Abstract
If dark matter did exist in the form of a self-interacting boson gas, when its temperature became lower than the critical, density dependent temperature, a phase transition to a Bose-Einstein Condensate did occur in the early Universe. The presence of the condensate dark matter leads to specific signatures in the galaxy rotation, and in the dark matter density distribution. In particular Bose-Einstein Condensate (BEC) dark matter models predict a finite and well defined radius of the dark matter halo, whose numerical value depends on the mass of the dark matter particle, and of the scattering length.
We compare the theoretical predictions of the functional form of the rotation curves in the slowly rotating BEC models with the SPARC sample of measured rotation curves, by using genetic algorithms, to fit the observational data, and to obtain estimates of the relevant physical parameters of the BEC dark matter halos (central density, angular velocity and static radius).
The density profiles of the dark matter distribution are also considered, and it follows that the presence of the condensate dark matter could also provide an alternative solution for the core/cusp problem.
Authors
M. Crăciun
(Tiberiu Popoviciu Institute of Numerical Analysis)
T. Harko
(Department of Physics, Babes-Bolyai University, Cluj-Napoca, Romania and
School of Physics, Sun Yat-Sen University Guangzhou, People’s Republic of China)
Keywords
Cosmology; galactic astronomy; dark matter; Bose-Einstein condensation
References
See the expanding block below.
Paper coordinates
M. Crăciun, T. Harko, Constraining Bose-Einstein condensate dark matter models with the galaxy rotation curves of the SPARC sample, Romanian Astronomical Journal, 29 (2019) no.2, 101-118.
About this paper
Journal
Romanian Astronomical Journal
Publisher Name
Romanian Academy Publishing House (Editura Academiei Romane)
DOI
not available yet.
Print ISSN
1220-5168
Online ISSN
2285-3758
Google Scholar Profile
not available yet
[1] Ade, P. A. R. et al., Planck Collaboration: 2016, Astron. Astrophys. 594, A1.
[2] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., Cornell, E. A.: 1995, Science 269, 198.
[3] Boehmer, C. G., Harko, T.: 2007, JCAP 06, 025.
[4] Boyanovsky, D., de Vega H. J., Sanchez, N.: 2008, Phys. Rev. D 77, 043518.
[5] Boylan-Kolchin, M., Bullock, J. S., Kaplinghat, M.: 2011, Mon. Not. Roy. Astron. Soc. 415, L40.
[6] Bradley, C. C., Sackett, C. A., Tollett, J. J., Hulet, R. G.: 1995, Phys. Rev. Lett. 75, 1687. Bull, P., et al.: 2016, Physics of the Dark Universe, 12, 56.
[7] Bullock, J. S., Boylan-Kolchin, M.: 2017, Annual Review of Astronomy and Astrophysics 55, 343.
[8] Davis, K. B., Mewes, M. O., Andrews, M. R., van Drutten, N. J., Durfee, D. S., Kurn, D. M., Ketterle, W.: 1995, Phys. Rev. Lett. 75, 3969.
[9] Di Cintio, A., Brook, C. B., Dutton, A. A., Maccio, A. V., Stinson, G. S., Knebe, A.: 2014, Mon. Not. Roy. Astron. Soc. 441, 2986.
[10] Harko, T.: 2011, JCAP 1105, 022.
[11] Harko T., Liang P.-X, Liang S.-D., Mocanu G.: 2015, JCAP 11, 027.
[12] Klypin, A., Kravtsov, A. V., Valenzuela, O., Prada, F.: 1999, Astrophys. J. 522, 82.
[13] Lelli, F., McGaugh, S. S., Schombert, J. M.: 2016, Astronom. J. 152, 157.
[14] Membrado, M., Pacheco, A. F. and Sanudo, J. S.: 1989, Astron. Astrophys. 217, 92.
[15] Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., Tozzi, P.: 1999, Astrophys. J. 524, L19.
[16] Navarro, J. F., Frenk, C. S., White, S. D. M.: 1997, Astrophys. J. 490, 493
[17] Oh, S.-H., et al.: 2015, Astronom. J. 149, 180.
[18] Pethick, C. J. and Smith, H.: 2008, Bose-Einstein condensation in dilute gases, Cambridge, Cambridge University Press.
[19] Zhang, X., Chan, M. H., Harko, T., Liang, S.-D., Leung, C. S.: 2018, EPJC 78, 346.