We show the convergence of an implicit mean value iteration when applied to uniformly pseudocontractive maps. Remarks about other implicit mean value iterations are given
Authors
Stefan M. Soltuz
Tiberiu Popoviciu Institute of Numerical Analysis
B. E. Rhoades Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
Keywords
?
Paper coordinates
B.E. Rhoades, S.M. Soltuz, The convergence of an implicit mean value iteration, International Journal of Mathematics and Mathematical Sciences, 2006 ID 68369, 7 p.
International Journal of Mathematics and Mathematical Sciences
Publisher Name
Wiley
DOI
Print ISSN
0161-1712
Online ISSN
1687-0425
google scholar link
[1] S. S. Chang, K. K. Tan, H. W. J. Lee, and C. K. Chan, On the convergence of implicit iterationprocess with error for a finite family of asymptotically nonexpansive mappings, Journal of Mathe-matical Analysis and Applications 313 (2006), no. 1, 273–283.
[2] R. Chen, Y. Song, and H. Zhou, Convergence theorems for implicit iteration process for a finite fam-ily of continuous pseudocontractive mappings, Journal of Mathematical Analysis and Applications314 (2006), no. 2, 701–709.
[3] C. E. Chidume and S. A. Mutangadura, An example of the Mann iteration method for Lipschitz pseudocontractions, Proceedings of the American Mathematical Society 129 (2001), no. 8, 2359–2363.
[4] Łj. Ciric and J. S. Ume, Iterative processes with errors for nonlinear equations, Bulletin of theAustralian Mathematical Society 69 (2004), no. 2, 177–189.
[5] W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical Soci-ety 4 (1953), no. 3, 506–510.
[6] M. O. Osilike, Implicit iteration process for common fixed points of a finite family of pseudocontrac-tive maps, Panamerican Mathematical Journal 14 (2004), no. 3, 89–98.
[7] , Implicit iteration process for common fixed points of a finite family of strictly pseudocon-tractive maps, Journal of Mathematical Analysis and Applications 294 (2004), no. 1, 73–81.
[8] S¸ . M. Soltuz, The backward Mann iteration, Octogon Mathematics Magazine 9 (2001), no. 2,797–800.
[9] , New technique for proving the equivalence of Mann and Ishikawa iterations, Revued’Analyse Numerique et de Theorie de l’Approximation 34 (2005), no. 1, 103–108.
[10] Z.-H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptoticallyquasi-nonexpansive mappings, Journal of Mathematical Analysis and Applications 286 (2003),no. 1, 351–358.
[11] H.-K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numerical Func-tional Analysis and Optimization 22 (2001), no. 5-6, 767–773.
[12] Y. Zhou and S. S. Chang, Convergence of implicit iteration process for a finite family of asymptoti-cally nonexpansive mappings in Banach spaces, Numerical Functional Analysis and Optimization23 (2002), no. 7-8, 911–921.
THE CONVERGENCE OF AN IMPLICIT MEAN VALUE ITERATION
B. E. RHOADES AND ŞTEFAN M. ŞOLTUZ
Received 3 April 2006; Revised 10 May 2006; Accepted 11 May 2006
We show the convergence of an implicit mean value iteration when applied to uniformly pseudocontractive maps. Remarks about other implicit mean value iterations are given.
Let XX be a real Banach space, T:X rarr XT: X \rightarrow X a map, and x_(0),u_(0)in Xx_{0}, u_{0} \in X. In [5], the following iteration is introduced:
{:(1.1)u_(n+1)=(1-alpha_(n))u_(n)+alpha_(n)Tu_(n)",":}\begin{equation*}
u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} T u_{n}, \tag{1.1}
\end{equation*}
where {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1).
In the rest of the paper, we will assume that (I-tT)^(-1)(I-t T)^{-1} exists for all t in(0,1)t \in(0,1). Consider the following iteration, see [8]:
{:(1.2)x_(n+1)=(1-alpha_(n))x_(n)+alpha_(n)Tx_(n+1)",":}\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n+1}, \tag{1.2}
\end{equation*}
where the sequence {alpha_(n)}\left\{\alpha_{n}\right\} is in ( 0,1 ).
The following example shows that iteration (1.2) is well defined. We recall the following well-known result.
Lemma 1.1. Let {beta_(n)}\left\{\beta_{n}\right\} be a nonnegative sequence such that beta_(n)in(0,1]\beta_{n} \in(0,1], for all n inNn \in \mathbb{N}. If sum_(n=1)^(oo)beta_(n)=oo\sum_{n=1}^{\infty} \beta_{n}=\infty, then prod_(n=1)^(oo)(1-beta_(n))=0\prod_{n=1}^{\infty}\left(1-\beta_{n}\right)=0.
Inspired by [3, 8], we give an example which shows that Mann iterations (1.1) and (1.2) are independent.
Example 1.2. Let X=R^(2)X=\mathbb{R}^{2}. Let T:X rarr XT: X \rightarrow X be the map given by
Iteration (1.1) is not convergent to the fixed point of TT, while iteration (1.2), for {alpha_(n)}sub(1//2,1)\left\{\alpha_{n}\right\} \subset (1 / 2,1), converges to the fixed point of TT.
Proof. Let u=(x,y)u=(x, y). For all lambda in]0,1[\lambda \in] 0,1[,
Hence the Mann iteration is not convergent to (0,0)(0,0), for all {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1). Note that (I_(2)-tT)^(-1)\left(I_{2}-t T\right)^{-1} exists for all t in(0,1)t \in(0,1). Moreover,
The last inequality holds because 0 >= 2alpha_(n)^(2)-3alpha_(n)+10 \geq 2 \alpha_{n}^{2}-3 \alpha_{n}+1 for alpha_(n)in(1//2,1)\alpha_{n} \in(1 / 2,1). Lemma 1.1 assures that lim_(n rarr oo)|x_(n)|=0\lim _{n \rightarrow \infty}\left|x_{n}\right|=0.
Take T:[0,1)rarr[0,1),Tx=x^(2)T:[0,1) \rightarrow[0,1), T x=x^{2}, to obtain a map for which Mann iteration converges to the fixed point, while implicit Mann iteration is not well defined and consequently does not converge at all. Using (1.2),
In the later case, x_(n+1)x_{n+1} is no longer inside the interval [0,1)[0,1). Suppose one always takes the first case. With the choice that each alpha_(n)=1//2\alpha_{n}=1 / 2, we have
that is, 1-x_(n+1)=(1-x_(n))^(1//2)1-x_{n+1}=\left(1-x_{n}\right)^{1 / 2}. Set a_(n)=1-x_(n) > 0a_{n}=1-x_{n}>0 to obtain lim_(n rarr oo)a_(n)=0\lim _{n \rightarrow \infty} a_{n}=0. Thus, {x_(n)}\left\{x_{n}\right\} converges to 1 , which is not in the interval [0,1)[0,1).
The map J:X rarr2^(X^(**))J: X \rightarrow 2^{X^{*}}, given by J(x):={f inX^(**):(:x,f:)=||x||^(2),||f||=||x||}J(x):=\left\{f \in X^{*}:\langle x, f\rangle=\|x\|^{2},\|f\|=\|x\|\right\}, for all x in Xx \in X, is called the normalized duality mapping. It is easy to see that
{:(1.12)(:y","j(x):) <= ||x||||y||","quad AA x","y in X","AA j(x)in J(x).:}\begin{equation*}
\langle y, j(x)\rangle \leq\|x\|\|y\|, \quad \forall x, y \in X, \forall j(x) \in J(x) . \tag{1.12}
\end{equation*}
Define
{:(1.13)Psi:={psi∣psi:[0","+oo)longrightarrow[0","+oo)" is a strictly increasing map such that "psi(0)=0}.:}\begin{equation*}
\Psi:=\{\psi \mid \psi:[0,+\infty) \longrightarrow[0,+\infty) \text { is a strictly increasing map such that } \psi(0)=0\} . \tag{1.13}
\end{equation*}
The following definition can be found, for example, in [4].
Definition 1.3. A map T:X rarr XT: X \rightarrow X is called uniformly pseudocontractive if there exist a map psi in Psi\psi \in \Psi and a j(x-y)in J(x-y)j(x-y) \in J(x-y) such that
{:(1.14)(:Tx-Ty","j(x-y):) <= ||x-y||^(2)-psi(||x-y||)","quad AA x","y in X.:}\begin{equation*}
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}-\psi(\|x-y\|), \quad \forall x, y \in X . \tag{1.14}
\end{equation*}
Taking psi(a):=psi(a)*a\psi(a):=\psi(a) \cdot a, for all a in[0,+oo),(psi in Psi)a \in[0,+\infty),(\psi \in \Psi), gives the usual definitions of psi\psi-strongly pseudocontractivity. The choice psi(a):=y*a^(2),y in(0,1)\psi(a):=y \cdot a^{2}, y \in(0,1), for all a in[0,+oo)a \in[0,+\infty), (psi in Psi)(\psi \in \Psi), yields the usual definition of strong pseudocontractivity.
The convergence of (1.2) dealing with strongly pseudocontractive maps was proved in [8]. We will prove the convergence of iteration (1.2) when applied to uniformly pseudocontractive maps. For this purpose, we need the following result.
Lemma 1.4 [9]. Let {a_(n)}\left\{a_{n}\right\} be a nonnegative bounded sequence which satisfies the following inequality:
{:(1.15)a_(n+1) <= (1-alpha_(n))a_(n)+alpha_(n)a_(n+1)-alpha_(n)(psi(a_(n+1)))/(a_(n+1))+alpha_(n)epsi_(n)","quad AA n >= n_(0):}\begin{equation*}
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} a_{n+1}-\alpha_{n} \frac{\psi\left(a_{n+1}\right)}{a_{n+1}}+\alpha_{n} \varepsilon_{n}, \quad \forall n \geq n_{0} \tag{1.15}
\end{equation*}
where psi(*)in Psi,alpha_(n)in(0,1),epsi_(n) >= 0\psi(\cdot) \in \Psi, \alpha_{n} \in(0,1), \varepsilon_{n} \geq 0, for all n inN,sum_(n=0)^(oo)alpha_(n)=oon \in \mathbb{N}, \sum_{n=0}^{\infty} \alpha_{n}=\infty, and lim_(n rarr oo)epsi_(n)=0\lim _{n \rightarrow \infty} \varepsilon_{n}=0. Then lim_(n rarr oo)a_(n)=0\lim _{n \rightarrow \infty} a_{n}=0.
2. Main results
Theorem 2.1. Let XX be a real Banach space and T:X rarr XT: X \rightarrow X a uniformly pseudocontractive map with a fixed point such that
{:(2.1)EE(I-tT)^(-1)quad AA t in(0","1):}\begin{equation*}
\exists(I-t T)^{-1} \quad \forall t \in(0,1) \tag{2.1}
\end{equation*}
If {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1) satisfies
and {x_(n)}\left\{x_{n}\right\} is bounded, then for x_(0)in Xx_{0} \in X the iteration (1.2) converges to the fixed point of TT.
Proof. The uniqueness of the fixed point comes from (1.14). Let x^(**)x^{*} be the fixed point of TT.
If there exists a nonnegative integer nn for which x_(n)=x^(**)x_{n}=x^{*}, then from (1.2),
{:(2.3)x_(n+1)=(1-alpha_(n))x^(**)+alpha_(n)Tx_(n+1):}\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x^{*}+\alpha_{n} T x_{n+1} \tag{2.3}
\end{equation*}
which, using (2.1), implies that x_(n+1)=x^(**)x_{n+1}=x^{*}. By induction, x_(m)=x^(**)x_{m}=x^{*} for all m >= nm \geq n.
We may therefore assume that each x_(n)!=x^(**)x_{n} \neq x^{*}. Using (1.2)-(1.14),
Dividing by ||x_(n+1)-x^(**)||\left\|x_{n+1}-x^{*}\right\| and defining a_(n)=||x_(n)-x^(**)||a_{n}=\left\|x_{n}-x^{*}\right\| yield (1.15) with each epsi_(n)=0\varepsilon_{n}=0. From Lemma 1.4, lim_(n rarr oo)a_(n)=0\lim _{n \rightarrow \infty} a_{n}=0.
The following remark indicates some ways in which Theorem 2.1 can be applied to certain accretive maps.
Remark 2.2. (1) The operator TT is a (uniformly, psi\psi-strongly, strongly) pseudocontractive map if and only if ( I-TI-T ) is a (uniformly, psi\psi-strongly, strongly) accretive map.
(2) Let T,S:X rarr XT, S: X \rightarrow X, and f in Xf \in X be given. A fixed point for the map Tx=f+(I-S)xT x=f+(I-S) x, for all x in Xx \in X, is a solution for Sx=fS x=f, and conversely.
(3) Consider iteration (1.2) with Tx=f+(I-S)xT x=f+(I-S) x to obtain a convergence result to the solution of Sx=fS x=f.
(4) Let f in Xf \in X be given. If the operator SS is accretive, then f-Sf-S is a strongly pseudocontractive map.
(5) Let T,S:X rarr XT, S: X \rightarrow X. A fixed point for the map Tx=f-SxT x=f-S x, for all x in Xx \in X, is a solution for x+Sx=fx+S x=f, and conversely.
(6) Consider iteration (1.2) with Tx=f-SxT x=f-S x to obtain a convergence result to the solution of x+Sx=fx+S x=f.
Remark 2.3. If (1.14) is also true for all x in Xx \in X, and y:=x^(**)y:=x^{*}, the fixed point, then such a map is called uniformly hemicontractive. Obviously, our result holds for the uniformly hemicontractive case.
3. Remarks about implicit mean value iterations
Let XX be a real Banach space and BB a nonempty convex subset, u_(0),x_(0)in Bu_{0}, x_{0} \in B. Consider for {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1), a finite family of functions {T_(i)}_(i=1)^(N):B rarr B\left\{T_{i}\right\}_{i=1}^{N}: B \rightarrow B and the following two iterations:
Iteration (3.1) has been considered in [2, 6, 7, 11, 12]. Iteration (3.1) has been discussed in [1,10][1,10]. Note that iteration (1.2) is a particular case of (3.1). However, as far as we know, no such paper is dedicated to the convergence of the implicit iteration dealing with uniformly pseudocontractive maps.
Condition (2.1) forces iteration (1.2) to be well defined. The papers listed above do not impose such a condition, and consequently, the resulting implicit mean value iterations need not be well defined, as the following example illustrates.
Example 3.1. Take T_(i):[0,1]rarr[0,1],i=1,2,T_(1)(x)=x^(2)T_{i}:[0,1] \rightarrow[0,1], i=1,2, T_{1}(x)=x^{2}, and T_(2)(x)=(1//2)xT_{2}(x)=(1 / 2) x with the common fixed point x^(**)=0x^{*}=0. Then for x_(0)=1,x_(1)=alpha_(1)x_(0)+(1-alpha_(1))x_(1)^(2)x_{0}=1, x_{1}=\alpha_{1} x_{0}+\left(1-\alpha_{1}\right) x_{1}^{2}, one obtains x_(1)=x_{1}= 1 and x_(1)=alpha_(1)//(1-alpha_(1))x_{1}=\alpha_{1} /\left(1-\alpha_{1}\right). Take now u_(0)=1,u_(1)=alpha_(1)u_(0)+(1-alpha_(1))u_(1)^(2)u_{0}=1, u_{1}=\alpha_{1} u_{0}+\left(1-\alpha_{1}\right) u_{1}^{2}, and u_(2)=alpha_(2)u_(1)+(1-{:alpha_(2))(1//4)u_(2)u_{2}=\alpha_{2} u_{1}+(1- \left.\alpha_{2}\right)(1 / 4) u_{2}. Observe that there are two possible values for u_(2)u_{2}.
Remark 3.2. The existence of (I-tT_(i))^(-1)\left(I-t T_{i}\right)^{-1}, for all {:t in]0,1[,i=1,N\left.t \in\right] 0,1[, i=1, N, should be added to the hypotheses of the results of [2,6,7,11,12][2,6,7,11,12] in order to have well-defined iterations. The existence of (I-tT_(i)^(p))^(-1)\left(I-t T_{i}^{p}\right)^{-1}, for all t in(0,1),i=1,Nt \in(0,1), i=1, N, for all p >= 1p \geq 1, should be added to the hypotheses of the results of [1,10].
Acknowledgment
The authors are indebted to the referees for carefully reading the paper and for making useful suggestions.
References
[1] S. S. Chang, K. K. Tan, H. W. J. Lee, and C. K. Chan, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, Journal of Mathematical Analysis and Applications 313 (2006), no. 1, 273-283.
[2] R. Chen, Y. Song, and H. Zhou, Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings, Journal of Mathematical Analysis and Applications 314 (2006), no. 2, 701-709.
[3] C. E. Chidume and S. A. Mutangadura, An example of the Mann iteration method for Lipschitz pseudocontractions, Proceedings of the American Mathematical Society 129 (2001), no. 8, 23592363.
[4] Łj. Ćirić and J. S. Ume, Iterative processes with errors for nonlinear equations, Bulletin of the Australian Mathematical Society 69 (2004), no. 2, 177-189.
[5] W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical Society 4 (1953), no. 3, 506-510.
[6] M. O. Osilike, Implicit iteration process for common fixed points of a finite family of pseudocontractive maps, Panamerican Mathematical Journal 14 (2004), no. 3, 89-98.
[7] _,Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, Journal of Mathematical Analysis and Applications 294 (2004), no. 1, 73-81.
[8] Ş. M. Şoltuz, The backward Mann iteration, Octogon Mathematics Magazine 9 (2001), no. 2, 797-800.
[9] ____\_\_\_\_ , New technique for proving the equivalence of Mann and Ishikawa iterations, Revue d'Analyse Numérique et de Théorie de l'Approximation 34 (2005), no. 1, 103-108.
[10] Z.-H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, Journal of Mathematical Analysis and Applications 286 (2003), no. 1, 351-358.
[11] H.-K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numerical Functional Analysis and Optimization 22 (2001), no. 5-6, 767-773.
[12] Y. Zhou and S. S. Chang, Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numerical Functional Analysis and Optimization 23 (2002), no. 7-8, 911-921.
B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA E-mail address: rhoades@indiana.edu
Ştefan M. Şoltuz: "Numerical Analysis and Application Theory Workgroup, Tiberiu Popoviciu Institute of Numerical Analysis," P.O. Box 68-1, 400110 Cluj-Napoca, Romania
E-mail address: smsoltuz@gmail.com