The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically pseudocontractive map

Abstract

The convergence of Mann iteration is equivalent to the convergence of Ishikawa iterations, when T is an asymptotically nonexpansive and asymptotically pseudocontractive map.

    Authors

    B.E. Rhoades

    S.M. Soltuz
    (Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

    Keywords

    Mann type iteration; Ishikawa type iteration; Asymptotically nonexpansive; Asymptotically pseudocontractive.

    References

    See the expanding block below.

    Paper coordinates

    B. E. Rhoades and Ştefan M. Şoltuz, The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically pseudocontractive map, J. Math. Anal. Appl. 283 (2003), 681-688
    doi: 10.1016/S0022-247X(03)00338-X

    PDF

    About this paper

    Publisher Name

    Elsevier

    Print ISSN

    0022-247X

    Online ISSN
    Google Scholar Profile

    google scholar

    soon

    Paper (preprint) in HTML form

    The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically pseudocontractive map

    B.E. Rhoades a and Ştefan M. Şoltuz b,∗,1
    a Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
    b "T. Popoviciu" Institute of Numerical Analysis, PO Box 68-1, 3400 Cluj-Napoca, Romania
    Abstract

    The convergence of Mann iteration is equivalent to the convergence of Ishikawa iterations, when TT is an asymptotically nonexpansive and asymptotically pseudocontractive map.
    2003 Elsevier Inc. All rights reserved.

    Received 10 March 2003
    Submitted by L. Debnath

    Keywords: Mann type iteration; Ishikawa type iteration; Asymptotically nonexpansive; Asymptotically pseudocontractive

    1. Introduction

    Let XX be a real Banach space and let BB be a nonempty, convex subset. Let u1,x1Bu_{1},x_{1}\in B be two arbitrary fixed points. Let T:BBT:B\rightarrow B be a map.

    Definition 1. The map TT is said to be asymptotically nonexpansive if there exists a sequence (kn)n,kn[1,),n,limnkn=1\left(k_{n}\right)_{n},k_{n}\in[1,\infty),\forall n\in\mathbb{N},\lim_{n\rightarrow\infty}k_{n}=1, such that

    TnxTnyknxy,x,yB,n.\left\|T^{n}x-T^{n}y\right\|\leqslant k_{n}\|x-y\|,\quad\forall x,y\in B,\forall n\in\mathbb{N}. (1)

    The following remark will be useful.

    00footnotetext: Corresponding author. E-mail addresses: rhoades@indiana.edu (B.E. Rhoades), soltuzul@yahoo.com (Ş.M. Şoltuz).
    1 Mailing address: Kurt Schumacher Str. 48, Ap. 38, 67663 Kaiserslautern, Germany.

    Remark 2. An asymptotically nonexpansive map is uniformly Lipschitzian for some L1L\geqslant 1, i.e., (L1:TnxTnyLxy,x,yB,n\left(\exists L\geqslant 1:\left\|T^{n}x-T^{n}y\right\|\leqslant L\|x-y\|,\forall x,y\in B,\forall n\in\mathbb{N}\right. ).

    Proof. Let L:=supnknL:=\sup_{n\in\mathbb{N}}k_{n}. Because limnkn=1\lim_{n\rightarrow\infty}k_{n}=1 and kn1,nk_{n}\geqslant 1,\forall n\in\mathbb{N}, one can deduce that L[1,)L\in[1,\infty). From Definition 1,

    TnxTnyknxyLxy,x,yB,n.\left\|T^{n}x-T^{n}y\right\|\leqslant k_{n}\|x-y\|\leqslant L\|x-y\|,\quad\forall x,y\in B,\forall n\in\mathbb{N}.

    In [5] the following class of maps was introduced.
    Definition 3. A map TT is said to be asymptotically pseudocontractive if there exists a sequence (kn)n,kn[1,),n,limnkn=1\left(k_{n}\right)_{n},k_{n}\in[1,\infty),\forall n\in\mathbb{N},\lim_{n\rightarrow\infty}k_{n}=1, and there exists j(xy)J(xy)j(x-y)\in J(x-y) such that

    TnxTny,j(xy)knxy2,x,yB,n.\left\langle T^{n}x-T^{n}y,j(x-y)\right\rangle\leqslant k_{n}\|x-y\|^{2},\quad\forall x,y\in B,\forall n\in\mathbb{N}. (2)

    When n=1n=1 in (2) we get the usual definition of a strongly pseudocontractive map. The following remark is Remark 1 from [5].

    Remark 4 [5]. An asymptotically nonexpansive map is asymptotically pseudocontractive. The converse is not true.

    We consider the following iteration (see [3]):

    un+1=(1αn)un+αnTnun.u_{n+1}=\left(1-\alpha_{n}\right)u_{n}+\alpha_{n}T^{n}u_{n}. (3)

    The sequence (αn)n(0,1)\left(\alpha_{n}\right)_{n}\subset(0,1) is convergent, such that limnαn=0\lim_{n\rightarrow\infty}\alpha_{n}=0 and n=1αn=\sum_{n=1}^{\infty}\alpha_{n}=\infty. This iteration is known as Mann type iteration. We consider the following iteration, known as Ishikawa type iteration (see [1]):

    xn+1=(1αn)xn+αnTnyn\displaystyle x_{n+1}=\left(1-\alpha_{n}\right)x_{n}+\alpha_{n}T^{n}y_{n}
    yn=(1βn)xn+βnTnxn,n=1,2,.\displaystyle y_{n}=\left(1-\beta_{n}\right)x_{n}+\beta_{n}T^{n}x_{n},\quad n=1,2,\ldots. (4)

    The sequences (αn)n,(βn)n(0,1)\left(\alpha_{n}\right)_{n},\left(\beta_{n}\right)_{n}\subset(0,1) are such that

    limnαn=0,limnβn=0,n=1αn=.\lim_{n\rightarrow\infty}\alpha_{n}=0,\quad\lim_{n\rightarrow\infty}\beta_{n}=0,\quad\sum_{n=1}^{\infty}\alpha_{n}=\infty. (5)

    The sequence (αn)n\left(\alpha_{n}\right)_{n} remains the same in both iterations. For βn=0,n\beta_{n}=0,\forall n\in\mathbb{N}, from (5) we get (4). We denote by F(T)={xB:F(x)=x}F(T)=\left\{x^{*}\in B:F\left(x^{*}\right)=x^{*}\right\}. Replacing TnT^{n} by TT in (3) and (5) gives the Mann and Ishikawa iteration, respectively.

    The aim of this paper is to prove an equivalence between the convergences of the above two iterations when TT is an asymptotically nonexpansive respective asymptotically pseudocontractive map.

    The following lemma appears in [2].
    Lemma 5 [2]. Let XX be a Banach space and x,yXx,y\in X. Then xx+ry\|x\|\leqslant\|x+ry\| for all r>0r>0 if and only if there exists j(x)J(x)j(x)\in J(x) such that y,j(x)0\langle y,j(x)\rangle\geqslant 0.

    Using this lemma we are able to prove the following result.
    Lemma 6. Let BB be a nonempty subset of a Banach space XX and let T:BBT:B\rightarrow B be a map. Then the following conditions are equivalent:
    (i) TT is asymptotically pseudocontractive map;
    (ii) There exists kn[1,)k_{n}\in[1,\infty) such that

    xyxy+r[(knITn)x(knITn)y],x,yB,r>0.\|x-y\|\leqslant\left\|x-y+r\left[\left(k_{n}I-T^{n}\right)x-\left(k_{n}I-T^{n}\right)y\right]\right\|,\quad\forall x,y\in B,r>0. (6)

    Proof. Lemma 5 assures that relation (6) is (knITn)x(knITn)y,j(xy)0\left\langle\left(k_{n}I-T^{n}\right)x-\left(k_{n}I-T^{n}\right)y,j(x-y)\right\rangle\geqslant 0, nn0\forall n\geqslant n_{0}, which is equivalent with TnxTny,j(xy)knxy,j(xy)=knxy2,x,yB\left\langle T^{n}x-T^{n}y,j(x-y)\right\rangle\leqslant k_{n}\langle x-y,j(x-y)\rangle=k_{n}\|x-y\|^{2},\forall x,y\in B, that is (2).

    The following lemma is Lemma 4 from [6].
    Lemma 7 [6]. Let (an)n\left(a_{n}\right)_{n} be a nonnegative sequence which satisfies the following inequality:

    an+1(1λn)an+σn,a_{n+1}\leqslant\left(1-\lambda_{n}\right)a_{n}+\sigma_{n}, (7)

    where λn(0,1),n,n=1λn=\lambda_{n}\in(0,1),\forall n\in\mathbb{N},\sum_{n=1}^{\infty}\lambda_{n}=\infty, and σn=o(λn)\sigma_{n}=o\left(\lambda_{n}\right). Then limnan=0\lim_{n\rightarrow\infty}a_{n}=0.

    2. Main results

    We are now able to give the following result.
    Theorem 8. Let BB be a closed convex subset of an arbitrary Banach space XX and (xn)n\left(x_{n}\right)_{n} and (un)n\left(u_{n}\right)_{n} defined by (3) and (4) with (αn)n\left(\alpha_{n}\right)_{n} and (βn)n\left(\beta_{n}\right)_{n} satisfying (5). Let TT be an asymptotically pseudocontractive and Lipschitzian with L1L\geqslant 1 self-map of BB. Let xx^{*} be the fixed point of TT. If u0=x0Bu_{0}=x_{0}\in B, then the following two assertions are equivalent:
    (i) Mann type iteration (3) converges to xF(T)x^{*}\in F(T);
    (ii) Ishikawa type iteration (4) converges to xF(T)x^{*}\in F(T).

    Proof. If the Ishikawa iteration (4) converges then setting βn=0,n\beta_{n}=0,\forall n\in\mathbb{N}, the convergence of Mann iteration (3). Conversely, we shall prove that (i) \Rightarrow (ii). The proof is similar to the proof of Theorem 4 from [4]. We have

    xn=\displaystyle x_{n}= xn+1+αnxnαnTnyn\displaystyle x_{n+1}+\alpha_{n}x_{n}-\alpha_{n}T^{n}y_{n}
    =\displaystyle= (1+αn2)xn+1+αn(αnknITn)xn+1\displaystyle\left(1+\alpha_{n}^{2}\right)x_{n+1}+\alpha_{n}\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}
    (1+kn)αn2xn+1+αnxn+αn(Tnxn+1Tnyn)\displaystyle-\left(1+k_{n}\right)\alpha_{n}^{2}x_{n+1}+\alpha_{n}x_{n}+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}y_{n}\right)
    =\displaystyle= (1+αn2)xn+1+αn(αnknITn)xn+1\displaystyle\left(1+\alpha_{n}^{2}\right)x_{n+1}+\alpha_{n}\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}
    (1+kn)αn2[xn+αn(Tnynxn)]+αnxn+αn(Tnxn+1Tnyn)\displaystyle-\left(1+k_{n}\right)\alpha_{n}^{2}\left[x_{n}+\alpha_{n}\left(T^{n}y_{n}-x_{n}\right)\right]+\alpha_{n}x_{n}+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}y_{n}\right)
    =\displaystyle= (1+αn2)xn+1+αn(αnknITn)xn+1(1+kn)αn2xn\displaystyle\left(1+\alpha_{n}^{2}\right)x_{n+1}+\alpha_{n}\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}-\left(1+k_{n}\right)\alpha_{n}^{2}x_{n}
    +(1+kn)αn3(xnTnyn)+αnxn+αn(Tnxn+1Tnyn)\displaystyle+\left(1+k_{n}\right)\alpha_{n}^{3}\left(x_{n}-T^{n}y_{n}\right)+\alpha_{n}x_{n}+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}y_{n}\right)
    =\displaystyle= (1+αn2)xn+1+αn(αnknITn)xn+1+[1(1+kn)αn]αnxn\displaystyle\left(1+\alpha_{n}^{2}\right)x_{n+1}+\alpha_{n}\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}+\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}x_{n}
    +(1+kn)αn3(xnTnyn)+αn(Tnxn+1Tnyn)\displaystyle+\left(1+k_{n}\right)\alpha_{n}^{3}\left(x_{n}-T^{n}y_{n}\right)+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}y_{n}\right) (8)

    Also

    un=\displaystyle u_{n}= un+1+αnunαnTnun\displaystyle u_{n+1}+\alpha_{n}u_{n}-\alpha_{n}T^{n}u_{n}
    =\displaystyle= (1+αn2)un+1+αn(αnknITn)un+1\displaystyle\left(1+\alpha_{n}^{2}\right)u_{n+1}+\alpha_{n}\left(\alpha_{n}k_{n}I-T^{n}\right)u_{n+1}
    (1+kn)αn2un+1+αnun+αn(Tnun+1Tnun)\displaystyle-\left(1+k_{n}\right)\alpha_{n}^{2}u_{n+1}+\alpha_{n}u_{n}+\alpha_{n}\left(T^{n}u_{n+1}-T^{n}u_{n}\right)
    =\displaystyle= (1+αn2)un+1+αn(αnknITn)un+1\displaystyle\left(1+\alpha_{n}^{2}\right)u_{n+1}+\alpha_{n}\left(\alpha_{n}k_{n}I-T^{n}\right)u_{n+1}
    (1+kn)αn2[un+αn(Tnunun)]+αnun+αn(Tnun+1Tnun)\displaystyle-\left(1+k_{n}\right)\alpha_{n}^{2}\left[u_{n}+\alpha_{n}\left(T^{n}u_{n}-u_{n}\right)\right]+\alpha_{n}u_{n}+\alpha_{n}\left(T^{n}u_{n+1}-T^{n}u_{n}\right)
    =\displaystyle= (1+αn2)un+1+αn(αnknITn)un+1+(1+kn)αn3(unTnun)\displaystyle\left(1+\alpha_{n}^{2}\right)u_{n+1}+\alpha_{n}\left(\alpha_{n}k_{n}I-T^{n}\right)u_{n+1}+\left(1+k_{n}\right)\alpha_{n}^{3}\left(u_{n}-T^{n}u_{n}\right)
    +[1(1+kn)αn]αnun+αn(Tnun+1Tnun)\displaystyle+\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}u_{n}+\alpha_{n}\left(T^{n}u_{n+1}-T^{n}u_{n}\right) (9)

    From (8) and (9) we get

    xnun=\displaystyle x_{n}-u_{n}= (1+αn2)(xn+1un+1)+αn((αnknITn)xn+1(αnknITn)un+1)\displaystyle\left(1+\alpha_{n}^{2}\right)\left(x_{n+1}-u_{n+1}\right)+\alpha_{n}\left(\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}-\left(\alpha_{n}k_{n}I-T^{n}\right)u_{n+1}\right)
    +[1(1+kn)αn]αn(xnun)+(1+kn)αn3(xnunTnyn+Tnun)\displaystyle+\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}\left(x_{n}-u_{n}\right)+\left(1+k_{n}\right)\alpha_{n}^{3}\left(x_{n}-u_{n}-T^{n}y_{n}+T^{n}u_{n}\right)
    +αn(Tnxn+1Tnun+1Tnyn+Tnun)\displaystyle+\alpha_{n}\left(T^{n}x_{n+1}-T^{n}u_{n+1}-T^{n}y_{n}+T^{n}u_{n}\right) (10)

    The norm of the sum of the first two terms on the right-hand side of (10) is equal to

    (1+αn2)(xn+1un+1)+αn1+αn2((αnknITn)xn+1(αnknITn)un+1).\left(1+\alpha_{n}^{2}\right)\left\|\left(x_{n+1}-u_{n+1}\right)+\frac{\alpha_{n}}{1+\alpha_{n}^{2}}\left(\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}-\left(\alpha_{n}k_{n}I-T^{n}\right)u_{n+1}\right)\right\|.

    Using (6) with x:=xn+1,y:=un+1x:=x_{n+1},y:=u_{n+1}, we obtain

    (1+αn2)(xn+1un+1)+αn((αnknITn)xn+1(αnknITn)un+1)\displaystyle\left\|\left(1+\alpha_{n}^{2}\right)\left(x_{n+1}-u_{n+1}\right)+\alpha_{n}\left(\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}-\left(\alpha_{n}k_{n}I-T^{n}\right)u_{n+1}\right)\right\|
    (1+αn2)xn+1un+1\displaystyle\quad\geqslant\left(1+\alpha_{n}^{2}\right)\left\|x_{n+1}-u_{n+1}\right\| (11)

    From (10) it follows that

    xnun\displaystyle\left\|x_{n}-u_{n}\right\|\geqslant (1+αn2)(xn+1un+1)\displaystyle\|\left(1+\alpha_{n}^{2}\right)\left(x_{n+1}-u_{n+1}\right)
    +αn((αnknITn)xn+1(αnknITn)un+1)\displaystyle+\alpha_{n}\left(\left(\alpha_{n}k_{n}I-T^{n}\right)x_{n+1}-\left(\alpha_{n}k_{n}I-T^{n}\right)u_{n+1}\right)\|
    +[1(1+kn)αn]αnxnun\displaystyle+\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}\left\|x_{n}-u_{n}\right\|
    (1+kn)αn3xnunTnyn+Tnun\displaystyle-\left(1+k_{n}\right)\alpha_{n}^{3}\left\|x_{n}-u_{n}-T^{n}y_{n}+T^{n}u_{n}\right\|
    αnTnxn+1Tnun+1Tnyn+Tnun\displaystyle-\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}u_{n+1}-T^{n}y_{n}+T^{n}u_{n}\right\|
    \displaystyle\geqslant (1+αn)xn+1un+1+[1(1+kn)αn]αnxnun\displaystyle\left(1+\alpha_{n}\right)\left\|x_{n+1}-u_{n+1}\right\|+\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}\left\|x_{n}-u_{n}\right\|
    (1+kn)αn3xnunTnyn+Tnun\displaystyle-\left(1+k_{n}\right)\alpha_{n}^{3}\left\|x_{n}-u_{n}-T^{n}y_{n}+T^{n}u_{n}\right\|
    αnTnxn+1Tnun+1Tnyn+Tnun\displaystyle-\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}u_{n+1}-T^{n}y_{n}+T^{n}u_{n}\right\|

    Thus, we have

    (1+\displaystyle(1+ αn2)xn+1un+1\displaystyle\left.\alpha_{n}^{2}\right)\left\|x_{n+1}-u_{n+1}\right\|
    \displaystyle\leqslant {1[1(1+kn)αn]αn}xnun+(1+kn)αn3xnunTnyn+Tnun\displaystyle\left\{1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}\right\}\left\|x_{n}-u_{n}\right\|+\left(1+k_{n}\right)\alpha_{n}^{3}\left\|x_{n}-u_{n}-T^{n}y_{n}+T^{n}u_{n}\right\|
    +αnTnxn+1Tnun+1Tnyn+Tnun\displaystyle+\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}u_{n+1}-T^{n}y_{n}+T^{n}u_{n}\right\|
    \displaystyle\leqslant {1[1(1+kn)αn]αn}xnun+(1+kn)αn3unTnun\displaystyle\left\{1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}\right\}\left\|x_{n}-u_{n}\right\|+\left(1+k_{n}\right)\alpha_{n}^{3}\left\|u_{n}-T^{n}u_{n}\right\|
    +(1+kn)αn3xnTnyn+αnTnxn+1Tnyn+αnTnun+1Tnun.\displaystyle+\left(1+k_{n}\right)\alpha_{n}^{3}\left\|x_{n}-T^{n}y_{n}\right\|+\alpha_{n}\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\|+\alpha_{n}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|. (12)

    But

    xnTnyn\displaystyle\left\|x_{n}-T^{n}y_{n}\right\| xnun+unTnun+TnunTnyn\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+\left\|T^{n}u_{n}-T^{n}y_{n}\right\|
    xnun+unTnun+Lunyn\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+L\left\|u_{n}-y_{n}\right\| (13)

    and

    unyn\displaystyle\left\|u_{n}-y_{n}\right\| =(1βn)(unxn)+βn(unTnxn)\displaystyle=\left\|\left(1-\beta_{n}\right)\left(u_{n}-x_{n}\right)+\beta_{n}\left(u_{n}-T^{n}x_{n}\right)\right\|
    (1βn)unxn+βnunTnxn\displaystyle\leqslant\left(1-\beta_{n}\right)\left\|u_{n}-x_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}x_{n}\right\|
    (1βn)unxn+βn[TnunTnxn+unTnun]\displaystyle\leqslant\left(1-\beta_{n}\right)\left\|u_{n}-x_{n}\right\|+\beta_{n}\left[\left\|T^{n}u_{n}-T^{n}x_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|\right]
    (1βn)unxn+βnLunxn+βnunTnun\displaystyle\leqslant\left(1-\beta_{n}\right)\left\|u_{n}-x_{n}\right\|+\beta_{n}L\left\|u_{n}-x_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|
    =(1βn+βnL)unxn+βnunTnun\displaystyle=\left(1-\beta_{n}+\beta_{n}L\right)\left\|u_{n}-x_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|
    Lunxn+βnunTnun\displaystyle\leqslant L\left\|u_{n}-x_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\| (14)

    because 1L1βn+βnLL1\leqslant L\Rightarrow 1-\beta_{n}+\beta_{n}L\leqslant L.
    Substituting (14) into (13) we obtain

    xnTnyn\displaystyle\left\|x_{n}-T^{n}y_{n}\right\| unxn+unTnun+L(Lunxn+βnunTnun)\displaystyle\leqslant\left\|u_{n}-x_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+L\left(L\left\|u_{n}-x_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|\right)
    (1+L2)unxn+(1+Lβn)unTnun\displaystyle\leqslant\left(1+L^{2}\right)\left\|u_{n}-x_{n}\right\|+\left(1+L\beta_{n}\right)\left\|u_{n}-T^{n}u_{n}\right\| (15)
    Tnxn+1Tnyn\displaystyle\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\| Lxn+1yn=L(1αn)xn+αnTnynyn\displaystyle\leqslant L\left\|x_{n+1}-y_{n}\right\|=L\left\|\left(1-\alpha_{n}\right)x_{n}+\alpha_{n}T^{n}y_{n}-y_{n}\right\|
    L[(1αn)xnyn+αnTnynyn]\displaystyle\leqslant L\left[\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}\left\|T^{n}y_{n}-y_{n}\right\|\right] (16)

    Using (14),

    Tnynyn\displaystyle\left\|T^{n}y_{n}-y_{n}\right\| TnynTnun+Tnunun+ynun\displaystyle\leqslant\left\|T^{n}y_{n}-T^{n}u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|+\left\|y_{n}-u_{n}\right\|
    Lynun+Tnunun+ynun\displaystyle\leqslant L\left\|y_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|+\left\|y_{n}-u_{n}\right\|
    (1+L)ynun+Tnunun\displaystyle\leqslant(1+L)\left\|y_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|
    (1+L)[Lxnun+βnTnunun]+Tnunun\displaystyle\leqslant(1+L)\left[L\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|T^{n}u_{n}-u_{n}\right\|\right]+\left\|T^{n}u_{n}-u_{n}\right\|
    =(1+L)Lxnun+[(1+L)βn+1]Tnunun\displaystyle=(1+L)L\left\|x_{n}-u_{n}\right\|+\left[(1+L)\beta_{n}+1\right]\left\|T^{n}u_{n}-u_{n}\right\| (17)

    From (4) we have

    xnyn\displaystyle\left\|x_{n}-y_{n}\right\| =xn(1βn)xnβnTnxn=βnxnTnxn\displaystyle=\left\|x_{n}-\left(1-\beta_{n}\right)x_{n}-\beta_{n}T^{n}x_{n}\right\|=\beta_{n}\left\|x_{n}-T^{n}x_{n}\right\|
    βn[xnun+Tnunun+TnunTnxn]\displaystyle\leqslant\beta_{n}\left[\left\|x_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-T^{n}x_{n}\right\|\right]
    βn[(1+L)xnun+Tnunun].\displaystyle\leqslant\beta_{n}\left[(1+L)\left\|x_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|\right]. (18)

    Substituting (18) and (17) into (16), we obtain

    Tnxn+1Tnyn\displaystyle\left\|T^{n}x_{n+1}-T^{n}y_{n}\right\|
    L[(1αn)xnyn+αnTnynyn]\displaystyle\leqslant L\left[\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}\left\|T^{n}y_{n}-y_{n}\right\|\right]
    =L{(1αn)βn[(1+L)xnun+Tnunun]\displaystyle=L\left\{\left(1-\alpha_{n}\right)\beta_{n}\left[(1+L)\left\|x_{n}-u_{n}\right\|+\left\|T^{n}u_{n}-u_{n}\right\|\right]\right.
    +αn(1+L)[Lxnun+βnunTnun]+αnunTnun}\displaystyle\left.+\alpha_{n}(1+L)\left[L\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|\right]+\alpha_{n}\left\|u_{n}-T^{n}u_{n}\right\|\right\}
    ={L(1αn)βn(1+L)+αn(1+L)L2}xnun\displaystyle=\left\{L\left(1-\alpha_{n}\right)\beta_{n}(1+L)+\alpha_{n}(1+L)L^{2}\right\}\left\|x_{n}-u_{n}\right\|
    +{βnL(1αn)+αnL[(1+L)βn+1]}Tnunun.\displaystyle+\left\{\beta_{n}L\left(1-\alpha_{n}\right)+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right\}\left\|T^{n}u_{n}-u_{n}\right\|. (19)

    Using (14) we have

    xnTnyn\displaystyle\left\|x_{n}-T^{n}y_{n}\right\| xnun+unTnun+TnynTnun\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+\left\|T^{n}y_{n}-T^{n}u_{n}\right\|
    xnun+unTnun+Lynun\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+L\left\|y_{n}-u_{n}\right\|
    xnun+unTnun+L[Lxnun+βnunTnun]\displaystyle\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T^{n}u_{n}\right\|+L\left[L\left\|x_{n}-u_{n}\right\|+\beta_{n}\left\|u_{n}-T^{n}u_{n}\right\|\right]
    =(1+L2)xnun+(1+βnL)unTnun\displaystyle=\left(1+L^{2}\right)\left\|x_{n}-u_{n}\right\|+\left(1+\beta_{n}L\right)\left\|u_{n}-T^{n}u_{n}\right\| (20)

    Substituting (19) and (20) into (12), and using the facts that (1+αn2)11\left(1+\alpha_{n}^{2}\right)^{-1}\leqslant 1, we get

    (1+αn2)xn+1un+1\displaystyle\left(1+\alpha_{n}^{2}\right)\left\|x_{n+1}-u_{n+1}\right\|
    {1[1(1+kn)αn]αn}xnun\displaystyle\leqslant\leqslant\left\{1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}\right\}\left\|x_{n}-u_{n}\right\|
    +(1+kn)αn3{(1+L2)xnun+(1+βnL)unTnun}\displaystyle\quad+\left(1+k_{n}\right)\alpha_{n}^{3}\left\{\left(1+L^{2}\right)\left\|x_{n}-u_{n}\right\|+\left(1+\beta_{n}L\right)\left\|u_{n}-T^{n}u_{n}\right\|\right\}
    +(1+kn)αn3unTnun+αnTnun+1Tnun\displaystyle\quad+\left(1+k_{n}\right)\alpha_{n}^{3}\left\|u_{n}-T^{n}u_{n}\right\|+\alpha_{n}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|
    +αn{L(1αn)βn(1+L)+αn(1+L)L2}xnun\displaystyle\quad+\alpha_{n}\left\{L\left(1-\alpha_{n}\right)\beta_{n}(1+L)+\alpha_{n}(1+L)L^{2}\right\}\left\|x_{n}-u_{n}\right\|
    +αn{βnL(1αn)+αnL[(1+L)βn+1]}unTnun\displaystyle\quad+\alpha_{n}\left\{\beta_{n}L\left(1-\alpha_{n}\right)+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right\}\left\|u_{n}-T^{n}u_{n}\right\| (21)
    xn+1un+1{1[1(1+kn)αn]αn+(1+kn)αn3(1+L2)\displaystyle\left\|x_{n+1}-u_{n+1}\right\|\leqslant\left\{1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}+\left(1+k_{n}\right)\alpha_{n}^{3}\left(1+L^{2}\right)\right.
    +αn{L(1αn)βn(1+L)+αn(1+L)L2}}xnun\displaystyle\left.\quad+\alpha_{n}\left\{L\left(1-\alpha_{n}\right)\beta_{n}(1+L)+\alpha_{n}(1+L)L^{2}\right\}\right\}\left\|x_{n}-u_{n}\right\|
    +{(1+kn)αn3(2+βnL)\displaystyle\quad+\left\{\left(1+k_{n}\right)\alpha_{n}^{3}\left(2+\beta_{n}L\right)\right.
    +αn{βnL(1αn)+αnL[(1+L)βn+1]}}unTnun\displaystyle\left.\quad+\alpha_{n}\left\{\beta_{n}L\left(1-\alpha_{n}\right)+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right\}\right\}\left\|u_{n}-T^{n}u_{n}\right\|
    +αnTnun+1Tnun\displaystyle\quad+\alpha_{n}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\| (22)

    We may write

    an+1γnan+σn,a_{n+1}\leqslant\gamma_{n}a_{n}+\sigma_{n}, (23)

    where

    an:=\displaystyle a_{n}:= xnun\displaystyle\left\|x_{n}-u_{n}\right\|
    γn:=\displaystyle\gamma_{n}:= {1[1(1+kn)αn]αn+(1+kn)αn3(1+L2)\displaystyle\left\{1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}+\left(1+k_{n}\right)\alpha_{n}^{3}\left(1+L^{2}\right)\right.
    +αn{L(1αn)βn(1+L)+αn(1+L)L2}},\displaystyle\left.+\alpha_{n}\left\{L\left(1-\alpha_{n}\right)\beta_{n}(1+L)+\alpha_{n}(1+L)L^{2}\right\}\right\},
    σn:=\displaystyle\sigma_{n}:= {(1+kn)αn3(2+βnL)\displaystyle\left\{\left(1+k_{n}\right)\alpha_{n}^{3}\left(2+\beta_{n}L\right)\right.
    +αn{βnL(1αn)+αnL[(1+L)βn+1]}}unTnun\displaystyle\left.+\alpha_{n}\left\{\beta_{n}L\left(1-\alpha_{n}\right)+\alpha_{n}L\left[(1+L)\beta_{n}+1\right]\right\}\right\}\left\|u_{n}-T^{n}u_{n}\right\|
    +αnTnun+1Tnun.\displaystyle+\alpha_{n}\left\|T^{n}u_{n+1}-T^{n}u_{n}\right\|. (24)

    We have

    L(1αn)βn(1+L)+αn(1+L)L2L(1+L)[(1αn)βn+αnL]\displaystyle L\left(1-\alpha_{n}\right)\beta_{n}(1+L)+\alpha_{n}(1+L)L^{2}\leqslant L(1+L)\left[\left(1-\alpha_{n}\right)\beta_{n}+\alpha_{n}L\right]
    L(1+L)[Lβn+αnL]=L2(1+L)(αn+βn)\displaystyle\quad\leqslant L(1+L)\left[L\beta_{n}+\alpha_{n}L\right]=L^{2}(1+L)\left(\alpha_{n}+\beta_{n}\right)

    The last inequality is true because L1L\geqslant 1. From (5) it follows that for all nn sufficiently large we have

    αn15sup((11+L2),(11+kn)),αn+βn15(1(1+L)L2);\alpha_{n}\leqslant\frac{1}{5}\sup\left(\left(\frac{1}{1+L^{2}}\right),\left(\frac{1}{1+k_{n}}\right)\right),\quad\alpha_{n}+\beta_{n}\leqslant\frac{1}{5}\left(\frac{1}{(1+L)L^{2}}\right);

    thus

    γn\displaystyle\gamma_{n} 1[1(1+kn)αn]αn+(1+kn)αn3(1+L2)+αnL2(1+L)(αn+βn)\displaystyle\leqslant 1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}+\left(1+k_{n}\right)\alpha_{n}^{3}\left(1+L^{2}\right)+\alpha_{n}L^{2}(1+L)\left(\alpha_{n}+\beta_{n}\right)
    1[1(1+kn)αn]αn+125αn+15αn\displaystyle\leqslant 1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}+\frac{1}{25}\alpha_{n}+\frac{1}{5}\alpha_{n}
    1[1(1+kn)αn]αn+25αn\displaystyle\leqslant 1-\left[1-\left(1+k_{n}\right)\alpha_{n}\right]\alpha_{n}+\frac{2}{5}\alpha_{n}
    145αn+25αn=125αn\displaystyle\leqslant 1-\frac{4}{5}\alpha_{n}+\frac{2}{5}\alpha_{n}=1-\frac{2}{5}\alpha_{n} (25)

    Thus γn1(2/5)αn\gamma_{n}\leqslant 1-(2/5)\alpha_{n} for all nn sufficiently large, from which we obtain relation (7),

    an+1(1λn)an+σna_{n+1}\leqslant\left(1-\lambda_{n}\right)a_{n}+\sigma_{n} (26)

    The fact that Mann iteration (3) converges, i.e., limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*} (more precisely using limnun+1un=0\lim_{n\rightarrow\infty}\left\|u_{n+1}-u_{n}\right\|=0 ), it is easy to see that σn=o(λn)\sigma_{n}=o\left(\lambda_{n}\right). All the assumptions from Lemma 2 are now satisfied, so limnan=0\lim_{n\rightarrow\infty}a_{n}=0. Hence,

    limnxnun=0\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|=0 (27)

    Since limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*}, (27) and the inequality

    xnxxnun+unx0(n)\left\|x_{n}-x^{*}\right\|\leqslant\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-x^{*}\right\|\rightarrow 0\quad(n\rightarrow\infty) (28)

    lead to limnxn=x\lim_{n\rightarrow\infty}x_{n}=x^{*}.
    Because an asymptotically nonexpansive map is asymptotically pseudocontractive and Lipschitzian (see Remarks 2 and 4), from Theorem 8 we obtain the following result.

    Corollary 9. Let BB be a closed convex subset of an arbitrary Banach space XX and (xn)n\left(x_{n}\right)_{n} and (un)n\left(u_{n}\right)_{n} defined by (3) and (4) with (αn)n\left(\alpha_{n}\right)_{n} and (βn)n\left(\beta_{n}\right)_{n} satisfying (5). Let TT be an asymptotically nonexpansive self-map of BB. Let xx^{*} be the fixed point of TT. If u0=x0Bu_{0}=x_{0}\in B, then the following two assertions are equivalent:
    (i) Mann type iteration (3) converges to xF(T)x^{*}\in F(T);
    (ii) Ishikawa type iteration (4) converges to xF(T)x^{*}\in F(T).

    The following result is from [4].

    Theorem 10 [4]. Let BB be a closed convex subset of an arbitrary Banach space XX and let TT be a Lipschitzian strongly pseudocontractive self-map of BB. Let x1=u1x_{1}=u_{1} and let (xn)n\left(x_{n}\right)_{n} and (un)n\left(u_{n}\right)_{n} be the Mann and Ishikawa iterations (that is (3) and (4) without " nn " at the exponent of TT ), with (αn)n,(βn)n\left(\alpha_{n}\right)_{n},\left(\beta_{n}\right)_{n} satisfying (5). Then the following are equivalent:
    (i) The Mann iteration converges strongly to xx^{*};
    (ii) The Ishikawa iteration converges strongly to xx^{*}.

    Theorem 8 is the analog of Theorem 10 for asymptotically pseudocontractive operators. Our theorems are also true for set-valued mappings, if such maps admit appropriate single-valued selections.

    References

    [1] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
    [2] T. Kato, Nonlinear semigroup and evolution equations, J. Math. Soc. Japan 19 (1967) 508-520.
    [3] W.R. Mann, Mean value in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
    [4] B.E. Rhoades, Ş.M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, Internat. J. Math. Math. Sci. 33 (2003) 451-459.
    [5] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991) 407-413.
    [6] X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 113 (1991) 727-731.

    2003

    Related Posts