The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps

Abstract

The convergence of modified Mann iteration is equivalent to the convergence of modified Ishikawa iterations, when T is an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive map.

    Authors

    B.E. Rhoades

    S.M. Soltuz
    (Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

    Keywords

    Modified Mann iteration; Modified Ishikawa iteration; Asymptotically nonexpansive in the intermediate sense; Strongly successively pseudocontractive

    References

    See the expanding block below.

    Paper coordinates

    B. E. Rhoades and Ş. M. Şoltuz, The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically nonexpansive in the intermediate sense and strong successively pseudocontractive maps, J. Math. Anal. Appl. 289 (2004), 266-278.
    doi: 10.1016/j.jmaa.2003.09.057

    PDF

    About this paper

    Publisher Name

    Elsevier

    Print ISSN

    0022-247X

    Online ISSN
    Google Scholar Profile

    google scholar

    soon

    Paper (preprint) in HTML form

    The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps

    B.E. Rhoades a and Ştefan M. Şoltuz b,∗,1
    a Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
    b T. Popoviciu Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania
    Abstract

    The convergence of modified Mann iteration is equivalent to the convergence of modified Ishikawa iterations, when TT is an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive map.
    2003 Elsevier Inc. All rights reserved.

    Received 8 June 2003
    Submitted by Z.-J. Ruan

    Keywords: Modified Mann iteration; Modified Ishikawa iteration; Asymptotically nonexpansive in the intermediate sense; Strongly successively pseudocontractive

    1. Introduction

    Let XX be a Banach space and let BB be a nonempty subset of X,u0,x0BX,u_{0},x_{0}\in B be two arbitrary fixed points and T:BBT:B\rightarrow B be a map.

    Definition 1. The map TT is said to be

    (i) asymptotically nonexpansive if there exists a sequence (kn)n,kn[1,),n\left(k_{n}\right)_{n},k_{n}\in[1,\infty),\forall n\in\mathbb{N}, limnkn=1\lim_{n\rightarrow\infty}k_{n}=1, such that

    TnxTnyknxy,x,yB,n;\left\|T^{n}x-T^{n}y\right\|\leqslant k_{n}\|x-y\|,\quad\forall x,y\in B,\forall n\in\mathbb{N}; (1)

    (ii) asymptotically nonexpansive in the intermediate sense if TT is continuous for some mm and

    limsupnsupx,yB(TnxTnyxy)0;\lim\sup_{n\rightarrow\infty}\sup_{x,y\in B}\left(\left\|T^{n}x-T^{n}y\right\|-\|x-y\|\right)\leqslant 0; (2)

    (iii) strongly successively pseudocontractive if there exists k(0,1)k\in(0,1) and n0n_{0}\in\mathbb{N} such that

    xyxy+t[(ITnkI)x(ITnkI)y],\|x-y\|\leqslant\left\|x-y+t\left[\left(I-T^{n}-kI\right)x-\left(I-T^{n}-kI\right)y\right]\right\|, (3)

    for all x,yB,t>0x,y\in B,t>0 and nn0n\geqslant n_{0};
    (iv) uniformly Lipschitzian if there exists L>0L>0 such that

    TnxTnyLxy,x,yB,n.\left\|T^{n}x-T^{n}y\right\|\leqslant L\|x-y\|,\quad\forall x,y\in B,\forall n\in\mathbb{N}. (4)

    An example of an asymptotically nonexpansive in the intermediate sense which not continuous can be found in [1, Example 1.1, p. 456]. An asymptotically nonexpansive map is uniformly Lipschitzian for some L1L\geqslant 1, i.e., L1:TnxTnyLxy\exists L\geqslant 1:\left\|T^{n}x-T^{n}y\right\|\leqslant L\|x-y\|, x,yB,n\forall x,y\in B,\forall n\in\mathbb{N}. It is clear now that (ii) is weaker then (i).

    Remark 2. An asymptotically nonexpansive map is asymptotically nonexpansive in the intermediate sense. The converse is not true.

    Setting n=n0:=1n=n_{0}:=1 in (3), we get the definition of a strongly pseudocontractive map. In Example 1.2 from [1], there is a map which is not strongly pseudocontractive but which is strongly successively pseudocontractive.

    We consider the following iteration, see [3]:

    un+1=(1αn)un+αnTnun,n=0,1,2,.u_{n+1}=\left(1-\alpha_{n}\right)u_{n}+\alpha_{n}T^{n}u_{n},\quad n=0,1,2,\ldots. (5)

    This iteration is known as modified Mann iteration. We consider the following iteration, known as modified Ishikawa iteration (see [2]):

    xn+1=(1αn)xn+αnTnyn,\displaystyle x_{n+1}=\left(1-\alpha_{n}\right)x_{n}+\alpha_{n}T^{n}y_{n},
    yn=(1βn)xn+βnTnxn,n=0,1,2,.\displaystyle y_{n}=\left(1-\beta_{n}\right)x_{n}+\beta_{n}T^{n}x_{n},\quad n=0,1,2,\ldots. (6)

    The sequences {αn},{βn}(0,1)\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\subset(0,1) are such that

    limnαn=0,limnβn=0,n=1αn=.\lim_{n\rightarrow\infty}\alpha_{n}=0,\quad\lim_{n\rightarrow\infty}\beta_{n}=0,\quad\sum_{n=1}^{\infty}\alpha_{n}=\infty. (7)

    The sequence {αn}\left\{\alpha_{n}\right\} remains the same in both iterations. For βn=0,n\beta_{n}=0,\forall n\in\mathbb{N}, from (6) we get (5). We denote by F(T)F(T) the set of fixed points of TT. Replacing TnT^{n} by TT in (5) and (6) one obtains ordinary Mann and Ishikawa iteration.

    The aim of this note is to prove the equivalence between the convergences of the above two iterations when TT is an asymptotically nonexpansive in the intermediate sense or strongly successively pseudocontractive map.

    The following lemma is from [7].

    Lemma 3 [7]. Let {an}\left\{a_{n}\right\} be a nonnegative sequence which satisfies the following inequality

    an+1(1λn)an+δn,a_{n+1}\leqslant\left(1-\lambda_{n}\right)a_{n}+\delta_{n}, (8)

    where λn(0,1),n,n=1λn=\lambda_{n}\in(0,1),\forall n\in\mathbb{N},\sum_{n=1}^{\infty}\lambda_{n}=\infty, and δn=o(λn)\delta_{n}=o\left(\lambda_{n}\right). Then limnan=0\lim_{n\rightarrow\infty}a_{n}=0.

    2. The case of asymptotically nonexpansive in the intermediate sense

    Theorem 4. Let BB be a closed convex bounded subset of an arbitrary Banach space XX and {xn}\left\{x_{n}\right\} and {un}\left\{u_{n}\right\} defined by (6) and (5) with {αn},{βn}(0,1)\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\subset(0,1) satisfying (7). Let T:BBT:B\rightarrow B be an asymptotically nonexpansive in the intermediate sense and successively strongly pseudocontractive self-map of BB. Put

    cn=max(0,supx,yB(TnxTnyxy))c_{n}=\max\left(0,\sup_{x,y\in B}\left(\left\|T^{n}x-T^{n}y\right\|-\|x-y\|\right)\right) (9)

    so that

    limncn=0\lim_{n\rightarrow\infty}c_{n}=0 (10)

    If u0=x0Bu_{0}=x_{0}\in B, then the following two assertions are equivalent:
    (i) Modified Mann iteration (5) converges to xF(T)x^{*}\in F(T).
    (ii) Modified Ishikawa iteration (6) converges to xF(T)x^{*}\in F(T).

    Proof. If the modified Ishikawa iteration (6) converges to xx^{*}, then it is clear that this xx^{*} is a fixed point. Setting βn=0,nN\beta_{n}=0,\forall n\in N, in ( 6) we obtain the convergence of modified Mann iteration. Conversely, we shall prove that the convergence of modified Mann iteration implies the convergence of modified Ishikawa iteration. The proof is similar to the proof of Theorem 4 from [5]. From (6) we have

    xn=\displaystyle x_{n}= xn+1+αnxnαnTnyn\displaystyle x_{n+1}+\alpha_{n}x_{n}-\alpha_{n}T^{n}y_{n}
    =\displaystyle= (1+αn)xn+1+αnxn+1αnTnxn+1kαnxn+1\displaystyle\left(1+\alpha_{n}\right)x_{n+1}+\alpha_{n}x_{n+1}-\alpha_{n}T^{n}x_{n+1}-k\alpha_{n}x_{n+1}
    2αnxn+1+kαnxn+1+αnxn+αnTnxn+1αnTnyn\displaystyle-2\alpha_{n}x_{n+1}+k\alpha_{n}x_{n+1}+\alpha_{n}x_{n}+\alpha_{n}T^{n}x_{n+1}-\alpha_{n}T^{n}y_{n}
    =\displaystyle= (1+αn)xn+1+αn(ITnkI)xn+1(2k)αnxn+1\displaystyle\left(1+\alpha_{n}\right)x_{n+1}+\alpha_{n}\left(I-T^{n}-kI\right)x_{n+1}-(2-k)\alpha_{n}x_{n+1}
    +αnxn+αn(Tnxn+1Tnyn)\displaystyle+\alpha_{n}x_{n}+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}y_{n}\right)
    =\displaystyle= (1+αn)xn+1+αn(ITnkI)xn+1(2k)αn[xn+αn(Tnynxn)]\displaystyle\left(1+\alpha_{n}\right)x_{n+1}+\alpha_{n}\left(I-T^{n}-kI\right)x_{n+1}-(2-k)\alpha_{n}\left[x_{n}+\alpha_{n}\left(T^{n}y_{n}-x_{n}\right)\right]
    +αnxn+αn(Tnxn+1Tnyn)\displaystyle+\alpha_{n}x_{n}+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}y_{n}\right)
    =\displaystyle= (1+αn)xn+1+αn(ITnkI)xn+1\displaystyle\left(1+\alpha_{n}\right)x_{n+1}+\alpha_{n}\left(I-T^{n}-kI\right)x_{n+1}
    (1k)αnxn+(2k)αn2(xnTnyn)+αn(Tnxn+1Tnyn)\displaystyle-(1-k)\alpha_{n}x_{n}+(2-k)\alpha_{n}^{2}\left(x_{n}-T^{n}y_{n}\right)+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}y_{n}\right) (11)

    Analogously, for (5) we get

    un=\displaystyle u_{n}= (1+αn)un+1+αn(ITnkI)un+1\displaystyle\left(1+\alpha_{n}\right)u_{n+1}+\alpha_{n}\left(I-T^{n}-kI\right)u_{n+1}
    (1k)αnun+(2k)αn2(unTnun)+αn(Tnun+1Tnun)\displaystyle-(1-k)\alpha_{n}u_{n}+(2-k)\alpha_{n}^{2}\left(u_{n}-T^{n}u_{n}\right)+\alpha_{n}\left(T^{n}u_{n+1}-T^{n}u_{n}\right) (12)

    Compute (11)-(12) to obtain

    xnun=\displaystyle x_{n}-u_{n}= (1+αn)(xn+1un+1)+αn[(ITnkI)xn+1(ITnkI)un+1]\displaystyle\left(1+\alpha_{n}\right)\left(x_{n+1}-u_{n+1}\right)+\alpha_{n}\left[\left(I-T^{n}-kI\right)x_{n+1}-\left(I-T^{n}-kI\right)u_{n+1}\right]
    (1k)αn(xnun)+(2k)αn2[xnun(TnynTnun)]\displaystyle-(1-k)\alpha_{n}\left(x_{n}-u_{n}\right)+(2-k)\alpha_{n}^{2}\left[x_{n}-u_{n}-\left(T^{n}y_{n}-T^{n}u_{n}\right)\right]
    +αn[Tnxn+1Tnyn(Tnun+1Tnun)]\displaystyle+\alpha_{n}\left[T^{n}x_{n+1}-T^{n}y_{n}-\left(T^{n}u_{n+1}-T^{n}u_{n}\right)\right] (13)

    Using the triangular inequality and (3) with x:=xn+1,y:=un+1,t:=αn/(1+αn)x:=x_{n+1},y:=u_{n+1},t:=\alpha_{n}/\left(1+\alpha_{n}\right),

    xnun\displaystyle\left\|x_{n}-u_{n}\right\|\geqslant (1+αn)(xn+1un+1)\displaystyle\left(1+\alpha_{n}\right)\|\left(x_{n+1}-u_{n+1}\right)
    +αn1+αn[(ITnkI)xn+1(ITnkI)un+1]\displaystyle+\frac{\alpha_{n}}{1+\alpha_{n}}\left[\left(I-T^{n}-kI\right)x_{n+1}-\left(I-T^{n}-kI\right)u_{n+1}\right]\|
    (1k)αnxnun(2k)αn2xnun(TnynTnun)\displaystyle-(1-k)\alpha_{n}\left\|x_{n}-u_{n}\right\|-(2-k)\alpha_{n}^{2}\left\|x_{n}-u_{n}-\left(T^{n}y_{n}-T^{n}u_{n}\right)\right\|
    αnTnxn+1Tnyn(Tnun+1Tnun)\displaystyle-\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}y_{n}-\left(T^{n}u_{n+1}-T^{n}u_{n}\right)\right\|
    \displaystyle\geqslant (1+αn)xn+1un+1(1k)αnxnun\displaystyle\left(1+\alpha_{n}\right)\left\|x_{n+1}-u_{n+1}\right\|-(1-k)\alpha_{n}\left\|x_{n}-u_{n}\right\|
    (2k)αn2xnun(TnynTnun)\displaystyle-(2-k)\alpha_{n}^{2}\left\|x_{n}-u_{n}-\left(T^{n}y_{n}-T^{n}u_{n}\right)\right\|
    αnTnxn+1Tnyn(Tnun+1Tnun)\displaystyle-\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}y_{n}-\left(T^{n}u_{n+1}-T^{n}u_{n}\right)\right\| (14)

    Thus

    (1+\displaystyle(1+ αn)xn+1un+1\displaystyle\left.\alpha_{n}\right)\left\|x_{n+1}-u_{n+1}\right\|
    \displaystyle\leqslant (1+(1k)αn)xnun+(2k)αn2xnunTnyn+Tnun\displaystyle\left(1+(1-k)\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+(2-k)\alpha_{n}^{2}\left\|x_{n}-u_{n}-T^{n}y_{n}+T^{n}u_{n}\right\|
    +αnTnxn+1Tnun+1(TnynTnun)\displaystyle+\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}u_{n+1}-\left(T^{n}y_{n}-T^{n}u_{n}\right)\right\|
    \displaystyle\leqslant (1+(1k)αn)xnun+(2k)αn2xnTnyn+(2k)αn2unTnun\displaystyle\left(1+(1-k)\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+(2-k)\alpha_{n}^{2}\left\|x_{n}-T^{n}y_{n}\right\|+(2-k)\alpha_{n}^{2}\left\|u_{n}-T^{n}u_{n}\right\|
    +αnTnun+1Tnun+αnTnxn+1Tnyn\displaystyle+\alpha_{n}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|+\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\| (15)

    Using the facts that (1+αn2)11\left(1+\alpha_{n}^{2}\right)^{-1}\leqslant 1 and (1+αn2)11αn+αn2\left(1+\alpha_{n}^{2}\right)^{-1}\leqslant 1-\alpha_{n}+\alpha_{n}^{2} we get

    xn+1un+1\displaystyle\left\|x_{n+1}-u_{n+1}\right\|\leqslant (1+(1k)αn)(1αn+αn2)xnun\displaystyle\left(1+(1-k)\alpha_{n}\right)\left(1-\alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-u_{n}\right\|
    +αn{(2k)αnxnTnyn+(2k)αnunTnun\displaystyle+\alpha_{n}\left\{(2-k)\alpha_{n}\left\|x_{n}-T^{n}y_{n}\right\|+(2-k)\alpha_{n}\left\|u_{n}-T^{n}u_{n}\right\|\right.
    +Tnun+1Tnun+Tnxn+1Tnyn}\displaystyle\left.+\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|+\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\|\right\}
    =\displaystyle= (1+(1k)αn)(1αn+αn2)xnun+αnσn\displaystyle\left(1+(1-k)\alpha_{n}\right)\left(1-\alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\sigma_{n} (16)

    where

    σn:=\displaystyle\sigma_{n}:= (2k)αnxnTnyn+(2k)αnunTnun\displaystyle(2-k)\alpha_{n}\left\|x_{n}-T^{n}y_{n}\right\|+(2-k)\alpha_{n}\left\|u_{n}-T^{n}u_{n}\right\|
    +Tnun+1Tnun+Tnxn+1Tnyn.\displaystyle+\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|+\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\|. (17)

    We have

    M:=max{x0,sup{Tnx,xB,n}}<M:=\max\left\{\left\|x_{0}\right\|,\sup\left\{\left\|T^{n}x\right\|,x\in B,n\in\mathbb{N}\right\}\right\}<\infty (18)

    The sequence {xnTnyn}\left\{\left\|x_{n}-T^{n}y_{n}\right\|\right\} is bounded because {Tnyn}\left\{T^{n}y_{n}\right\} is in the bounded set BB, and {xn}\left\{x_{n}\right\} also is bounded by MM. Supposing that xnM\left\|x_{n}\right\|\leqslant M, a simple induction leads to

    xn+1(1αn)xn+αnM(1αn)M+αnM=M.\left\|x_{n+1}\right\|\leqslant\left(1-\alpha_{n}\right)\left\|x_{n}\right\|+\alpha_{n}M\leqslant\left(1-\alpha_{n}\right)M+\alpha_{n}M=M. (19)

    Modified Mann iteration (5) converges, let xx^{*} be that fixed point. Thus

    0\displaystyle 0 unTnunTnxTnun+unx\displaystyle\leqslant\left\|u_{n}-T^{n}u_{n}\right\|\leqslant\left\|T^{n}x^{*}-T^{n}u_{n}\right\|+\left\|u_{n}-x^{*}\right\|
    =(TnxTnununx)+2unx\displaystyle=\left(\left\|T^{n}x^{*}-T^{n}u_{n}\right\|-\left\|u_{n}-x^{*}\right\|\right)+2\left\|u_{n}-x^{*}\right\|
    cn+2unx0 as n.\displaystyle\leqslant c_{n}+2\left\|u_{n}-x^{*}\right\|\rightarrow 0\quad\text{ as }n\rightarrow\infty. (20)

    It is clear that {Tnun+1Tnun}\left\{\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|\right\} also converges to zero because

    0\displaystyle 0 Tnun+1Tnun\displaystyle\leqslant\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|
    Tnun+1Tnunun+1un+un+1un0 as n.\displaystyle\leqslant\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|-\left\|u_{n+1}-u_{n}\right\|+\left\|u_{n+1}-u_{n}\right\|\rightarrow 0\quad\text{ as }n\rightarrow\infty. (21)

    From (9) and (10) one obtains

    Tnxn+1Tnyn\displaystyle\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\| =[TnynTnxn+1ynxn+1]+ynxn+1\displaystyle=\left[\left\|T^{n}y_{n}-T^{n}x_{n+1}\right\|-\left\|y_{n}-x_{n+1}\right\|\right]+\left\|y_{n}-x_{n+1}\right\|
    cn+ynxn+10, as n,\displaystyle\leqslant c_{n}+\left\|y_{n}-x_{n+1}\right\|\rightarrow 0,\quad\text{ as }n\rightarrow\infty, (22)

    since

    ynxn+1\displaystyle\left\|y_{n}-x_{n+1}\right\| =βnxn+βnTnxn+αnxnαnTnyn\displaystyle=\left\|-\beta_{n}x_{n}+\beta_{n}T^{n}x_{n}+\alpha_{n}x_{n}-\alpha_{n}T^{n}y_{n}\right\|
    2βnM+2αnM=2M(αn+βn)0 as n.\displaystyle\leqslant 2\beta_{n}M+2\alpha_{n}M=2M\left(\alpha_{n}+\beta_{n}\right)\rightarrow 0\quad\text{ as }n\rightarrow\infty. (23)

    The sequences {xn},{Tnxn}\left\{x_{n}\right\},\left\{T^{n}x_{n}\right\} and {Tnyn}\left\{T^{n}y_{n}\right\} are in the bounded set BB, and bounded by M>0M>0.
    The following inequality is, in fact, inequality (29) from [5]:

    (1+(1k)αn)(1αn+αn2)\displaystyle\left(1+(1-k)\alpha_{n}\right)\left(1-\alpha_{n}+\alpha_{n}^{2}\right)
    =1kαn+kαn2+(1k)αn31kαn+kαn2+(1k)αn2\displaystyle\quad=1-k\alpha_{n}+k\alpha_{n}^{2}+(1-k)\alpha_{n}^{3}\leqslant 1-k\alpha_{n}+k\alpha_{n}^{2}+(1-k)\alpha_{n}^{2}
    =1kαn+αn2\displaystyle\quad=1-k\alpha_{n}+\alpha_{n}^{2} (24)

    The condition limnαn=0\lim_{n\rightarrow\infty}\alpha_{n}=0 implies the existence of a positive integer NN such that for all nNn\geqslant N

    αnk2\alpha_{n}\leqslant\frac{k}{2} (25)

    Substituting inequality (25) into (24) we get

    (1+(1kαn))(1αn+αn2)\displaystyle\left(1+\left(1-k\alpha_{n}\right)\right)\left(1-\alpha_{n}+\alpha_{n}^{2}\right) 1kαn+αn21kαn+k2αn\displaystyle\leqslant 1-k\alpha_{n}+\alpha_{n}^{2}\leqslant 1-k\alpha_{n}+\frac{k}{2}\alpha_{n}
    =1k2αn\displaystyle=1-\frac{k}{2}\alpha_{n} (26)

    Relations (26) and (16) lead to

    xn+1un+1(1k2αn)xnun+αnσn\left\|x_{n+1}-u_{n+1}\right\|\leqslant\left(1-\frac{k}{2}\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\sigma_{n} (27)

    where {σn}\left\{\sigma_{n}\right\} is given by (17). From (22) we know that limnσn=0\lim_{n\rightarrow\infty}\sigma_{n}=0. Denote

    an:=xnun,λn:=k2αn,δn:=αnσn=o(λn).a_{n}:=\left\|x_{n}-u_{n}\right\|,\quad\lambda_{n}:=\frac{k}{2}\alpha_{n},\quad\delta_{n}:=\alpha_{n}\sigma_{n}=o\left(\lambda_{n}\right). (28)

    Relations (28) and (27) lead to (8); using Lemma 3 we have

    limnxnun=0\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|=0 (29)

    to obtain

    0xnxxnun+unx0 as n.0\leqslant\left\|x_{n}-x^{*}\right\|\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-x^{*}\right\|\rightarrow 0\quad\text{ as }n\rightarrow\infty. (30)

    Hence limnxnx=0\lim_{n\rightarrow\infty}\left\|x_{n}-x^{*}\right\|=0.

    3. The strongly successively pseudocontractive case

    3.1. The Lipschitzian case

    Theorem 5. Let BB be a closed convex (without being necessarily bounded) subset of an arbitrary Banach space XX and {xn},{un}\left\{x_{n}\right\},\left\{u_{n}\right\} defined by (6) and (5) with {αn},{βn}(0,1)\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\subset(0,1) satisfying (7). Let TT be a successively strongly pseudocontractive and uniformly Lipschitzian with L1L\geqslant 1 self-map of BB. If u0=x0Bu_{0}=x_{0}\in B, then the following two assertions are equivalent:
    (i) Modified Mann iteration (5) converges to xF(T)x^{*}\in F(T).
    (ii) Modified Ishikawa iteration (6) converges to xF(T)x^{*}\in F(T).

    Proof. Supposing, again, that modified Ishikawa iteration converges, analogously as in the proof of Theorem 4 we obtain the convergence of modified Mann iteration. Conversely, supposing that modified Mann iteration converges, we will prove that modified Ishikawa iteration will converge. For that we need to evaluate xnun\left\|x_{n}-u_{n}\right\|. The map TT is successively strongly pseudocontractive. Thus relations (11), (12), (14)-(16), (24) hold:

    xn+1un+1\displaystyle\left\|x_{n+1}-u_{n+1}\right\|\leqslant (1kαn+αn2)xnun\displaystyle\left(1-k\alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-u_{n}\right\|
    +αn{(2k)αnxnTnyn+(2k)αnunTnun\displaystyle+\alpha_{n}\left\{(2-k)\alpha_{n}\left\|x_{n}-T^{n}y_{n}\right\|+(2-k)\alpha_{n}\left\|u_{n}-T^{n}u_{n}\right\|\right.
    +Tnun+1Tnun+Tnxn+1Tnyn}.\displaystyle\left.+\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|+\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\|\right\}. (31)

    We have

    xnTnyn\displaystyle\left\|x_{n}-T^{n}y_{n}\right\| xnun+unTnun+TnunTnyn\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+\left\|T^{n}u_{n}-T^{n}y_{n}\right\|
    xnun+unTnun+Lunyn.\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+L\left\|u_{n}-y_{n}\right\|. (32)
    unyn\displaystyle\left\|u_{n}-y_{n}\right\| =(1βn)(unxn)+βn(unTnxn)\displaystyle=\left\|\left(1-\beta_{n}\right)\left(u_{n}-x_{n}\right)+\beta_{n}\left(u_{n}-T^{n}x_{n}\right)\right\|
    (1βn)xnun+βnunTnxn\displaystyle\leqslant\left(1-\beta_{n}\right)\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}x_{n}\right\|
    (1βn)xnun+βn(TnunTnxn+unTnun)\displaystyle\leqslant\left(1-\beta_{n}\right)\left\|x_{n}-u_{n}\right\|+\beta_{n}\left(\left\|T^{n}u_{n}-T^{n}x_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|\right)
    (1βn)xnun+βnLxnun+βnunTnun\displaystyle\leqslant\left(1-\beta_{n}\right)\left\|x_{n}-u_{n}\right\|+\beta_{n}L\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|
    =(1βn+βnL)xnun+βnunTnun\displaystyle=\left(1-\beta_{n}+\beta_{n}L\right)\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|
    Lxnun+βnunTnun,\displaystyle\leqslant L\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|, (33)

    because 1L1βn+βnLL1\leqslant L\Rightarrow 1-\beta_{n}+\beta_{n}L\leqslant L.

    Substituting (33) into (32) we get

    xnTnyn\displaystyle\left\|x_{n}-T^{n}y_{n}\right\|\leqslant unxn+unTnun\displaystyle\left\|u_{n}-x_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|
    +L(Lxnun+βnunTnun)\displaystyle+L\left(L\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|\right)
    \displaystyle\leqslant (1+L2)xnun+(1+Lβn)unTnun\displaystyle\left(1+L^{2}\right)\left\|x_{n}-u_{n}\right\|+\left(1+L\beta_{n}\right)\left\|u_{n}-T^{n}u_{n}\right\| (34)

    Now

    Tnxn+1Tnyn\displaystyle\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\| Lxn+1yn=L(1αn)xn+αnTnynyn\displaystyle\leqslant L\left\|x_{n+1}-y_{n}\right\|=L\left\|\left(1-\alpha_{n}\right)x_{n}+\alpha_{n}T^{n}y_{n}-y_{n}\right\|
    =L(1αn)(xnyn)+αn(Tnynyn)\displaystyle=L\left\|\left(1-\alpha_{n}\right)\left(x_{n}-y_{n}\right)+\alpha_{n}\left(T^{n}y_{n}-y_{n}\right)\right\|
    L((1αn)xnyn+αnTnynyn).\displaystyle\leqslant L\left(\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}\left\|T^{n}y_{n}-y_{n}\right\|\right). (35)

    Using (33),

    Tnynyn\displaystyle\left\|T^{n}y_{n}-y_{n}\right\| TnynTnun+Tnunun+unyn\displaystyle\leqslant\left\|T^{n}y_{n}-T^{n}u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|+\left\|u_{n}-y_{n}\right\|
    (1+L)unyn+Tnunun\displaystyle\leqslant(1+L)\left\|u_{n}-y_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|
    (1+L)(Lunxn+βnTnunun)+Tnunun\displaystyle\leqslant(1+L)\left(L\left\|u_{n}-x_{n}\right\|+\beta_{n}\left\|T^{n}u_{n}-u_{n}\right\|\right)+\left\|T^{n}u_{n}-u_{n}\right\|
    =(1+L)Lxnun+[(1+L)βn+1]Tnunun.\displaystyle=(1+L)L\left\|x_{n}-u_{n}\right\|+\left[(1+L)\beta_{n}+1\right]\left\|T^{n}u_{n}-u_{n}\right\|. (36)
    xnyn=\displaystyle\left\|x_{n}-y_{n}\right\|= xn(1βn)xnβnTnxn=βnxnTnxn\displaystyle\left\|x_{n}-\left(1-\beta_{n}\right)x_{n}-\beta_{n}T^{n}x_{n}\right\|=\beta_{n}\left\|x_{n}-T^{n}x_{n}\right\|
    \displaystyle\leqslant βn[xnun+Tnunun+TnxnTnun]\displaystyle\beta_{n}\left[\left\|x_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|+\left\|T^{n}x_{n}-T^{n}u_{n}\right\|\right]
    \displaystyle\leqslant βn((1+L)xnun+Tnunun).\displaystyle\beta_{n}\left((1+L)\left\|x_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|\right). (37)

    Substituting (36) and (37) in (35) one obtains

    Tnxn+1Tnyn\displaystyle\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\|\leqslant L[(1αn)xnyn+αnTnynyn]\displaystyle L\left[\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}\left\|T^{n}y_{n}-y_{n}\right\|\right]
    \displaystyle\leqslant L{(1αn)(βn((1+L)unxn+Tnunun))\displaystyle L\left\{\left(1-\alpha_{n}\right)\left(\beta_{n}\left((1+L)\left\|u_{n}-x_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|\right)\right)\right.
    +αn((1+L)Lxnun+[(1+L)βn+1]Tnunun)}\displaystyle\left.+\alpha_{n}\left((1+L)L\left\|x_{n}-u_{n}\right\|+\left[(1+L)\beta_{n}+1\right]\left\|T^{n}u_{n}-u_{n}\right\|\right)\right\}
    =\displaystyle= (1αn)βn(1+L)Lxnun+L(1αn)βnTnunun\displaystyle\left(1-\alpha_{n}\right)\beta_{n}(1+L)L\left\|x_{n}-u_{n}\right\|+L\left(1-\alpha_{n}\right)\beta_{n}\left\|T^{n}u_{n}-u_{n}\right\|
    +αn(1+L)L2xnun\displaystyle+\alpha_{n}(1+L)L^{2}\left\|x_{n}-u_{n}\right\|
    +αnL[(1+L)βn+1]Tnunun\displaystyle+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\left\|T^{n}u_{n}-u_{n}\right\|
    =\displaystyle= (L(1αn)βn(1+L)+αn(1+L)L2)xnun\displaystyle\left(L\left(1-\alpha_{n}\right)\beta_{n}(1+L)+\alpha_{n}(1+L)L^{2}\right)\left\|x_{n}-u_{n}\right\|
    +(βnL(1αn)+αnL[(1+L)βn+1])Tnunun.\displaystyle+\left(\beta_{n}L\left(1-\alpha_{n}\right)+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right)\left\|T^{n}u_{n}-u_{n}\right\|. (38)

    Replacing (38) and (32) in (31) we get

    xn+1un+1\displaystyle\left\|x_{n+1}-u_{n+1}\right\|\leqslant (1kαn+2αn2)xnun\displaystyle\left(1-k\alpha_{n}+2\alpha_{n}^{2}\right)\left\|x_{n}-u_{n}\right\|
    +(2k)αn2((1+L2)xnun+(1+βnL)unTnun)\displaystyle+(2-k)\alpha_{n}^{2}\left(\left(1+L^{2}\right)\left\|x_{n}-u_{n}\right\|+\left(1+\beta_{n}L\right)\left\|u_{n}-T^{n}u_{n}\right\|\right)
    +(2k)αn2unTnun+αnTnun+1Tnun\displaystyle+(2-k)\alpha_{n}^{2}\left\|u_{n}-T^{n}u_{n}\right\|+\alpha_{n}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|
    +αn(L(1αn)βn(1+L)+αn(1+L)L2)xnun\displaystyle+\alpha_{n}\left(L\left(1-\alpha_{n}\right)\beta_{n}(1+L)+\alpha_{n}(1+L)L^{2}\right)\left\|x_{n}-u_{n}\right\|
    +αn(βnL(1αn)+αnL[(1+L)βn+1])unTnun\displaystyle+\alpha_{n}\left(\beta_{n}L\left(1-\alpha_{n}\right)+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right)\left\|u_{n}-T^{n}u_{n}\right\|
    =\displaystyle= {(1kαn+2αn2)+(2k)αn2(1+L2)\displaystyle\left\{\left(1-k\alpha_{n}+2\alpha_{n}^{2}\right)+(2-k)\alpha_{n}^{2}\left(1+L^{2}\right)\right.
    +αnL(1+L)((1αn)βn+αnL)}xnun\displaystyle\left.+\alpha_{n}L(1+L)\left(\left(1-\alpha_{n}\right)\beta_{n}+\alpha_{n}L\right)\right\}\left\|x_{n}-u_{n}\right\|
    +{(2k)αn2(2+βnL)+αn[βnL(1αn)\displaystyle+\left\{(2-k)\alpha_{n}^{2}\left(2+\beta_{n}L\right)+\alpha_{n}\left[\beta_{n}L\left(1-\alpha_{n}\right)\right.\right.
    +αnL[(1+L)βn+1]]}unTnun\displaystyle\left.\left.+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right]\right\}\left\|u_{n}-T^{n}u_{n}\right\|
    +αnTnun+1Tnun.\displaystyle+\alpha_{n}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|. (39)

    Formula (30) from [5] with M=2+(2k)(1+L2)+L2(1+L)M=2+(2-k)\left(1+L^{2}\right)+L^{2}(1+L) leads us to

    (1\displaystyle(1 kαn)+2αn2+(2k)αn2(1+L2)+αnL(1+L)((1αn)βn+αnL)\displaystyle\left.-k\alpha_{n}\right)+2\alpha_{n}^{2}+(2-k)\alpha_{n}^{2}\left(1+L^{2}\right)+\alpha_{n}L(1+L)\left(\left(1-\alpha_{n}\right)\beta_{n}+\alpha_{n}L\right)
    1kαn+αn(2αn+(2k)αn(1+L2)+L(1+L)((1αn)βn+αnL))\displaystyle\leqslant 1-k\alpha_{n}+\alpha_{n}\left(2\alpha_{n}+(2-k)\alpha_{n}\left(1+L^{2}\right)+L(1+L)\left(\left(1-\alpha_{n}\right)\beta_{n}+\alpha_{n}L\right)\right)
    1kαn+αnM(αn+βn)\displaystyle\leqslant 1-k\alpha_{n}+\alpha_{n}M\left(\alpha_{n}+\beta_{n}\right)
    1kαn+αnk(1k)=1k2αn\displaystyle\leqslant 1-k\alpha_{n}+\alpha_{n}k(1-k)=1-k^{2}\alpha_{n} (40)

    for all nn sufficiently large, since limn(αn+βn)=0\lim_{n\rightarrow\infty}\left(\alpha_{n}+\beta_{n}\right)=0. Relations (40) and (39) lead to

    xn+1un+1\displaystyle\left\|x_{n+1}-u_{n+1}\right\|\leqslant (1k2αn)xnun\displaystyle\left(1-k^{2}\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|
    +αn{[(2k)αn(2+βnL)+[βnL(1αn)\displaystyle+\alpha_{n}\left\{\left[(2-k)\alpha_{n}\left(2+\beta_{n}L\right)+\left[\beta_{n}L\left(1-\alpha_{n}\right)\right.\right.\right.
    +αnL[(1+L)βn+1]]]unTnun+Tnun+1Tnun}\displaystyle\left.\left.\left.+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right]\right]\left\|u_{n}-T^{n}u_{n}\right\|+\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|\right\}
    =\displaystyle= (1k2αn)xnun+αnϵn\displaystyle\left(1-k^{2}\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\epsilon_{n}
    ϵn:=\displaystyle\epsilon_{n}:= [(2k)αn(2+βnL)\displaystyle{\left[(2-k)\alpha_{n}\left(2+\beta_{n}L\right)\right.}
    +[βnL(1αn)+αnL[(1+L)βn+1]]]unTnun\displaystyle\left.+\left[\beta_{n}L\left(1-\alpha_{n}\right)+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right]\right]\left\|u_{n}-T^{n}u_{n}\right\|
    +Tnun+1Tnun\displaystyle+\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\| (41)

    Supposing that limnunx=0\lim_{n\rightarrow\infty}\left\|u_{n}-x^{*}\right\|=0, with Tx=xTx^{*}=x^{*}, we have limnunTnun=0\lim_{n\rightarrow\infty}\|u_{n}-T^{n}u_{n}\|=0 because

    0\displaystyle 0 unTnununx+TnxTnun\displaystyle\leqslant\left\|u_{n}-T^{n}u_{n}\right\|\leqslant\left\|u_{n}-x^{*}\right\|+\left\|T^{n}x^{*}-T^{n}u_{n}\right\|
    unx+Lunx=(1+L)unx0 as n.\displaystyle\leqslant\left\|u_{n}-x^{*}\right\|+L\left\|u_{n}-x^{*}\right\|=(1+L)\left\|u_{n}-x^{*}\right\|\rightarrow 0\quad\text{ as }n\rightarrow\infty. (42)

    It is clear that if limnunTnun=0\lim_{n\rightarrow\infty}\left\|u_{n}-T^{n}u_{n}\right\|=0, then limnTnun+1Tnun=0\lim_{n\rightarrow\infty}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|=0.
    Denote by

    an:=xnun,λn:=k2αn,δn:=αnϵn=o(λn)a_{n}:=\left\|x_{n}-u_{n}\right\|,\quad\lambda_{n}:=k^{2}\alpha_{n},\quad\delta_{n}:=\alpha_{n}\epsilon_{n}=o\left(\lambda_{n}\right) (43)

    Supposing that modified Mann iteration converges, i.e., limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*}, we get from (42)

    limnTnun+1Tnun=0\lim_{n\rightarrow\infty}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|=0

    and

    limnunTnun=0\lim_{n\rightarrow\infty}\left\|u_{n}-T^{n}u_{n}\right\|=0

    because TT is uniformly Lipschitzian. Thus limnϵn=0\lim_{n\rightarrow\infty}\epsilon_{n}=0, which means that δn=o(λn)\delta_{n}=o\left(\lambda_{n}\right). Relations (43) and Lemma 3 lead us to

    limnxnun=0\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|=0 (44)

    The inequality

    0xnxxnun+unx0 as n0\leqslant\left\|x_{n}-x^{*}\right\|\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-x^{*}\right\|\rightarrow 0\quad\text{ as }n\rightarrow\infty (45)

    leads us to conclusion that limnxn=x\lim_{n\rightarrow\infty}x_{n}=x^{*}.

    3.2. The non-Lipschitzian case

    Let XX be a real Banach space, BB be a nonempty subset of XX and T:BBT:B\rightarrow B.
    The map J:X2XJ:X\rightarrow 2^{X^{*}} given by Jx:={fX:x,f=x2,f=x},xXJx:=\left\{f\in X^{*}:\langle x,f\rangle=\|x\|^{2},\|f\|=\|x\|\right\},\forall x\in X, is called the normalized duality mapping. The Hahn-Banach theorem assures that JxJx\neq\emptyset, xX\forall x\in X. It is an easy task to see that j(x),yxy,x,yX,j(x)J(x)\langle j(x),y\rangle\leqslant\|x\|\|y\|,\forall x,y\in X,\forall j(x)\in J(x).

    In [1, Lemma 2.1, p. 459] it is shown that the definition of successively strongly pseudocontractive map is equivalent to the following definition:

    Definition 6. TT is successively strongly pseudocontractive map if there exists k(0,1)k\in(0,1) and a j(xy)J(xy)j(x-y)\in J(x-y) such that

    TnxTny,j(xy)kxy2,x,yB.\left\langle T^{n}x-T^{n}y,j(x-y)\right\rangle\leqslant k\|x-y\|^{2},\quad\forall x,y\in B. (46)

    We need the following lemma from [4].
    Lemma 7 [4]. If XX is a real Banach space, then the following relation is true:

    x+y2x2+2(y,j(x+y)),x,yX,j(x+y)J(x+y).\|x+y\|^{2}\leqslant\|x\|^{2}+2(y,j(x+y)),\quad\forall x,y\in X,\forall j(x+y)\in J(x+y). (47)

    We are able now to prove the following result:
    Theorem 8. Let XX be a real Banach space with dual uniformly convex and BB a nonempty, closed, convex, bounded subset of XX. Let T:BBT:B\rightarrow B be a successively strongly pseudocontractive operator and {xn},{un}\left\{x_{n}\right\},\left\{u_{n}\right\} defined by (6) and (5) with {αn},{βn}(0,1)\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\subset(0,1) satisfying (7). Then for u0=x0Bu_{0}=x_{0}\in B the following assertions are equivalent:
    (i) Modified Mann iteration (5) converges to the fixed point of TT.
    (ii) Modified Ishikawa iteration (6) converges to the fixed point of TT.

    Proof. The proof is similar to the proof of the main result from [6]. If either (5) or (6) converges to a point xx^{*}, then xx^{*} is a fixed point for TT. Using (5), (6), (47) with x:=(1αn)(xnun),y:=αn(TnynTnun)x:=\left(1-\alpha_{n}\right)\left(x_{n}-u_{n}\right),y:=\alpha_{n}\left(T^{n}y_{n}-T^{n}u_{n}\right) (observe that x+y=xn+1un+1x+y=x_{n+1}-u_{n+1} ) and (46) we get

    xn+1un+12\displaystyle\left\|x_{n+1}-u_{n+1}\right\|^{2} =(1αn)(xnun)+αn(TnynTnun)2\displaystyle=\left\|\left(1-\alpha_{n}\right)\left(x_{n}-u_{n}\right)+\alpha_{n}\left(T^{n}y_{n}-T^{n}u_{n}\right)\right\|^{2}
    (1αn)2xnun2+2αnTnynTnun,J(xn+1un+1)\displaystyle\leqslant\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2}+2\alpha_{n}\left\langle T^{n}y_{n}-T^{n}u_{n},J\left(x_{n+1}-u_{n+1}\right)\right\rangle
    =\displaystyle= (1αn)2xnun2\displaystyle\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2}
    +2αnTnynTnun,J(xn+1un+1)J(ynun)\displaystyle+2\alpha_{n}\left\langle T^{n}y_{n}-T^{n}u_{n},J\left(x_{n+1}-u_{n+1}\right)-J\left(y_{n}-u_{n}\right)\right\rangle
    +2αnTnynTnun,J(ynun)\displaystyle+2\alpha_{n}\left\langle T^{n}y_{n}-T^{n}u_{n},J\left(y_{n}-u_{n}\right)\right\rangle
    \displaystyle\leqslant (1αn)2xnun2+2αnkynun2\displaystyle\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2}+2\alpha_{n}k\left\|y_{n}-u_{n}\right\|^{2}
    +2αnTnynTnun,J(xn+1un+1)J(ynun)\displaystyle+2\alpha_{n}\left\langle T^{n}y_{n}-T^{n}u_{n},J\left(x_{n+1}-u_{n+1}\right)-J\left(y_{n}-u_{n}\right)\right\rangle
    \displaystyle\leqslant (1αn)2xnun2+2αnkynun2\displaystyle\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2}+2\alpha_{n}k\left\|y_{n}-u_{n}\right\|^{2}
    +2αnTnynTnunJ(xn+1un+1)J(ynun)\displaystyle+2\alpha_{n}\left\|T^{n}y_{n}-T^{n}u_{n}\right\|\left\|J\left(x_{n+1}-u_{n+1}\right)-J\left(y_{n}-u_{n}\right)\right\|
    \displaystyle\leqslant (1αn)2xnun2+2αnkynun2\displaystyle\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2}+2\alpha_{n}k\left\|y_{n}-u_{n}\right\|^{2}
    +2αnM1J(xn+1un+1)J(ynun)\displaystyle+2\alpha_{n}M_{1}\left\|J\left(x_{n+1}-u_{n+1}\right)-J\left(y_{n}-u_{n}\right)\right\| (48)

    for some M1>0M_{1}>0. Observe that {TnynTnun}\left\{\left\|T^{n}y_{n}-T^{n}u_{n}\right\|\right\} is bounded. We prove that

    J(xn+1un+1)J(ynun)0 as n.J\left(x_{n+1}-u_{n+1}\right)-J\left(y_{n}-u_{n}\right)\rightarrow 0\quad\text{ as }n\rightarrow\infty. (49)

    If the dual is uniformly convex, then JJ is single map and uniformly continuous on every bounded set. To prove (49) it is sufficient to see that

    (xn+1un+1)(ynun)=(xn+1yn)(un+1un)\displaystyle\left\|\left(x_{n+1}-u_{n+1}\right)-\left(y_{n}-u_{n}\right)\right\|=\left\|\left(x_{n+1}-y_{n}\right)-\left(u_{n+1}-u_{n}\right)\right\|
    =αnxn+αnTnyn+βnxnβnTnxn+αnunαnTnun\displaystyle\quad=\left\|-\alpha_{n}x_{n}+\alpha_{n}T^{n}y_{n}+\beta_{n}x_{n}-\beta_{n}T^{n}x_{n}+\alpha_{n}u_{n}-\alpha_{n}T^{n}u_{n}\right\|
    αn(xn+Tnyn+un+Tnun)+βn(xn+Tnxn)\displaystyle\quad\leqslant\alpha_{n}\left(\left\|x_{n}\right\|+\left\|T^{n}y_{n}\right\|+\left\|u_{n}\right\|+\left\|T^{n}u_{n}\right\|\right)+\beta_{n}\left(\left\|x_{n}\right\|+\left\|T^{n}x_{n}\right\|\right)
    (αn+βn)M0 as n,\displaystyle\quad\leqslant\left(\alpha_{n}+\beta_{n}\right)M\rightarrow 0\quad\text{ as }n\rightarrow\infty, (50)

    where M=supn((xn+Tnyn+un+Tnun),(xn+Tnxn))<M=\sup_{n}\left(\left(\left\|x_{n}\right\|+\left\|T^{n}y_{n}\right\|+\left\|u_{n}\right\|+\left\|T^{n}u_{n}\right\|\right),\left(\left\|x_{n}\right\|+\left\|T^{n}x_{n}\right\|\right)\right)<\infty.
    The sequences {un},{xn},{Tnxn},{Tnun}\left\{u_{n}\right\},\left\{x_{n}\right\},\left\{T^{n}x_{n}\right\},\left\{T^{n}u_{n}\right\} and {Tnyn}\left\{T^{n}y_{n}\right\} are bounded, being in the bounded set BB. Hence one can see that the MM above is finite and (49) holds.

    We define

    σn:=2αnM1J(xn+1un+1)J(ynun).\sigma_{n}:=2\alpha_{n}M_{1}\left\|J\left(x_{n+1}-u_{n+1}\right)-J\left(y_{n}-u_{n}\right)\right\|. (51)

    Again, using (6) and (47) with x:=(1βn)(xnun),y:=βn(Tnxnun)x:=\left(1-\beta_{n}\right)\left(x_{n}-u_{n}\right),y:=\beta_{n}\left(T^{n}x_{n}-u_{n}\right) (observe that x+y=ynunx+y=y_{n}-u_{n} ) we get

    ynun2\displaystyle\left\|y_{n}-u_{n}\right\|^{2} =(1βn)(xnun)+βn(Tnxnun)2\displaystyle=\left\|\left(1-\beta_{n}\right)\left(x_{n}-u_{n}\right)+\beta_{n}\left(T^{n}x_{n}-u_{n}\right)\right\|^{2}
    (1βn)2xnun2+2βnTnxnun,J(ynun)\displaystyle\leqslant\left(1-\beta_{n}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2}+2\beta_{n}\left\langle T^{n}x_{n}-u_{n},J\left(y_{n}-u_{n}\right)\right\rangle
    xnun2+βnM2.\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|^{2}+\beta_{n}M_{2}. (52)

    The last inequality is true because {Tnxnun,J(ynun)}\left\{\left\langle T^{n}x_{n}-u_{n},J\left(y_{n}-u_{n}\right)\right\rangle\right\} is bounded, with a constant M2>0M_{2}>0. Replacing (51) and (52) in (48), we obtain

    xn+1un+12\displaystyle\left\|x_{n+1}-u_{n+1}\right\|^{2} (1αn)2xnun2+2αnkxnun2+σn+αn(2k)βnM2\displaystyle\leqslant\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2}+2\alpha_{n}k\left\|x_{n}-u_{n}\right\|^{2}+\sigma_{n}+\alpha_{n}(2k)\beta_{n}M_{2}
    =(12(1k)αn+αn2)xnun2+o(αn)\displaystyle=\left(1-2(1-k)\alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-u_{n}\right\|^{2}+o\left(\alpha_{n}\right) (53)

    The condition limnαn=0\lim_{n\rightarrow\infty}\alpha_{n}=0 implies the existence of an n0n_{0} such that for all nn0n\geqslant n_{0} we have

    αn(1k).\alpha_{n}\leqslant(1-k). (54)

    Substituting (54) into (53), we obtain 12(1k)αn+αn212(1k)αn+(1k)αn=1(1k)αn1-2(1-k)\alpha_{n}+\alpha_{n}^{2}\leqslant 1-2(1-k)\alpha_{n}+(1-k)\alpha_{n}=1-(1-k)\alpha_{n}. Thus, from (53)

    xn+1un+12(1(1k)αn)xnun2+o(αn).\left\|x_{n+1}-u_{n+1}\right\|^{2}\leqslant\left(1-(1-k)\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|^{2}+o\left(\alpha_{n}\right). (55)

    Define an:=xnun2,λn:=(1k)αn(0,1)a_{n}:=\left\|x_{n}-u_{n}\right\|^{2},\lambda_{n}:=(1-k)\alpha_{n}\in(0,1). Then Lemma 3 implies that limnan=limnxnun2=0\lim_{n\rightarrow\infty}a_{n}=\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|^{2}=0, i.e.,

    limnxnun=0\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|=0 (56)

    Suppose that modified Mann iteration converges, i.e., limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*}. The inequality

    0xxnunx+xnun0\leqslant\left\|x^{*}-x_{n}\right\|\leqslant\left\|u_{n}-x^{*}\right\|+\left\|x_{n}-u_{n}\right\| (57)

    and (56) imply that limnxn=x\lim_{n\rightarrow\infty}x_{n}=x^{*}. Analogously limnxn=x\lim_{n\rightarrow\infty}x_{n}=x^{*} implies limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*}.

    4. The equivalence between T-stability

    Let F(T):={xX:x=T(x)},xF(T)F(T):=\left\{x^{*}\in X:x^{*}=T\left(x^{*}\right)\right\},x^{*}\in F(T). Consider

    εn:=xn+1(1αn)xnαnTnyn,\displaystyle\varepsilon_{n}:=\left\|x_{n+1}-\left(1-\alpha_{n}\right)x_{n}-\alpha_{n}T^{n}y_{n}\right\|, (58)
    δn:=un+1(1αn)unαnTnun.\displaystyle\delta_{n}:=\left\|u_{n+1}-\left(1-\alpha_{n}\right)u_{n}-\alpha_{n}T^{n}u_{n}\right\|. (59)

    Definition 9. If limnεn=0\lim_{n\rightarrow\infty}\varepsilon_{n}=0 (respectively limnδn=0\lim_{n\rightarrow\infty}\delta_{n}=0 ) implies that limnxn=x\lim_{n\rightarrow\infty}x_{n}=x^{*} (respectively limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*} ), then (6) (respectively (5)) is said to be T-stable.

    It is obvious if we take the limit in (6), respectively (5).
    Remark 10. Let XX be a normed space with BB a nonempty, convex, closed, and bounded subset. Let T:BBT:B\rightarrow B be a map. If the modified Mann (respectively Ishikawa) iteration converges, then limnδn=0\lim_{n\rightarrow\infty}\delta_{n}=0 (respectively limnεn=0\lim_{n\rightarrow\infty}\varepsilon_{n}=0 ). The remark holds without the boundeness assumption of BB, when the map TT is uniformly Lipschitzian.

    Proof. Let limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*}. Then from (59) we have

    0\displaystyle 0 δnun+1un+αnunTnun\displaystyle\leqslant\delta_{n}\leqslant\left\|u_{n+1}-u_{n}\right\|+\alpha_{n}\left\|u_{n}-T^{n}u_{n}\right\|
    un+1x+unx+αnunx+αnxTnun\displaystyle\leqslant\left\|u_{n+1}-x^{*}\right\|+\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left\|x^{*}-T^{n}u_{n}\right\|
    0 as n.\displaystyle\rightarrow 0\quad\text{ as }n\rightarrow\infty.

    We are able now to prove the following result:
    Theorem 11. Let BB be a closed convex bounded subset of an arbitrary Banach space XX and {xn}\left\{x_{n}\right\} and {un}\left\{u_{n}\right\} defined by (6) and (5) with {αn},{βn}(0,1)\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\subset(0,1) satisfying (7). Let TT be an asymptotically nonexpansive in the intermediate sense and successively strongly pseudocontractive self-map of BB. Let {cn}\left\{c_{n}\right\} be as in (9) satisfying limncn=0\lim_{n\rightarrow\infty}c_{n}=0. If u0=x0Bu_{0}=x_{0}\in B, then the following two assertions are equivalent:
    (i) Modified Ishikawa iteration (6) is TT-stable.
    (ii) Modified Mann iteration (5) is TT-stable.

    Proof. From Definition 9 we know that the equivalence (i) \Leftrightarrow (ii) means that limnεn=0limnδn=0\lim_{n\rightarrow\infty}\varepsilon_{n}=0\Leftrightarrow\lim_{n\rightarrow\infty}\delta_{n}=0. The implication limnεn=0limnδn=0\lim_{n\rightarrow\infty}\varepsilon_{n}=0\Rightarrow\lim_{n\rightarrow\infty}\delta_{n}=0 is obvious by setting βn=0\beta_{n}=0 in (6). Conversely, suppose that (5) is T-stable. Using Definition 9, again, we get

    limnδn=0limnun=x.\lim_{n\rightarrow\infty}\delta_{n}=0\Rightarrow\lim_{n\rightarrow\infty}u_{n}=x^{*}. (60)

    Theorem 4 assures that limnun=xlimnxn=x\lim_{n\rightarrow\infty}u_{n}=x^{*}\Rightarrow\lim_{n\rightarrow\infty}x_{n}=x^{*}. Using Remark 10 we have limnεn=0\lim_{n\rightarrow\infty}\varepsilon_{n}=0. Thus we get limnδn=0limnεn=0\lim_{n\rightarrow\infty}\delta_{n}=0\Rightarrow\lim_{n\rightarrow\infty}\varepsilon_{n}=0.

    Similarly one can prove the following result.
    Theorem 12. Let BB be a closed convex (without being necessarily bounded) subset of an arbitrary Banach space XX and {xn},{un}\left\{x_{n}\right\},\left\{u_{n}\right\} defined by (6) and (5) with {αn},{βn}(0,1)\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\subset(0,1) satisfying (7). Let TT be a successively strongly pseudocontractive and uniformly Lipschitzian with L1L\geqslant 1 self-map of BB. If u0=x0Bu_{0}=x_{0}\in B, then the following two assertions are equivalent:
    (i) Modified Ishikawa iteration (6) is TT-stable.
    (ii) Modified Mann iteration (5) is TT-stable.

    Also the following results holds using Theorem 8:
    Theorem 13. Let XX be a real Banach space with dual uniformly convex and BB a nonempty, closed, convex, bounded subset of XX. Let T:BBT:B\rightarrow B be a successively strongly pseudocontractive operator and {xn},{un}\left\{x_{n}\right\},\left\{u_{n}\right\} defined by (6) and (5) with {αn},{βn}(0,1)\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\subset(0,1) satisfying (7). Then for u0=x0Bu_{0}=x_{0}\in B the following assertions are equivalent:
    (i) Modified Ishikawa iteration (6) is TT-stable.
    (ii) Modified Mann iteration (5) is TT-stable.

    Our theorems are also true for set-valued mappings, if such maps admit appropriate single-valued selections.

    References

    [1] Z. Liu, J.K. Kim, K.H. Kim, Convergence theorems and stability problems of the modified Ishikawa iterative sequences for strictly successively hemicontractive mappings, Bull. Korean Math. Soc. 39 (2002) 455-469.
    [2] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
    [3] W.R. Mann, Mean value in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
    [4] C. Morales, J.S. Jung, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000) 3411-3419.
    [5] B.E. Rhoades, Ş.M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, Internat. J. Math. Math. Sci. 2003 (2003) 451-459.
    [6] B.E. Rhoades, Ş.M. Şoltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators, Internat. J. Math. Math. Sci. 2003 (2003) 2645-2651.
    [7] X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 113 (1991) 727-731.

    2004

    Related Posts