The equivalence between the T-stabilities of Picard-Banach and Mann-Ishikawa iterations

Abstract

We show that T-stability of Picard-Banach and Mann-Ishikawa iterations are equivalent.

Authors

Stefan M. Soltuz
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

?

Paper coordinates

S.M. Şoltuz, The equivalence between the T-stabilities of Picard-Banach and Mann-Ishikawa iterations. Applied Math. E-Notes, 8 (2008), 109-114.

PDF

About this paper

Journal

Applied Mathematics E-Notes

Publisher Name
DOI
Print ISSN

1607-2510

Online ISSN
1687-0425

google scholar link

[1] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147–150.
[2] A. M. Harder and T. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33 (1988), 693–706.
[3] W. R. Mann, Mean value in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510.
[4] M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for φ-strong pseudocontractions and nonlinear equations of the φ-strongly accretive type, J.
Math. Anal. Appl., 227 (1998), 319–334.
[5] B. E. Rhoades and S.M. Soltuz, On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci., 2003(2003), 451–459.
[6] B. E. Rhoades and S. M. Soltuz, The equivalence between the T -stabilities of Mann and Ishikawa iterations, J. Math. Anal. Appl., 318(2006), 472-475.

Paper (preprint) in HTML form

2008-Soltuz-The-Equivalence-Between-The-T-Stabilities-Of

The Equivalence Between The T T TTT-Stabilities Of Picard-Banach And Mann-Ishikawa Iterations*

Ştefan M. Şoltuz ^(†){ }^{\dagger}

Received 5 February 2007

Abstract

We show that T T TTT-stability of Picard-Banach and Mann-Ishikawa iterations are equivalent.

1 Introduction

Let X X XXX be a normed space and T T TTT a selfmap of X X XXX. Let x 0 x 0 x_(0)x_{0}x0 be a point of X X XXX, and assume that x n + 1 = f ( T , x n ) x n + 1 = f T , x n x_(n+1)=f(T,x_(n))x_{n+1}=f\left(T, x_{n}\right)xn+1=f(T,xn) is an iteration procedure, involving T T TTT, which yields a sequence { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} of point from X X XXX. Suppose { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} converges to a fixed point x x x^(**)x^{*}x of T T TTT. Let { ξ n } ξ n {xi_(n)}\left\{\xi_{n}\right\}{ξn} be an arbitrary sequence in X X XXX, and set ϵ n = ξ n + 1 f ( T , ξ n ) ϵ n = ξ n + 1 f T , ξ n epsilon_(n)=||xi_(n+1)-f(T,xi_(n))||\epsilon_{n}=\left\|\xi_{n+1}-f\left(T, \xi_{n}\right)\right\|ϵn=ξn+1f(T,ξn) for all n N n N n inNn \in \mathbb{N}nN.
DEFINITION 1. [2] If ( ( lim n ϵ n = 0 ) ( lim n ξ n = p ) ) lim n ϵ n = 0 lim n ξ n = p ((lim_(n rarr oo)epsilon_(n)=0)=>(lim_(n rarr oo)xi_(n)=p))\left(\left(\lim _{n \rightarrow \infty} \epsilon_{n}=0\right) \Rightarrow\left(\lim _{n \rightarrow \infty} \xi_{n}=p\right)\right)((limnϵn=0)(limnξn=p)), then the iteration procedure x n + 1 = f ( T , x n ) x n + 1 = f T , x n x_(n+1)=f(T,x_(n))x_{n+1}=f\left(T, x_{n}\right)xn+1=f(T,xn) is said to be T T TTT-stable with respect to T T TTT.
REMARK 1. [2] In practice, such a sequence { ξ n } ξ n {xi_(n)}\left\{\xi_{n}\right\}{ξn} could arise in the following way. Let x 0 x 0 x_(0)x_{0}x0 be a point in X X XXX. Set x n + 1 = f ( T , x n ) x n + 1 = f T , x n x_(n+1)=f(T,x_(n))x_{n+1}=f\left(T, x_{n}\right)xn+1=f(T,xn). Let ξ 0 = x 0 ξ 0 = x 0 xi_(0)=x_(0)\xi_{0}=x_{0}ξ0=x0. Now x 1 = f ( T , x 0 ) x 1 = f T , x 0 x_(1)=f(T,x_(0))x_{1}=f\left(T, x_{0}\right)x1=f(T,x0). Because of rounding or discretization in the function T T TTT, a new value ξ 1 ξ 1 xi_(1)\xi_{1}ξ1 approximately equal to x 1 x 1 x_(1)x_{1}x1 might be obtained instead of the true value of f ( T , x 0 ) f T , x 0 f(T,x_(0))f\left(T, x_{0}\right)f(T,x0). Then to approximate ξ 2 ξ 2 xi_(2)\xi_{2}ξ2, the value f ( T , ξ 1 ) f T , ξ 1 f(T,xi_(1))f\left(T, \xi_{1}\right)f(T,ξ1) is computed to yields ξ 2 ξ 2 xi_(2)\xi_{2}ξ2, an approximation of f ( T , ξ 1 ) f T , ξ 1 f(T,xi_(1))f\left(T, \xi_{1}\right)f(T,ξ1). This computation is continued to obtain { ξ n } ξ n {xi_(n)}\left\{\xi_{n}\right\}{ξn} an approximate sequence of { x n } x n {x_(n)}\left\{x_{n}\right\}{xn}.
Consider e 0 = s 0 = t 0 = g 0 = h 0 e 0 = s 0 = t 0 = g 0 = h 0 e_(0)=s_(0)=t_(0)=g_(0)=h_(0)e_{0}=s_{0}=t_{0}=g_{0}=h_{0}e0=s0=t0=g0=h0. The Picard-Banach iteration is given by
(1) b n + 1 = T b n (1) b n + 1 = T b n {:(1)b_(n+1)=Tb_(n):}\begin{equation*} b_{n+1}=T b_{n} \tag{1} \end{equation*}(1)bn+1=Tbn
The two most popular iteration procedures for obtaining fixed points of T T TTT, when the Banach principle fails, are Mann iteration [3], defined by
(2) e n + 1 = ( 1 α n ) e n + α n T e n (2) e n + 1 = 1 α n e n + α n T e n {:(2)e_(n+1)=(1-alpha_(n))e_(n)+alpha_(n)Te_(n):}\begin{equation*} e_{n+1}=\left(1-\alpha_{n}\right) e_{n}+\alpha_{n} T e_{n} \tag{2} \end{equation*}(2)en+1=(1αn)en+αnTen
and Ishikawa iteration [1], defined by
(3) s n + 1 = ( 1 α n ) s n + α n T t n t n = ( 1 β n ) s n + β n T s n (3) s n + 1 = 1 α n s n + α n T t n t n = 1 β n s n + β n T s n {:[(3)s_(n+1)=(1-alpha_(n))s_(n)+alpha_(n)Tt_(n)],[t_(n)=(1-beta_(n))s_(n)+beta_(n)Ts_(n)]:}\begin{align*} s_{n+1} & =\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} T t_{n} \tag{3}\\ t_{n} & =\left(1-\beta_{n}\right) s_{n}+\beta_{n} T s_{n} \end{align*}(3)sn+1=(1αn)sn+αnTtntn=(1βn)sn+βnTsn
We have { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1) and { α n } α n {alpha_(n)}\left\{\alpha_{n}\right\}{αn} usually satisfies
(4) lim n α n = 0 , n = 1 α n = (4) lim n α n = 0 , n = 1 α n = {:(4)lim_(n rarr oo)alpha_(n)=0","sum_(n=1)^(oo)alpha_(n)=oo:}\begin{equation*} \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty \tag{4} \end{equation*}(4)limnαn=0,n=1αn=
Recently, the equivalence between the T T TTT-stabilities of Mann and Ishikawa iterations was shown in [6]. In this note we shall prove the equivalence between T T TTT-stabilities of (1), (2) and (3).

2 The Equivalence between T T TTT-Stabilities

Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map. Let { u n } , { p n } , { x n } , { y n } X u n , p n , x n , y n X {u_(n)},{p_(n)},{x_(n)},{y_(n)}sub X\left\{u_{n}\right\},\left\{p_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X{un},{pn},{xn},{yn}X be such that u 0 = p 0 = x 0 = y 0 u 0 = p 0 = x 0 = y 0 u_(0)=p_(0)=x_(0)=y_(0)u_{0}=p_{0}=x_{0}=y_{0}u0=p0=x0=y0, and consider
ε n := u n + 1 ( 1 α n ) u n α n T u n δ n := p n + 1 T p n ε n := u n + 1 1 α n u n α n T u n δ n := p n + 1 T p n {:[epsi_(n):=||u_(n+1)-(1-alpha_(n))u_(n)-alpha_(n)Tu_(n)||],[delta_(n):=||p_(n+1)-Tp_(n)||]:}\begin{aligned} \varepsilon_{n}:=\left\|u_{n+1}-\left(1-\alpha_{n}\right) u_{n}-\alpha_{n} T u_{n}\right\| \\ \delta_{n}:=\left\|p_{n+1}-T p_{n}\right\| \end{aligned}εn:=un+1(1αn)unαnTunδn:=pn+1Tpn
For { β n } [ 0 , 1 ) β n [ 0 , 1 ) {beta_(n)}sub[0,1)\left\{\beta_{n}\right\} \subset[0,1){βn}[0,1), we consider y n = ( 1 β n ) x n + β n T x n y n = 1 β n x n + β n T x n y_(n)=(1-beta_(n))x_(n)+beta_(n)Tx_(n)y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}yn=(1βn)xn+βnTxn, and
ξ n := x n + 1 ( 1 α n ) x n α n T y n ξ n := x n + 1 1 α n x n α n T y n xi_(n):=||x_(n+1)-(1-alpha_(n))x_(n)-alpha_(n)Ty_(n)||\xi_{n}:=\left\|x_{n+1}-\left(1-\alpha_{n}\right) x_{n}-\alpha_{n} T y_{n}\right\|ξn:=xn+1(1αn)xnαnTyn
DEFINITION 2. Definition 1 gives:
(i) The Ishikawa iteration (3), is said to be T T TTT-stable if and only if for all { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) , { x n } X α n ( 0 , 1 ) , β n [ 0 , 1 ) , x n X {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1),AA{x_(n)}sub X\left\{\alpha_{n}\right\} \subset (0,1),\left\{\beta_{n}\right\} \subset[0,1), \forall\left\{x_{n}\right\} \subset X{αn}(0,1),{βn}[0,1),{xn}X given, we have
lim n ξ n = lim n x n + 1 ( 1 α n ) x n α n T y n = 0 lim n x n = x lim n ξ n = lim n x n + 1 1 α n x n α n T y n = 0 lim n x n = x lim_(n rarr oo)xi_(n)=lim_(n rarr oo)||x_(n+1)-(1-alpha_(n))x_(n)-alpha_(n)Ty_(n)||=0=>lim_(n rarr oo)x_(n)=x^(**)\lim _{n \rightarrow \infty} \xi_{n}=\lim _{n \rightarrow \infty}\left\|x_{n+1}-\left(1-\alpha_{n}\right) x_{n}-\alpha_{n} T y_{n}\right\|=0 \Rightarrow \lim _{n \rightarrow \infty} x_{n}=x^{*}limnξn=limnxn+1(1αn)xnαnTyn=0limnxn=x
The Mann iteration is said to be T T TTT-stable if and only if for all { α n } ( 0 , 1 ) , { u n } X α n ( 0 , 1 ) , u n X {alpha_(n)}sub(0,1),AA{u_(n)}sub X\left\{\alpha_{n}\right\} \subset(0,1), \forall\left\{u_{n}\right\} \subset X{αn}(0,1),{un}X given, we have
lim n ε n = lim n u n + 1 ( 1 α n ) u n α n T u n = 0 lim n u n = x lim n ε n = lim n u n + 1 1 α n u n α n T u n = 0 lim n u n = x lim_(n rarr oo)epsi_(n)=lim_(n rarr oo)||u_(n+1)-(1-alpha_(n))u_(n)-alpha_(n)Tu_(n)||=0=>lim_(n rarr oo)u_(n)=x^(**)\lim _{n \rightarrow \infty} \varepsilon_{n}=\lim _{n \rightarrow \infty}\left\|u_{n+1}-\left(1-\alpha_{n}\right) u_{n}-\alpha_{n} T u_{n}\right\|=0 \Rightarrow \lim _{n \rightarrow \infty} u_{n}=x^{*}limnεn=limnun+1(1αn)unαnTun=0limnun=x
(ii) The Picard iteration is said to be T T TTT-stable if and only if for all { p n } X p n X {p_(n)}sub X\left\{p_{n}\right\} \subset X{pn}X given, we have
lim n δ n = lim n p n + 1 T p n = 0 lim n p n = x lim n δ n = lim n p n + 1 T p n = 0 lim n p n = x lim_(n rarr oo)delta_(n)=lim_(n rarr oo)||p_(n+1)-Tp_(n)||=0=>lim_(n rarr oo)p_(n)=x^(**)\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left\|p_{n+1}-T p_{n}\right\|=0 \Rightarrow \lim _{n \rightarrow \infty} p_{n}=x^{*}limnδn=limnpn+1Tpn=0limnpn=x
It is obvious that for α n := 0 , n N , β n := 0 , n N α n := 0 , n N , β n := 0 , n N alpha_(n):=0,AA n inN,beta_(n):=0,AA n inN\alpha_{n}:=0, \forall n \in \mathbb{N}, \beta_{n}:=0, \forall n \in \mathbb{N}αn:=0,nN,βn:=0,nN, one obtains ξ n = ε n = δ n ξ n = ε n = δ n xi_(n)=epsi_(n)=delta_(n)\xi_{n}=\varepsilon_{n}=\delta_{n}ξn=εn=δn.
THEOREM 1. Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map. If
(5) lim n p n T p n = 0 and lim n u n T u n = 0 (5) lim n p n T p n = 0  and  lim n u n T u n = 0 {:(5)lim_(n rarr oo)||p_(n)-Tp_(n)||=0" and "lim_(n rarr oo)||u_(n)-Tu_(n)||=0:}\begin{equation*} \lim _{n \rightarrow \infty}\left\|p_{n}-T p_{n}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|u_{n}-T u_{n}\right\|=0 \tag{5} \end{equation*}(5)limnpnTpn=0 and limnunTun=0
then the following are equivalent:
(i) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1), the Mann iteration is T T TTT-stable,
(ii) the Picard iteration is T T TTT-stable.
PROOF. ( i ) ( i i ) ( i ) ( i i ) (i)=>(ii)(i) \Rightarrow(i i)(i)(ii). Take lim n δ n = 0 lim n δ n = 0 lim_(n rarr oo)delta_(n)=0\lim _{n \rightarrow \infty} \delta_{n}=0limnδn=0. Observe that
ε n = u n + 1 ( 1 α n ) u n α n T u n u n + 1 T u n + ( 1 α n ) u n + 1 u n + ( 1 α n ) u n + 1 T u n ( 2 α n ) u n + 1 T u n + ( 1 α n ) u n + 1 u n ( 2 α n ) u n + 1 T u n + ( 1 α n ) ( u n + 1 T u n + u n T u n ) = ( 3 2 α n ) u n + 1 T u n + ( 1 α n ) u n T u n = ( 3 2 α n ) δ n + ( 1 α n ) u n T u n 0 ε n = u n + 1 1 α n u n α n T u n u n + 1 T u n + 1 α n u n + 1 u n + 1 α n u n + 1 T u n 2 α n u n + 1 T u n + 1 α n u n + 1 u n 2 α n u n + 1 T u n + 1 α n u n + 1 T u n + u n T u n = 3 2 α n u n + 1 T u n + 1 α n u n T u n = 3 2 α n δ n + 1 α n u n T u n 0 {:[epsi_(n)=||u_(n+1)-(1-alpha_(n))u_(n)-alpha_(n)Tu_(n)||],[ <= ||u_(n+1)-Tu_(n)||+(1-alpha_(n))||u_(n+1)-u_(n)||+(1-alpha_(n))||u_(n+1)-Tu_(n)||],[ <= (2-alpha_(n))||u_(n+1)-Tu_(n)||+(1-alpha_(n))||u_(n+1)-u_(n)||],[ <= (2-alpha_(n))||u_(n+1)-Tu_(n)||+(1-alpha_(n))(||u_(n+1)-Tu_(n)||+||u_(n)-Tu_(n)||)],[=(3-2alpha_(n))||u_(n+1)-Tu_(n)||+(1-alpha_(n))||u_(n)-Tu_(n)||],[=(3-2alpha_(n))delta_(n)+(1-alpha_(n))||u_(n)-Tu_(n)||],[ rarr0]:}\begin{aligned} \varepsilon_{n} & =\left\|u_{n+1}-\left(1-\alpha_{n}\right) u_{n}-\alpha_{n} T u_{n}\right\| \\ & \leq\left\|u_{n+1}-T u_{n}\right\|+\left(1-\alpha_{n}\right)\left\|u_{n+1}-u_{n}\right\|+\left(1-\alpha_{n}\right)\left\|u_{n+1}-T u_{n}\right\| \\ & \leq\left(2-\alpha_{n}\right)\left\|u_{n+1}-T u_{n}\right\|+\left(1-\alpha_{n}\right)\left\|u_{n+1}-u_{n}\right\| \\ & \leq\left(2-\alpha_{n}\right)\left\|u_{n+1}-T u_{n}\right\|+\left(1-\alpha_{n}\right)\left(\left\|u_{n+1}-T u_{n}\right\|+\left\|u_{n}-T u_{n}\right\|\right) \\ & =\left(3-2 \alpha_{n}\right)\left\|u_{n+1}-T u_{n}\right\|+\left(1-\alpha_{n}\right)\left\|u_{n}-T u_{n}\right\| \\ & =\left(3-2 \alpha_{n}\right) \delta_{n}+\left(1-\alpha_{n}\right)\left\|u_{n}-T u_{n}\right\| \\ & \rightarrow 0 \end{aligned}εn=un+1(1αn)unαnTunun+1Tun+(1αn)un+1un+(1αn)un+1Tun(2αn)un+1Tun+(1αn)un+1un(2αn)un+1Tun+(1αn)(un+1Tun+unTun)=(32αn)un+1Tun+(1αn)unTun=(32αn)δn+(1αn)unTun0
as n n n rarr oon \rightarrow \inftyn. We know from ( i i iii ) that if lim n ε n = 0 lim n ε n = 0 lim_(n rarr oo)epsi_(n)=0\lim _{n \rightarrow \infty} \varepsilon_{n}=0limnεn=0, then lim n u n = x lim n u n = x lim_(n rarr oo)u_(n)=x^(**)\lim _{n \rightarrow \infty} u_{n}=x^{*}limnun=x, thus we have shown that if lim n δ n = lim n u n + 1 T u n = 0 lim n δ n = lim n u n + 1 T u n = 0 lim_(n rarr oo)delta_(n)=lim_(n rarr oo)||u_(n+1)-Tu_(n)||=0\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left\|u_{n+1}-T u_{n}\right\|=0limnδn=limnun+1Tun=0, then lim n u n = x lim n u n = x lim_(n rarr oo)u_(n)=x^(**)\lim _{n \rightarrow \infty} u_{n}=x^{*}limnun=x.
For ( i i ) ( i ) ( i i ) ( i ) (ii)=>(i)(i i) \Rightarrow(i)(ii)(i), take lim n ε n = 0 lim n ε n = 0 lim_(n rarr oo)epsi_(n)=0\lim _{n \rightarrow \infty} \varepsilon_{n}=0limnεn=0. Observe that
δ n = p n + 1 T p n p n + 1 ( 1 α n ) p n α n T p n + ( 1 α n ) p n T p n ε n + ( 1 α n ) p n T p n 0 δ n = p n + 1 T p n p n + 1 1 α n p n α n T p n + 1 α n p n T p n ε n + 1 α n p n T p n 0 {:[delta_(n)=||p_(n+1)-Tp_(n)||],[ <= ||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Tp_(n)||+(1-alpha_(n))||p_(n)-Tp_(n)||],[ <= epsi_(n)+(1-alpha_(n))||p_(n)-Tp_(n)||],[ rarr0]:}\begin{aligned} \delta_{n} & =\left\|p_{n+1}-T p_{n}\right\| \\ & \leq\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T p_{n}\right\|+\left(1-\alpha_{n}\right)\left\|p_{n}-T p_{n}\right\| \\ & \leq \varepsilon_{n}+\left(1-\alpha_{n}\right)\left\|p_{n}-T p_{n}\right\| \\ & \rightarrow 0 \end{aligned}δn=pn+1Tpnpn+1(1αn)pnαnTpn+(1αn)pnTpnεn+(1αn)pnTpn0
as n n n rarr oon \rightarrow \inftyn. We know from ( i i i i iii iii ) that if lim n δ n = 0 lim n δ n = 0 lim_(n rarr oo)delta_(n)=0\lim _{n \rightarrow \infty} \delta_{n}=0limnδn=0, then lim n p n = x lim n p n = x lim_(n rarr oo)p_(n)=x^(**)\lim _{n \rightarrow \infty} p_{n}=x^{*}limnpn=x, thus we have shown that if lim n ε n = lim n p n + 1 ( 1 α n ) p n α n T p n = 0 lim n ε n = lim n p n + 1 1 α n p n α n T p n = 0 lim_(n rarr oo)epsi_(n)=lim_(n rarr oo)||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Tp_(n)||=0\lim _{n \rightarrow \infty} \varepsilon_{n}=\lim _{n \rightarrow \infty}\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T p_{n}\right\|=0limnεn=limnpn+1(1αn)pnαnTpn=0, then lim n p n = x lim n p n = x lim_(n rarr oo)p_(n)=x^(**)\lim _{n \rightarrow \infty} p_{n}=x^{*}limnpn=x.
REMARK 2. Note that no boundedness condition is needed in the above result. Note that lim n u n T u n = 0 lim n u n T u n = 0 lim_(n rarr oo)||u_(n)-Tu_(n)||=0\lim _{n \rightarrow \infty}\left\|u_{n}-T u_{n}\right\|=0limnunTun=0 is used in order to prove that lim n ε n = 0 lim n ε n = 0 lim_(n rarr oo)epsi_(n)=0\lim _{n \rightarrow \infty} \varepsilon_{n}=0limnεn=0, hence can not be avoided. Analogously, lim n p n T p n = 0 lim n p n T p n = 0 lim_(n rarr oo)||p_(n)-Tp_(n)||=0\lim _{n \rightarrow \infty}\left\|p_{n}-T p_{n}\right\|=0limnpnTpn=0 is used in order to prove that lim n δ n = 0 lim n δ n = 0 lim_(n rarr oo)delta_(n)=0\lim _{n \rightarrow \infty} \delta_{n}=0limnδn=0, hence can not be avoided.
THEOREM 2. Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map with bounded range. If
lim n p n T p n = 0 and lim n x n T x n = 0 lim n p n T p n = 0  and  lim n x n T x n = 0 lim_(n rarr oo)||p_(n)-Tp_(n)||=0" and "lim_(n rarr oo)||x_(n)-Tx_(n)||=0\lim _{n \rightarrow \infty}\left\|p_{n}-T p_{n}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0limnpnTpn=0 and limnxnTxn=0
then the following are equivalent:
(i) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1) and { β n } [ 0 , 1 ) β n [ 0 , 1 ) {beta_(n)}sub[0,1)\left\{\beta_{n}\right\} \subset[0,1){βn}[0,1), satisfying (4), the Ishikawa iteration is T T TTT-stable,
(ii) the Picard iteration is T T TTT-stable.
PROOF. Let
M := max { sup x X { T ( x ) } , x 0 } . M := max sup x X { T ( x ) } , x 0 . M:=max{s u p_(x in X){||T(x)||},||x_(0)||}.M:=\max \left\{\sup _{x \in X}\{\|T(x)\|\},\left\|x_{0}\right\|\right\} .M:=max{supxX{T(x)},x0}.
Since T T TTT has bounded range, we have M < M < M < ooM<\inftyM<.
We shall prove that ( i ) ( i i ) ( i ) ( i i ) (i)=>(ii)(i) \Rightarrow(i i)(i)(ii). Take lim n δ n = 0 lim n δ n = 0 lim_(n rarr oo)delta_(n)=0\lim _{n \rightarrow \infty} \delta_{n}=0limnδn=0. Observe that
ξ n = x n + 1 ( 1 α n ) x n α n T y n x n + 1 T x n + ( 1 α n ) x n α n T y n + T x n = x n + 1 T x n + ( 1 α n ) x n α n T y n + T x n α n T x n + α n T x n x n + 1 T x n + ( 1 α n ) x n T x n + α n T x n T y n = δ n + ( 1 α n ) x n T x n + 2 α n M 0 ξ n = x n + 1 1 α n x n α n T y n x n + 1 T x n + 1 α n x n α n T y n + T x n = x n + 1 T x n + 1 α n x n α n T y n + T x n α n T x n + α n T x n x n + 1 T x n + 1 α n x n T x n + α n T x n T y n = δ n + 1 α n x n T x n + 2 α n M 0 {:[xi_(n)=||x_(n+1)-(1-alpha_(n))x_(n)-alpha_(n)Ty_(n)||],[ <= ||x_(n+1)-Tx_(n)||+||(1-alpha_(n))x_(n)-alpha_(n)Ty_(n)+Tx_(n)||],[=||x_(n+1)-Tx_(n)||+||(1-alpha_(n))x_(n)-alpha_(n)Ty_(n)+Tx_(n)-alpha_(n)Tx_(n)+alpha_(n)Tx_(n)||],[ <= ||x_(n+1)-Tx_(n)||+(1-alpha_(n))||x_(n)-Tx_(n)||+alpha_(n)||Tx_(n)-Ty_(n)||],[=delta_(n)+(1-alpha_(n))||x_(n)-Tx_(n)||+2alpha_(n)M],[ rarr0]:}\begin{aligned} \xi_{n} & =\left\|x_{n+1}-\left(1-\alpha_{n}\right) x_{n}-\alpha_{n} T y_{n}\right\| \\ & \leq\left\|x_{n+1}-T x_{n}\right\|+\left\|\left(1-\alpha_{n}\right) x_{n}-\alpha_{n} T y_{n}+T x_{n}\right\| \\ & =\left\|x_{n+1}-T x_{n}\right\|+\left\|\left(1-\alpha_{n}\right) x_{n}-\alpha_{n} T y_{n}+T x_{n}-\alpha_{n} T x_{n}+\alpha_{n} T x_{n}\right\| \\ & \leq\left\|x_{n+1}-T x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-T x_{n}\right\|+\alpha_{n}\left\|T x_{n}-T y_{n}\right\| \\ & =\delta_{n}+\left(1-\alpha_{n}\right)\left\|x_{n}-T x_{n}\right\|+2 \alpha_{n} M \\ & \rightarrow 0 \end{aligned}ξn=xn+1(1αn)xnαnTynxn+1Txn+(1αn)xnαnTyn+Txn=xn+1Txn+(1αn)xnαnTyn+TxnαnTxn+αnTxnxn+1Txn+(1αn)xnTxn+αnTxnTyn=δn+(1αn)xnTxn+2αnM0
as n n n rarr oon \rightarrow \inftyn. Condition (i) assures that lim n ξ n = 0 lim n x n = x lim n ξ n = 0 lim n x n = x lim_(n rarr oo)xi_(n)=0=>lim_(n rarr oo)x_(n)=x^(**)\lim _{n \rightarrow \infty} \xi_{n}=0 \Rightarrow \lim _{n \rightarrow \infty} x_{n}=x^{*}limnξn=0limnxn=x. Thus, for a { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} satisfying
lim n δ n = lim n x n + 1 T x n = 0 lim n δ n = lim n x n + 1 T x n = 0 lim_(n rarr oo)delta_(n)=lim_(n rarr oo)||x_(n+1)-Tx_(n)||=0\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left\|x_{n+1}-T x_{n}\right\|=0limnδn=limnxn+1Txn=0
we have shown that lim n x n = x lim n x n = x lim_(n rarr oo)x_(n)=x^(**)\lim _{n \rightarrow \infty} x_{n}=x^{*}limnxn=x.
Conversely, we prove ( i i ) ( i ) ( i i ) ( i ) (ii)=>(i)(i i) \Rightarrow(i)(ii)(i). Take lim n ξ n = 0 lim n ξ n = 0 lim_(n rarr oo)xi_(n)=0\lim _{n \rightarrow \infty} \xi_{n}=0limnξn=0. Observe that
δ n = p n + 1 T p n p n + 1 ( 1 α n ) p n α n T y n + ( 1 α n ) p n + α n T y n T p n p n + 1 ( 1 α n ) p n α n T y n + α n ( p n + T y n ) + p n T p n ε n + α n ( p n + M ) + p n T p n 0 δ n = p n + 1 T p n p n + 1 1 α n p n α n T y n + 1 α n p n + α n T y n T p n p n + 1 1 α n p n α n T y n + α n p n + T y n + p n T p n ε n + α n p n + M + p n T p n 0 {:[delta_(n)=||p_(n+1)-Tp_(n)||],[ <= ||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Ty_(n)||+||(1-alpha_(n))p_(n)+alpha_(n)Ty_(n)-Tp_(n)||],[ <= ||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Ty_(n)||+alpha_(n)(||p_(n)||+||Ty_(n)||)+||p_(n)-Tp_(n)||],[ <= epsi_(n)+alpha_(n)(||p_(n)||+M)+||p_(n)-Tp_(n)||],[ rarr0]:}\begin{aligned} & \delta_{n}=\left\|p_{n+1}-T p_{n}\right\| \\ & \leq\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T y_{n}\right\|+\left\|\left(1-\alpha_{n}\right) p_{n}+\alpha_{n} T y_{n}-T p_{n}\right\| \\ & \leq\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T y_{n}\right\|+\alpha_{n}\left(\left\|p_{n}\right\|+\left\|T y_{n}\right\|\right)+\left\|p_{n}-T p_{n}\right\| \\ & \leq \varepsilon_{n}+\alpha_{n}\left(\left\|p_{n}\right\|+M\right)+\left\|p_{n}-T p_{n}\right\| \\ & \rightarrow 0 \end{aligned}δn=pn+1Tpnpn+1(1αn)pnαnTyn+(1αn)pn+αnTynTpnpn+1(1αn)pnαnTyn+αn(pn+Tyn)+pnTpnεn+αn(pn+M)+pnTpn0
as n n n rarr oon \rightarrow \inftyn. Note that lim n p n T p n = 0 lim n p n T p n = 0 lim_(n rarr oo)||p_(n)-Tp_(n)||=0\lim _{n \rightarrow \infty}\left\|p_{n}-T p_{n}\right\|=0limnpnTpn=0 and using the boundedness of { T p n } T p n {Tp_(n)}\left\{T p_{n}\right\}{Tpn} we obtain the boundedness of { p n } p n {p_(n)}\left\{p_{n}\right\}{pn}. Condition (ii) assures that
lim n δ n = 0 lim n x n = x lim n δ n = 0 lim n x n = x lim_(n rarr oo)delta_(n)=0=>lim_(n rarr oo)x_(n)=x^(**)\lim _{n \rightarrow \infty} \delta_{n}=0 \Rightarrow \lim _{n \rightarrow \infty} x_{n}=x^{*}limnδn=0limnxn=x
Thus, for a { p n } p n {p_(n)}\left\{p_{n}\right\}{pn} satisfying lim n ξ n = lim n p n + 1 ( 1 α n ) p n α n T y n = 0 lim n ξ n = lim n p n + 1 1 α n p n α n T y n = 0 lim_(n rarr oo)xi_(n)=lim_(n rarr oo)||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Ty_(n)||=0\lim _{n \rightarrow \infty} \xi_{n}=\lim _{n \rightarrow \infty}\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T y_{n}\right\|=0limnξn=limnpn+1(1αn)pnαnTyn=0, we have shown that lim n p n = x lim n p n = x lim_(n rarr oo)p_(n)=x^(**)\lim _{n \rightarrow \infty} p_{n}=x^{*}limnpn=x.
Theorems 1 and 2 lead to the following result.
COROLLARY 1. Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map with bounded range. If
lim n p n T p n = 0 , lim n x n T x n = 0 and lim n u n T u n = 0 , lim n p n T p n = 0 , lim n x n T x n = 0  and  lim n u n T u n = 0 , lim_(n rarr oo)||p_(n)-Tp_(n)||=0,lim_(n rarr oo)||x_(n)-Tx_(n)||=0" and "lim_(n rarr oo)||u_(n)-Tu_(n)||=0,\lim _{n \rightarrow \infty}\left\|p_{n}-T p_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|u_{n}-T u_{n}\right\|=0,limnpnTpn=0,limnxnTxn=0 and limnunTun=0,
then the following are equivalent:
(i) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1) and { β n } [ 0 , 1 ) β n [ 0 , 1 ) {beta_(n)}sub[0,1)\left\{\beta_{n}\right\} \subset[0,1){βn}[0,1), satisfying (4), the Ishikawa iteration is T T TTT-stable,
(ii) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1), satisfying (4), the Mann iteration is T T TTT-stable,
(iii) the Picard iteration is T T TTT-stable.

3 Applications

The following example is from [2] and [4]. For sake of completeness we give here the whole proof.
EXAMPLE 1. Let T : [ 0 , 1 ] [ 0 , 1 ] , T x = x T : [ 0 , 1 ] [ 0 , 1 ] , T x = x T:[0,1]rarr[0,1],Tx=xT:[0,1] \rightarrow[0,1], T x=xT:[0,1][0,1],Tx=x.
  • [2] Picard iteration converges but is not T T TTT-stable. Then every point in ( 0,1 ] is a fixed point of T T TTT. Let b 0 b 0 b_(0)b_{0}b0 be a point in ( 0,1 ], then b n + 1 = T b n = T n b 0 = b 0 b n + 1 = T b n = T n b 0 = b 0 b_(n+1)=Tb_(n)=T^(n)b_(0)=b_(0)b_{n+1}=T b_{n}=T^{n} b_{0}=b_{0}bn+1=Tbn=Tnb0=b0. Thus lim n b n = b 0 lim n b n = b 0 lim_(n rarr oo)b_(n)=b_(0)\lim _{n \rightarrow \infty} b_{n}=b_{0}limnbn=b0. Take p 0 = 0 p 0 = 0 p_(0)=0p_{0}=0p0=0 and p n = 1 n p n = 1 n p_(n)=(1)/(n)p_{n}=\frac{1}{n}pn=1n. Thus
δ n = | p n + 1 T p n | = 1 n ( n + 1 ) 0 δ n = p n + 1 T p n = 1 n ( n + 1 ) 0 delta_(n)=|p_(n+1)-Tp_(n)|=(1)/(n(n+1))rarr0\delta_{n}=\left|p_{n+1}-T p_{n}\right|=\frac{1}{n(n+1)} \rightarrow 0δn=|pn+1Tpn|=1n(n+1)0
but lim n p n = 0 b 0 lim n p n = 0 b 0 lim_(n rarr oo)p_(n)=0!=b_(0)\lim _{n \rightarrow \infty} p_{n}=0 \neq b_{0}limnpn=0b0.
  • [4] Mann iteration converges but is not T T TTT-stable. Let e 0 e 0 e_(0)e_{0}e0 be a point in ( 0 , 1 ] ( 0 , 1 ] (0,1](0,1](0,1], then e n + 1 = ( 1 α n ) e n + α n e n = e n = = e 0 e n + 1 = 1 α n e n + α n e n = e n = = e 0 e_(n+1)=(1-alpha_(n))e_(n)+alpha_(n)e_(n)=e_(n)=dots=e_(0)e_{n+1}=\left(1-\alpha_{n}\right) e_{n}+\alpha_{n} e_{n}=e_{n}=\ldots=e_{0}en+1=(1αn)en+αnen=en==e0. Take u 0 = e 0 , u n = 1 n + 1 u 0 = e 0 , u n = 1 n + 1 u_(0)=e_(0),u_(n)=(1)/(n+1)u_{0}=e_{0}, u_{n}=\frac{1}{n+1}u0=e0,un=1n+1 to obtain
ε n = | u n + 1 ( 1 α n ) u n α n T u n | = | 1 n + 2 ( 1 α n ) 1 n + 1 α n 1 n + 1 | = | 1 n + 2 1 n + 1 | = 1 ( n + 1 ) ( n + 2 ) 0 ε n = u n + 1 1 α n u n α n T u n = 1 n + 2 1 α n 1 n + 1 α n 1 n + 1 = 1 n + 2 1 n + 1 = 1 ( n + 1 ) ( n + 2 ) 0 {:[epsi_(n)=|u_(n+1)-(1-alpha_(n))u_(n)-alpha_(n)Tu_(n)|=|(1)/(n+2)-(1-alpha_(n))(1)/(n+1)-alpha_(n)(1)/(n+1)|],[=|(1)/(n+2)-(1)/(n+1)|=(1)/((n+1)(n+2))rarr0]:}\begin{aligned} \varepsilon_{n} & =\left|u_{n+1}-\left(1-\alpha_{n}\right) u_{n}-\alpha_{n} T u_{n}\right|=\left|\frac{1}{n+2}-\left(1-\alpha_{n}\right) \frac{1}{n+1}-\alpha_{n} \frac{1}{n+1}\right| \\ & =\left|\frac{1}{n+2}-\frac{1}{n+1}\right|=\frac{1}{(n+1)(n+2)} \rightarrow 0 \end{aligned}εn=|un+1(1αn)unαnTun|=|1n+2(1αn)1n+1αn1n+1|=|1n+21n+1|=1(n+1)(n+2)0
but lim n u n = 0 e 0 lim n u n = 0 e 0 lim_(n rarr oo)u_(n)=0!=e_(0)\lim _{n \rightarrow \infty} u_{n}=0 \neq e_{0}limnun=0e0.
EXAMPLE 2. Let T : [ 0 , ) [ 0 , ) T : [ 0 , ) [ 0 , ) T:[0,oo)rarr[0,oo)T:[0, \infty) \rightarrow[0, \infty)T:[0,)[0,) be given by T x = x 3 T x = x 3 Tx=(x)/(3)T x=\frac{x}{3}Tx=x3. Then the Mann iteration converges to the fixed point of x = 0 x = 0 x^(**)=0x^{*}=0x=0 but is not T T TTT-stable, and applying Theorem 1, the Picard iteration is not T T TTT-stable while it converges.
(i) Mann iteration converges because the sequence e n 0 e n 0 e_(n)rarr0e_{n} \rightarrow 0en0 as we can see:
e n + 1 = ( 1 α n ) e n + α n e n 3 = ( 1 2 α n 3 ) e n = k = 1 n ( 1 2 α k 3 ) e 0 exp ( 2 3 k = 1 n α k ) 0 e n + 1 = 1 α n e n + α n e n 3 = 1 2 α n 3 e n = k = 1 n 1 2 α k 3 e 0 exp 2 3 k = 1 n α k 0 {:[e_(n+1)=(1-alpha_(n))e_(n)+alpha_(n)(e_(n))/(3)=(1-(2alpha_(n))/(3))e_(n)],[=prod_(k=1)^(n)(1-(2alpha_(k))/(3))e_(0) <= exp(-(2)/(3)sum_(k=1)^(n)alpha_(k))rarr0]:}\begin{aligned} e_{n+1} & =\left(1-\alpha_{n}\right) e_{n}+\alpha_{n} \frac{e_{n}}{3}=\left(1-\frac{2 \alpha_{n}}{3}\right) e_{n} \\ & =\prod_{k=1}^{n}\left(1-\frac{2 \alpha_{k}}{3}\right) e_{0} \leq \exp \left(-\frac{2}{3} \sum_{k=1}^{n} \alpha_{k}\right) \rightarrow 0 \end{aligned}en+1=(1αn)en+αnen3=(12αn3)en=k=1n(12αk3)e0exp(23k=1nαk)0
the last inequality is true because 1 x exp ( x ) , x 0 1 x exp ( x ) , x 0 1-x <= exp(-x),AA x >= 01-x \leq \exp (-x), \forall x \geq 01xexp(x),x0, and α n = + α n = + sumalpha_(n)=+oo\sum \alpha_{n}=+\inftyαn=+ supplied by (4).
(ii) Mann iteration is not T T TTT-stable. Take u n = n n + 1 u n = n n + 1 u_(n)=(n)/(n+1)u_{n}=\frac{n}{n+1}un=nn+1, note that u n 1 x = 0 u n 1 x = 0 u_(n)rarr1!=x^(**)=0u_{n} \rightarrow 1 \neq x^{*}=0un1x=0, and ε n = u n + 1 ( 1 α n ) u n α n T u n 0 ε n = u n + 1 1 α n u n α n T u n 0 epsi_(n)=||u_(n+1)-(1-alpha_(n))u_(n)-alpha_(n)Tu_(n)||rarr0\varepsilon_{n}=\left\|u_{n+1}-\left(1-\alpha_{n}\right) u_{n}-\alpha_{n} T u_{n}\right\| \rightarrow 0εn=un+1(1αn)unαnTun0 because
ε n = | n + 1 n + 2 ( 1 α n ) n n + 1 α n n 3 ( n + 1 ) | = 3 + 2 α n n 2 + 4 α n n 3 ( n + 1 ) ( n + 2 ) ε n = n + 1 n + 2 1 α n n n + 1 α n n 3 ( n + 1 ) = 3 + 2 α n n 2 + 4 α n n 3 ( n + 1 ) ( n + 2 ) {:[epsi_(n)=|(n+1)/(n+2)-(1-alpha_(n))(n)/(n+1)-alpha_(n)(n)/(3(n+1))|],[=(3+2alpha_(n)n^(2)+4alpha_(n)n)/(3(n+1)(n+2))]:}\begin{aligned} \varepsilon_{n} & =\left|\frac{n+1}{n+2}-\left(1-\alpha_{n}\right) \frac{n}{n+1}-\alpha_{n} \frac{n}{3(n+1)}\right| \\ & =\frac{3+2 \alpha_{n} n^{2}+4 \alpha_{n} n}{3(n+1)(n+2)} \end{aligned}εn=|n+1n+2(1αn)nn+1αnn3(n+1)|=3+2αnn2+4αnn3(n+1)(n+2)
(iii) Picard iteration converges to fixed point x = 0 x = 0 x^(**)=0x^{*}=0x=0, because b n + 1 = T b n = T n b 0 = b 0 3 n 0 b n + 1 = T b n = T n b 0 = b 0 3 n 0 b_(n+1)=Tb_(n)=T^(n)b_(0)=(b_(0))/(3^(n))rarr0b_{n+1}=T b_{n}=T^{n} b_{0}= \frac{b_{0}}{3^{n}} \rightarrow 0bn+1=Tbn=Tnb0=b03n0.
REMARK. Take again T : [ 0 , ) [ 0 , ) , T x = x 3 T : [ 0 , ) [ 0 , ) , T x = x 3 T:[0,oo)rarr[0,oo),Tx=(x)/(3)T:[0, \infty) \rightarrow[0, \infty), T x=\frac{x}{3}T:[0,)[0,),Tx=x3, and x n = n n + 1 x n = n n + 1 x_(n)=(n)/(n+1)x_{n}=\frac{n}{n+1}xn=nn+1 to note that lim n ξ n = 0 lim n ξ n = 0 lim_(n rarr oo)xi_(n)=0\lim _{n \rightarrow \infty} \xi_{n}=0limnξn=0 and lim n x n = 1 x = 0 lim n x n = 1 x = 0 lim_(n rarr oo)x_(n)=1!=x^(**)=0\lim _{n \rightarrow \infty} x_{n}=1 \neq x^{*}=0limnxn=1x=0, and to conclude that Ishikawa iteration is not T T TTT-stable. Remark (analogously to Mann iteration, see also [5]) that it converges while T T TTT is a contraction.

References

[1] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-150.
[2] A. M. Harder and T. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33 (1988), 693-706.
[3] W. R. Mann, Mean value in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
[4] M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for ϕ ϕ phi\phiϕ-strong pseudocontractions and nonlinear equations of the ϕ ϕ phi\phiϕ-strongly accretive type, J. Math. Anal. Appl., 227 (1998), 319-334.
[5] B. E. Rhoades and Ş. M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci., 2003(2003), 451-459.
[6] B. E. Rhoades and Ş. M. Şoltuz, The equivalence between the T T TTT-stabilities of Mann and Ishikawa iterations, J. Math. Anal. Appl., 318(2006), 472-475.

  1. *Mathematics Subject Classifications: 47H10
    ^(†){ }^{\dagger} Institute of Numerical Analysis of Romanian Academy, P.O. Box 68-1, Cluj-Napoca, Romania, and Departamento de Matematicas, Universidad de los Andes, Carrera 1 No. 18A-10, Bogota, Colombia.
2008

Related Posts