845999793 0.75 0.00008443386474
0.3 0.00009899709371 0.8 0.00007647332226
0.35 0.00010650491201 0.85 0.00006835314397
0.4 0.00011104895260 0.9 0.00006026315926
0.45 0.00011282772086 0.95 0.00005235176793
0.5 0.00011213634983 1 0.00004473048874
x_(n) epsi_(n) x_(n) epsi_(n) 0.05 0.00002068828052 0.55 0.00010932962999 0.1 0.00004056160110 0.6 0.00010478854028 0.15 0.00005887122616 0.65 0.00009889278012 0.2 0.00007499149969 0.7 0.00009200032239 0.25 0.00008845999793 0.75 0.00008443386474 0.3 0.00009899709371 0.8 0.00007647332226 0.35 0.00010650491201 0.85 0.00006835314397 0.4 0.00011104895260 0.9 0.00006026315926 0.45 0.00011282772086 0.95 0.00005235176793 0.5 0.00011213634983 1 0.00004473048874| $x_{n}$ | $\varepsilon_{n}$ | $x_{n}$ | $\varepsilon_{n}$ | | :--- | :--- | :--- | :--- | | 0.05 | 0.00002068828052 | 0.55 | 0.00010932962999 | | 0.1 | 0.00004056160110 | 0.6 | 0.00010478854028 | | 0.15 | 0.00005887122616 | 0.65 | 0.00009889278012 | | 0.2 | 0.00007499149969 | 0.7 | 0.00009200032239 | | 0.25 | 0.00008845999793 | 0.75 | 0.00008443386474 | | 0.3 | 0.00009899709371 | 0.8 | 0.00007647332226 | | 0.35 | 0.00010650491201 | 0.85 | 0.00006835314397 | | 0.4 | 0.00011104895260 | 0.9 | 0.00006026315926 | | 0.45 | 0.00011282772086 | 0.95 | 0.00005235176793 | | 0.5 | 0.00011213634983 | 1 | 0.00004473048874 |
Figure 1: (a) The exact solution (continuous line) and the numerical solution (circle marker). (b) The values of the errors

References

[1] Agratini O., Chiorean I., Coman Gh., Trîmbiţas R., Numerical Analysis and Approximation Theory, Vol. III, Presa Universitară Clujeană, 2002 (in Romanian).
[2] Butcher J.C., Numerical Methods for Ordinary Differential Equations, John Willey&Sons, 2003.
[3] Cătinaş E., Methods of Newton and Newton-Krylov Type, Risoprint, Cluj-Napoca, 2007.
[4] Crouzeix M., Mignot A.L., Analyse numérique des equations différentielles, Masson, Paris, 1989.
[5] Lambert J.D., Numerical Methods for Ordinary Differential Systems-The Initial Value Problem, John Wiley&Sons, 1990.
[6] Matheij R., Molennar J., Ordinary Differential Equations in Theory and Practice, SIAM, Philadelphia, 2002.
[7] Păvăloiu I., On the monotonicity of the sequences of approximations obtained by Steffensen's method, Mathematica, 35(58), no. 1, pp. 95-101, 1993.
[8] Păvăloiu I. Bilateral approximation for the solution of scalar equations, Rev. Anal. Numér. Théor. Approx. 23, no. 1, pp. 95-101, 1994.
[9] Păvăloiu I., Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32, pp. 69-82, 1995.
[10] Păvăloiu I., Aitken-Steffensen type methods for nonsmooth functions(III), Rev. Anal. Numér. Théor. Approx. 32, no. 1, pp. 73-77, 2003.
2011

Related Posts