Norm preserving extension of convex Lipschitz functions

Abstract

Authors

Stefan Cobzas
Institutul de Matematica Cluj-Napoca, Romania 

Costica Mustata
Institutul de Matematica, Cluj-Napoca, Romania (ICTP)

Keywords

Paper coordinates

S. Cobzas, C. Mustata, Norm-preserving extension of convex Lipschitz functions, J. Approx. Theory, 24 (1978) 236-244, doi: 10.1016/0021-9045(78)90028-X

PDF

About this paper

Journal

Journal of Approximation Theory

Publisher Name

?

Print ISSN

?

Online ISSN

?

Google Scholar Profile

MR # 82j: 41034

[1] S. BANACH, “Wstep do teorii funkji rzeczwistych,” Warszawa/Wroclav, 1951.
[2] J. CZIPSER AND L. GEHER, Extension of function satisfying a Lipschitz condition, Acta Math. Acad. Ski. Hungar. 6 (1953, 213-220.
[3] R. B. HOLMES, “A Course on Optimisation and Best Approximation,” Lecture Notes in Mathematics No. 257, Springer-Verlag, Berlin/Heidelberg/New York, 1972.
[4] I. KOLUMBAN, Ob edinstvennosti prodolienija lineinyh funkcionalov, Mathematics (Cluj) 4 (1962), 267-270.
[5] P. J. LAURENT, “Approximation et optimisation,” Hermann, Paris, 1972.
[6] C. MUSTQA, Asupra unor subspatii cebiseviene din spafiul normat al funciiilor lipschitziene, Rea. Anal. Num. Teoria Aproximaiiei 2 (1973), 81-87.
[7] C. MUSTATA, 0 proprietate de monotonie a operatorului de tea mai buni aproximarie in spatiul functiilor lipschitziene. Rev. Anal. Num. Troria Aproximatiei 3 (1974). 153-160.
[8] C. MUSTATA, Asupra unicitritii preiungirii g-seminormelor continue, Reu. Anal. :Lwn. Teoria Apvoximafiei 2 (1973), 173-l 77.
[9] C. MUSTATA, Best approximation and unique extension of Lipschitz functions, J. Approximation Theory 19 (1977), 222-230.
[10] C. MUSTATA, A characterisation of Chebyshevian subspace of Y–type, Rec. Atlal. Num. ThPor. Approximation 6 (1977), 51-56.
[11] R. R. PHELPS, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Au7er. Math. Sot. 95 (1960), 238-255.

Paper (preprint) in HTML form

1978-Mustata-J.-Approx.-Th.-Norm-preserving-extension-of-convex-Lipschitz-functions

Norm-Preserving Extension of Convex Lipschitz Functions

S. Cobzaş and C. MustạțaInstitutul de Matematică Cluj-Napoca, RomaniaCommunicated by R. Bojanic

Received March 15, 1977
Let ( X , d X , d X,dX, dX,d ) be a metric space. A function f : X R f : X R f:X rarr Rf: X \rightarrow Rf:XR is called Lipschitz if there exists a number M 0 M 0 M >= 0M \geqslant 0M0 such that
(1) f ( x ) f ( y ) ∣⩽ M d ( x , y ) (1) f ( x ) f ( y ) ∣⩽ M d ( x , y ) {:(1)f(x)-f(y)∣⩽Md(x","y):}\begin{equation*} f(x)-f(y) \mid \leqslant M d(x, y) \tag{1} \end{equation*}(1)f(x)f(y)∣⩽Md(x,y)
for all x , y X x , y X x,y in Xx, y \in Xx,yX. The smallest constant M M MMM verifying (1) is called the norm of f f fff and is denoted by f X f X ||f_(X)\| f_{X}fX.
We have
(2) | f | X = sup { | f ( x ) f ( y ) | / d ( x , y ) : x , y X , x y } . (2) | f | X = sup { | f ( x ) f ( y ) | / d ( x , y ) : x , y X , x y } . {:(2)|f|_(X)=s u p{|f(x)-f(y)|//d(x","y):x","y in X","x!=y}.:}\begin{equation*} |f|_{X}=\sup \{|f(x)-f(y)| / d(x, y): x, y \in X, x \neq y\} . \tag{2} \end{equation*}(2)|f|X=sup{|f(x)f(y)|/d(x,y):x,yX,xy}.
Denote by Lip X X XXX the linear space of all Lipschitz functions on X X XXX. Actually, il | X X *|_(X)\left.\cdot\right|_{X}|X is not a norm on the space Lip X X XXX, since f X = 0 f X = 0 ||f||_(X)=0\|f\|_{X}=0fX=0 if f f fff is constant.
Now let Y Y YYY be a nonvoid subset of X X XXX. A norm-preserving extension of a function f Lip Y f Lip Y f in Lip Yf \in \operatorname{Lip} YfLipY to X X XXX is a function F Lip X F Lip X F in Lip XF \in \operatorname{Lip} XFLipX such that F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f and f Y = F X f Y = F X ||f||_(Y)=||F||_(X)\|f\|_{Y}=\|F\|_{X}fY=FX. By a result of Banach [1] (see also Czipser and Geher [2]) every f Lip Y f Lip Y f in Lip Yf \in \operatorname{Lip} YfLipY has a norm-preserving extension F F FFF in Lip X X XXX. Two of these extensions are given by
(3) F 1 ( x ) = sup { f ( y ) | f | Y d ( x , y ) : y Y } (3) F 1 ( x ) = sup f ( y ) | f | Y d ( x , y ) : y Y {:(3)F_(1)(x)=s u p{f(y)-|f|_(Y)d(x,y):y in Y}:}\begin{equation*} F_{1}(x)=\sup \left\{f(y)-|f|_{Y} d(x, y): y \in Y\right\} \tag{3} \end{equation*}(3)F1(x)=sup{f(y)|f|Yd(x,y):yY}
and
(4) F 2 ( x ) = inf { f ( y ) + f | Y d ( x , y ) : y Y } . (4) F 2 ( x ) = inf f ( y ) + f Y d ( x , y ) : y Y . {:(4)F_(2)(x)=i n f{f(y)+f|_(Y)d(x,y):y in Y}.:}\begin{equation*} F_{2}(x)=\inf \left\{f(y)+\left.f\right|_{Y} d(x, y): y \in Y\right\} . \tag{4} \end{equation*}(4)F2(x)=inf{f(y)+f|Yd(x,y):yY}.
Every norm-preserving extension F F FFF of f f fff satisfies
(5) F 1 ( x ) F ( x ) F 2 ( x ) (5) F 1 ( x ) F ( x ) F 2 ( x ) {:(5)F_(1)(x) <= F(x) <= F_(2)(x):}\begin{equation*} F_{1}(x) \leqslant F(x) \leqslant F_{2}(x) \tag{5} \end{equation*}(5)F1(x)F(x)F2(x)
for all x X x X x in Xx \in XxX (see [7]).
Now, let X X XXX be a normed linear space and let Y Y YYY be a nonvoid convex subset of X X XXX. Concerning the convex norm-preserving extension to X X XXX of the convex functions in Lip Y Y YYY, we can prove the following theorem:
Theorem 1. If X X XXX is a normed linear space and Y Y YYY a nonvoid convex subset of X X XXX, then every convex function f f fff in Lip Y Y YYY has a convex norm preserving extension F F FFF in Lip X X XXX.
Proof. We show that the maximal norm-preserving extension (4) of f f fff is also convex. Let F ( x ) = inf { f ( y ) + f Y x y : y Y } , x 1 , x 2 X , y 1 F ( x ) = inf f ( y ) + f Y x y : y Y , x 1 , x 2 X , y 1 F(x)=i n f{f(y)+||f||_(Y)||x-y||:y in Y},x_(1),x_(2)in X,y_(1)F(x)=\inf \left\{f(y)+\|f\|_{Y}\|x-y\|: y \in Y\right\}, x_{1}, x_{2} \in X, y_{1}F(x)=inf{f(y)+fYxy:yY},x1,x2X,y1, y 2 Y y 2 Y y_(2)in Yy_{2} \in Yy2Y, and α [ 0 , 1 ] α [ 0 , 1 ] alpha in[0,1]\alpha \in[0,1]α[0,1]. Then
F ( α x 1 + ( 1 α ) x 2 ) f ( α y 1 + ( 1 α ) y 2 ) + f Y α x 1 + ( 1 α ) x 2 α y 1 ( 1 α ) y 2 α f ( y 1 ) + ( 1 α ) f ( y 2 ) + f Y ( α x 1 y 1 + ( 1 α ) x 2 y 2 ) = α ( f ( y 1 ) + f Y x 1 y 1 ) + ( 1 α ) ( f ( y 2 ) + f Y x 2 y 2 ) F α x 1 + ( 1 α ) x 2 f α y 1 + ( 1 α ) y 2 + f Y α x 1 + ( 1 α ) x 2 α y 1 ( 1 α ) y 2 α f y 1 + ( 1 α ) f y 2 + f Y α x 1 y 1 + ( 1 α ) x 2 y 2 = α f y 1 + f Y x 1 y 1 + ( 1 α ) f y 2 + f Y x 2 y 2 {:[F(alphax_(1)+(1-alpha)x_(2))],[quad <= f(alphay_(1)+(1-alpha)y_(2))+||f||_(Y)||alphax_(1)+(1-alpha)x_(2)-alphay_(1)-(1-alpha)y_(2)||],[quad <= alpha f(y_(1))+(1-alpha)f(y_(2))+||f||_(Y)(alpha||x_(1)-y_(1)||+(1-alpha)||x_(2)-y_(2)||)],[quad=alpha(f(y_(1))+||f||_(Y)||x_(1)-y_(1)||)+(1-alpha)(f(y_(2))+||f||_(Y)||x_(2)-y_(2)||)]:}\begin{aligned} & F\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \\ & \quad \leqslant f\left(\alpha y_{1}+(1-\alpha) y_{2}\right)+\|f\|_{Y}\left\|\alpha x_{1}+(1-\alpha) x_{2}-\alpha y_{1}-(1-\alpha) y_{2}\right\| \\ & \quad \leqslant \alpha f\left(y_{1}\right)+(1-\alpha) f\left(y_{2}\right)+\|f\|_{Y}\left(\alpha\left\|x_{1}-y_{1}\right\|+(1-\alpha)\left\|x_{2}-y_{2}\right\|\right) \\ & \quad=\alpha\left(f\left(y_{1}\right)+\|f\|_{Y}\left\|x_{1}-y_{1}\right\|\right)+(1-\alpha)\left(f\left(y_{2}\right)+\|f\|_{Y}\left\|x_{2}-y_{2}\right\|\right) \end{aligned}F(αx1+(1α)x2)f(αy1+(1α)y2)+fYαx1+(1α)x2αy1(1α)y2αf(y1)+(1α)f(y2)+fY(αx1y1+(1α)x2y2)=α(f(y1)+fYx1y1)+(1α)(f(y2)+fYx2y2)
Taking the infimum with respect to y 1 , y 2 Y y 1 , y 2 Y y_(1),y_(2)in Yy_{1}, y_{2} \in Yy1,y2Y, we obtain
F ( α x 1 + ( 1 α ) x 2 ) α F ( x 1 ) + ( 1 α ) F ( x 2 ) , F α x 1 + ( 1 α ) x 2 α F x 1 + ( 1 α ) F x 2 , F(alphax_(1)+(1-alpha)x_(2)) <= alpha F(x_(1))+(1-alpha)F(x_(2)),F\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leqslant \alpha F\left(x_{1}\right)+(1-\alpha) F\left(x_{2}\right),F(αx1+(1α)x2)αF(x1)+(1α)F(x2),
which shows that the function F F FFF is convex.
In general, this extension is not unique. Indeed, let X = R X = R X=RX=RX=R, with the usual absolute value norm, Y = [ 1 , 1 ] Y = [ 1 , 1 ] Y=[-1,1]Y=[-1,1]Y=[1,1], and f : Y R f : Y R f:Y rarr Rf: Y \rightarrow Rf:YR be given by f ( x ) = x f ( x ) = x f(x)=-xf(x)=-xf(x)=x for x [ 1 , 0 ] x [ 1 , 0 ] x in[-1,0]x \in[-1,0]x[1,0] and f ( x ) = 2 x f ( x ) = 2 x f(x)=2xf(x)=2 xf(x)=2x for x ] 0 , 1 ] x ] 0 , 1 ] x in]0,1]x \in] 0,1]x]0,1]. Then the maximal normpreserving extension (4) of f f fff is given by F ( x ) = 2 x F ( x ) = 2 x F(x)=-2xF(x)=-2 xF(x)=2x for x ] , 1 [ x ] , 1 [ x in]-oo,-1[x \in]-\infty,-1[x],1[, F ( x ) = 2 x F ( x ) = 2 x F(x)=-2xF(x)=-2 xF(x)=2x for x [ 1 , 0 [ x [ 1 , 0 [ x in[-1,0[x \in[-1,0[x[1,0[, and F ( x ) = 2 x F ( x ) = 2 x F(x)=2xF(x)=2 xF(x)=2x for x [ 0 , + [ x [ 0 , + [ x in[0,+oo[x \in[0,+\infty[x[0,+[. But the function G ( x ) = x G ( x ) = x G(x)=-xG(x)=-xG(x)=x for x ] , 0 [ x ] , 0 [ x in]-oo,0[x \in]-\infty, 0[x],0[ and G ( x ) = 2 x G ( x ) = 2 x G(x)=2xG(x)=2 xG(x)=2x for x [ 0 , + [ x [ 0 , + [ x in[0,+oo[x \in[0,+\infty[x[0,+[ is also a convex norm-preserving extension of f f fff, and so is every convex combination α F + ( 1 α ) G , α [ 0 , 1 ] α F + ( 1 α ) G , α [ 0 , 1 ] alpha F+(1-alpha)G,alpha in[0,1]\alpha F+ (1-\alpha) G, \alpha \in[0,1]αF+(1α)G,α[0,1], of the functions F F FFF and G G GGG.
Let, as above, X X XXX be a normed linear space and Z Z ZZZ a convex subset of X X XXX such that 0 Z 0 Z 0in Z0 \in Z0Z. Denote by Lip 0 Z Lip 0 Z Lip_(0)Z\operatorname{Lip}_{0} ZLip0Z the space
(6) Lip 0 Z = { f Lip Z : f ( 0 ) = 0 } . (6) Lip 0 Z = { f Lip Z : f ( 0 ) = 0 } . {:(6)Lip_(0)Z={f in Lip Z:f(0)=0}.:}\begin{equation*} \operatorname{Lip}_{0} Z=\{f \in \operatorname{Lip} Z: f(0)=0\} . \tag{6} \end{equation*}(6)Lip0Z={fLipZ:f(0)=0}.
Then (2) is a norm on Lip 0 Z Lip 0 Z Lip_(0)Z\operatorname{Lip}_{0} ZLip0Z and Lip 0 Z Lip 0 Z Lip_(0)Z\operatorname{Lip}_{0} ZLip0Z is a Banach space with respect to this norm.
We use also the following notations:
(7) K Z = { f Lip 0 Z : f is convex on Z } (7) K Z = f Lip 0 Z : f  is convex on  Z {:(7)K_(Z)={f inLip_(0)Z:f" is convex on "Z}:}\begin{equation*} K_{Z}=\left\{f \in \operatorname{Lip}_{0} Z: f \text { is convex on } Z\right\} \tag{7} \end{equation*}(7)KZ={fLip0Z:f is convex on Z}
-the convex cone of convex functions in Lip 0 Z Lip 0 Z Lip_(0)Z\operatorname{Lip}_{0} ZLip0Z;
(8) X c = K X K X , (8) X c = K X K X , {:(8)X_(c)=K_(X)-K_(X)",":}\begin{equation*} X_{c}=K_{X}-K_{X}, \tag{8} \end{equation*}(8)Xc=KXKX,
-the linear space generated by the cone K X K X K_(X)K_{X}KX;
(9) Z c = { f X c : f | Z = 0 } (9) Z c = f X c : f Z = 0 {:(9)Z_(c)^(_|_)={f inX_(c):f|_(Z)=0}:}\begin{equation*} Z_{c}{ }^{\perp}=\left\{f \in X_{c}:\left.f\right|_{Z}=0\right\} \tag{9} \end{equation*}(9)Zc={fXc:f|Z=0}
-the null space of the set Z Z ZZZ in X c X c X_(c)X_{c}Xc.
If E E EEE is a normed linear space, M M MMM a nonvoid subset of E E EEE and x E x E x in Ex \in ExE, we denote by d ( x , M ) d ( x , M ) d(x,M)d(x, M)d(x,M) the distance from x x xxx to M M MMM, i.e.,
d ( x , M ) = inf { x y : y M } d ( x , M ) = inf { x y : y M } d(x,M)=i n f{||x-y:y in M}d(x, M)=\inf \{\| x-y: y \in M\}d(x,M)=inf{xy:yM}
and by P M P M P_(M)P_{M}PM the metric projection of X X XXX onto M M MMM, i.e.,
P M ( x ) = { y M : | x y | = d ( x , M ) } . P M ( x ) = { y M : | x y | = d ( x , M ) } . P_(M)(x)={y in M:|x-y|=d(x,M)}.P_{M}(x)=\{y \in M:|x-y|=d(x, M)\} .PM(x)={yM:|xy|=d(x,M)}.
If K K KKK is a subset of X X XXX, then the set M M MMM is called K K KKK-proximinal ( K K KKK-Chebyshevian) if P M ( x ) P M ( x ) P_(M)(x)!=O/P_{M}(x) \neq \varnothingPM(x) (respectively card ( P M ( x ) ) = 1 P M ( x ) = 1 (P_(M)(x))=1\left(P_{M}(x)\right)=1(PM(x))=1 ), for all x K x K x in Kx \in KxK.
In the sequel X X XXX denotes a normed linear space and Y Y YYY a convex subset of X X XXX such that 0 Y 0 Y 0in Y0 \in Y0Y. It follows that K Y K Y K_(Y)K_{Y}KY is a P P PPP-cone in the sense of [10], and as a particular case of the results proved there, one obtains:
Theorem 2. (a) If f K X f K X f inK_(X)f \in K_{X}fKX then
| f | Y | Y = d ( f , Y c ) | f | Y Y = d f , Y c |f|_(Y)|_(Y)=d(f,Y_(c)^(_|_))\left.|f|_{Y}\right|_{Y}=d\left(f, Y_{c}^{\perp}\right)|f|Y|Y=d(f,Yc)
(b) The space Y c Y c Y_(c)^(_|_)Y_{c}{ }^{\perp}Yc is K X K X K_(X)K_{X}KX-proximinal. For f K X f K X f inK_(X)f \in K_{X}fKX, the function g g ggg is in P Y e ( f ) P Y e ( f ) P_(Y_(e)^(_|_))(f)P_{Y_{e}^{\perp}}(f)PYe(f) if and only if g = f F g = f F g=f-Fg=f-Fg=fF, where F F FFF is a convex norm-preserving extension off f | Y f Y f|_(Y)\left.f\right|_{Y}f|Y.
(c) The space Y c Y c Y_(c)^(_|_)Y_{c}{ }^{\perp}Yc is K X K X K_(X)K_{X}KX-Chebyshevian if and only if every f K Y f K Y f inK_(Y)f \in K_{Y}fKY has a unique convex norm-preserving extension to X X XXX.
Remark. Similar duality results appear in [4, 11] for linear functionals and in [6-10] for Lipschitz functions.
Now, we want to show that an inequality similar to (5) holds also for the convex norm-preserving extensions of a given convex Lipschitz function. For f K Y f K Y f inK_(Y)f \in K_{Y}fKY let us denote by E Y c ( f ) E Y c ( f ) E_(Y)^(c)(f)E_{Y}{ }^{c}(f)EYc(f) the set of all convex norm preserving extensions of f f fff. We denote the norm x x *∣x\cdot \mid xx by **∣\cdot \cdot \mid.
Theorem 3. If f K Y f K Y f inK_(Y)f \in K_{Y}fKY then there exist two functions F 1 , F 2 F 1 , F 2 F_(1),F_(2)F_{1}, F_{2}F1,F2 in E Y c ( f ) E Y c ( f ) E_(Y)^(c)(f)E_{Y}{ }^{c}(f)EYc(f) such that
(10) F 1 ( x ) F ( x ) F 2 ( x ) (10) F 1 ( x ) F ( x ) F 2 ( x ) {:(10)F_(1)(x) <= F(x) <= F_(2)(x):}\begin{equation*} F_{1}(x) \leqslant F(x) \leqslant F_{2}(x) \tag{10} \end{equation*}(10)F1(x)F(x)F2(x)
for all x X x X x in Xx \in XxX and F E Y c ( f ) F E Y c ( f ) F inE_(Y)^(c)(f)F \in E_{Y}{ }^{c}(f)FEYc(f).
For the proof we need the following lemma:
Lemma 4. The set E Y c ( f ) E Y c ( f ) E_(Y)^(c)(f)E_{Y}{ }^{c}(f)EYc(f) is downward directed (with respect to the pointwise ordering).
Proof of Lemma 4. We have to show that for G 1 , G 2 E Y c ( f ) G 1 , G 2 E Y c ( f ) G_(1),G_(2)inE_(Y)^(c)(f)G_{1}, G_{2} \in E_{Y}{ }^{c}(f)G1,G2EYc(f) there exists G E Y c ( f ) G E Y c ( f ) G inE_(Y)^(c)(f)G \in E_{Y}{ }^{c}(f)GEYc(f) such that
(11) G ( x ) min ( G 1 ( x ) , G 2 ( x ) ) , (11) G ( x ) min G 1 ( x ) , G 2 ( x ) , {:(11)G(x) <= min(G_(1)(x),G_(2)(x))",":}\begin{equation*} G(x) \leqslant \min \left(G_{1}(x), G_{2}(x)\right), \tag{11} \end{equation*}(11)G(x)min(G1(x),G2(x)),
for all x X x X x in Xx \in XxX.
If E E EEE is a linear space and φ : E R { ± } φ : E R { ± } varphi:E rarr R uu{+-oo}\varphi: E \rightarrow R \cup\{ \pm \infty\}φ:ER{±} is a function, then the strict epigraph of φ φ varphi\varphiφ is defined by
epi φ = { ( x , a ) E × R : φ ( x ) < a } . epi φ = { ( x , a ) E × R : φ ( x ) < a } . epi^(')varphi={(x,a)in E xx R:varphi(x) < a}.\operatorname{epi}^{\prime} \varphi=\{(x, a) \in E \times R: \varphi(x)<a\} .epiφ={(x,a)E×R:φ(x)<a}.
The function φ φ varphi\varphiφ is convex if and only if its strict epigraph is a convex subset of E × R E × R E xx RE \times RE×R (see Laurent [5, Theorem 6.1.5, Remark 6.1.6]).
For G 1 , G 2 E Y c ( f ) G 1 , G 2 E Y c ( f ) G_(1),G_(2)inE_(Y)^(c)(f)G_{1}, G_{2} \in E_{Y}{ }^{c}(f)G1,G2EYc(f) put
(12) Γ = co ( epi G 1 epi G 2 ) (12) Γ = co  epi  G 1  epi  G 2 {:(12)Gamma=co(" epi "^(')G_(1)uu" epi "^(')G_(2)):}\begin{equation*} \Gamma=\operatorname{co}\left(\text { epi }^{\prime} G_{1} \cup \text { epi }^{\prime} G_{2}\right) \tag{12} \end{equation*}(12)Γ=co( epi G1 epi G2)
where co ( A ) co ( A ) co(A)\operatorname{co}(A)co(A) denotes the convex hull of the set A A AAA.
Define G : X R { ± } G : X R { ± } G:X rarr R uu{+-oo}G: X \rightarrow R \cup\{ \pm \infty\}G:XR{±} by
(13) G ( x ) = inf { a R : ( x , a ) Γ } , x X . (13) G ( x ) = inf { a R : ( x , a ) Γ } , x X . {:(13)G(x)=i n f{a in R:(x","a)in Gamma}","quad x in X.:}\begin{equation*} G(x)=\inf \{a \in R:(x, a) \in \Gamma\}, \quad x \in X . \tag{13} \end{equation*}(13)G(x)=inf{aR:(x,a)Γ},xX.
We show that G E Y c ( f ) G E Y c ( f ) G inE_(Y)^(c)(f)G \in E_{Y}{ }^{c}(f)GEYc(f) and that G G GGG verifies the inequality (11). The proof is divided into several steps.
(i) The set Γ Γ Gamma\GammaΓ is open. Since the functions G 1 G 1 G_(1)G_{1}G1 and G 2 G 2 G_(2)G_{2}G2 are continuous, the sets epi' G 1 G 1 G_(1)G_{1}G1 and epi' G 2 G 2 G_(2)G_{2}G2 are open, and so is their convex hull Γ Γ Gamma\GammaΓ.
(ii) If ( z , c ) Γ ( z , c ) Γ (z,c)in Gamma(z, c) \in \Gamma(z,c)Γ and d c d c d >= cd \geqslant cdc then ( z , d ) Γ ( z , d ) Γ (z,d)in Gamma(z, d) \in \Gamma(z,d)Γ. Let z = α x + ( 1 α ) y z = α x + ( 1 α ) y z=alpha x+(1-alpha)yz=\alpha x+(1-\alpha) yz=αx+(1α)y, c = α a + ( 1 α ) h c = α a + ( 1 α ) h c=alpha a+(1-alpha)hc=\alpha a+(1-\alpha) hc=αa+(1α)h, for α [ 0 , 1 ] , ( x , a ) α [ 0 , 1 ] , ( x , a ) alpha in[0,1],(x,a)in\alpha \in[0,1],(x, a) \inα[0,1],(x,a) epi G 1 , ( y , b ) G 1 , ( y , b ) ^(')G_(1),(y,b)in^{\prime} G_{1},(y, b) \inG1,(y,b) epi G 2 G 2 ^(')G_(2)^{\prime} G_{2}G2 and let ϵ > 0 ϵ > 0 epsilon > 0\epsilon>0ϵ>0 be an arbitrary number. Then ( x , a + ϵ ) epi G 1 ( x , a + ϵ ) epi G 1 (x,a+epsilon)inepi^(')G_(1)(x, a+\epsilon) \in \operatorname{epi}^{\prime} G_{1}(x,a+ϵ)epiG1 and ( y , b + ϵ ) ( y , b + ϵ ) (y,b+epsilon)in(y, b+\epsilon) \in(y,b+ϵ) epi' G 2 G 2 G_(2)G_{2}G2, so that ( z , c + ϵ ) = α ( x , a + ϵ ) + ( 1 α ) ( y , b + ϵ ) Γ ( z , c + ϵ ) = α ( x , a + ϵ ) + ( 1 α ) ( y , b + ϵ ) Γ (z,c+epsilon)=alpha(x,a+epsilon)+(1-alpha)(y,b+epsilon)in Gamma(z, c+\epsilon)=\alpha(x, a+\epsilon)+(1-\alpha)(y, b+\epsilon) \in \Gamma(z,c+ϵ)=α(x,a+ϵ)+(1α)(y,b+ϵ)Γ.
(iii) epi' G = Γ G = Γ G=GammaG=\GammaG=Γ and G G GGG is a convex function. Let ( x , a ) ( x , a ) (x,a)in(x, a) \in(x,a) epi' G G GGG, i.e., G ( x ) < a G ( x ) < a G(x) < aG(x)<aG(x)<a. By (13) there exists b R b R b in Rb \in RbR such that ( x , b ) Γ ( x , b ) Γ (x,b)in Gamma(x, b) \in \Gamma(x,b)Γ and b < a b < a b < ab<ab<a. By (ii), ( x , a ) Γ ( x , a ) Γ (x,a)in Gamma(x, a) \in \Gamma(x,a)Γ, proving the inclusion epi' G Γ G Γ G sub GammaG \subset \GammaGΓ.
Conversely, let ( x , a ) Γ ( x , a ) Γ (x,a)in Gamma(x, a) \in \Gamma(x,a)Γ. By (i) Γ Γ Gamma\GammaΓ is open, so that there exist a neighborhood U U UUU of x x xxx and ϵ > 0 ϵ > 0 epsilon > 0\epsilon>0ϵ>0 such that U × ] a ϵ , a + ϵ [ Γ U × ] a ϵ , a + ϵ [ Γ U xx]a-epsilon,a+epsilon[sub GammaU \times] a-\epsilon, a+\epsilon[\subset \GammaU×]aϵ,a+ϵ[Γ. Therefore { x } × ] a ϵ , a + ϵ [ Γ { x } × ] a ϵ , a + ϵ [ Γ {x}xx]a-epsilon,a+epsilon[sub Gamma\{x\} \times] a-\epsilon, a+\epsilon[\subset \Gamma{x}×]aϵ,a+ϵ[Γ and, by (13), G ( x ) a ϵ < a G ( x ) a ϵ < a G(x) <= a-epsilon < aG(x) \leqslant a-\epsilon<aG(x)aϵ<a, which shows that ( x , a ) ( x , a ) (x,a)in(x, a) \in(x,a) epi G G ^(')G^{\prime} GG and Γ Γ Gamma sub\Gamma \subsetΓ epi' G G GGG.
The convexity of G G GGG follows from the above quoted result in Laurent [5].
(iv) We have G ( x ) min ( G 1 ( x ) , G 2 ( x ) ) G ( x ) min G 1 ( x ) , G 2 ( x ) G(x) <= min(G_(1)(x),G_(2)(x))G(x) \leqslant \min \left(G_{1}(x), G_{2}(x)\right)G(x)min(G1(x),G2(x)) for all x X x X x in Xx \in XxX and G ( z ) = G 1 ( z ) = G 2 ( z ) G ( z ) = G 1 ( z ) = G 2 ( z ) G(z)=G_(1)(z)=G_(2)(z)G(z)= G_{1}(z)=G_{2}(z)G(z)=G1(z)=G2(z) for all z Y z Y z in Yz \in YzY. Let x X x X x in Xx \in XxX. Then for all a > G 1 ( x ) a > G 1 ( x ) a > G_(1)(x)a>G_{1}(x)a>G1(x) and b > G 2 ( x ) b > G 2 ( x ) b > G_(2)(x)b>G_{2}(x)b>G2(x) we have ( x , a ) ( x , a ) (x,a)in(x, a) \in(x,a) epi G 1 Γ G 1 Γ ^(')G_(1)sub Gamma^{\prime} G_{1} \subset \GammaG1Γ and ( y , b ) ( y , b ) (y,b)in(y, b) \in(y,b) epi G 2 Γ G 2 Γ ^(')G_(2)sub Gamma^{\prime} G_{2} \subset \GammaG2Γ, so that, by (13), G ( x ) min ( G 1 ( x ) , G 2 ( x ) ) G ( x ) min G 1 ( x ) , G 2 ( x ) G(x) <= min(G_(1)(x),G_(2)(x))G(x) \leqslant \min \left(G_{1}(x), G_{2}(x)\right)G(x)min(G1(x),G2(x)).
Let z z zzz be in Y Y YYY and c c ccc in R R RRR such that ( z , c ) Γ ( z , c ) Γ (z,c)in Gamma(z, c) \in \Gamma(z,c)Γ. Then ( z , c ) = a ( x , a ) ( 1 α ) ( y , b ) ( z , c ) = a ( x , a ) ( 1 α ) ( y , b ) (z,c)=-a(x,a)(1-alpha)(y,b)(z, c)=-a(x, a) (1-\alpha)(y, b)(z,c)=a(x,a)(1α)(y,b), for a number α [ 0 , 1 ] , ( x , a ) α [ 0 , 1 ] , ( x , a ) alpha in[0,1],(x,a)in\alpha \in[0,1],(x, a) \inα[0,1],(x,a) epi G 1 G 1 ^(')G_(1)^{\prime} G_{1}G1, and ( y , b ) ( y , b ) (y,b)in(y, b) \in(y,b) epi G 2 G 2 ^(')G_(2)^{\prime} G_{2}G2. But, by the convexity of G 1 G 1 G_(1)G_{1}G1 and G 2 , G i ( z ) = G i ( α x + ( 1 α ) y ) α G i ( x ) + ( 1 α ) G i ( y ) < α a + ( 1 α ) b = c G 2 , G i ( z ) = G i ( α x + ( 1 α ) y ) α G i ( x ) + ( 1 α ) G i ( y ) < α a + ( 1 α ) b = c G_(2),G_(i)(z)=G_(i)(alpha x+(1-alpha)y) <= alphaG_(i)(x)+(1-alpha)G_(i)(y) < alpha a+(1-alpha)b=cG_{2}, G_{i}(z)=G_{i}(\alpha x+(1-\alpha) y) \leqslant \alpha G_{i}(x) +(1-\alpha) G_{i}(y)<\alpha a+(1-\alpha) b=cG2,Gi(z)=Gi(αx+(1α)y)αGi(x)+(1α)Gi(y)<αa+(1α)b=c, for i == 1 i == 1 i==1i==1i==1, 2. Taking the infimum with respect to all c R c R c in Rc \in RcR such that ( z , c ) Γ ( z , c ) Γ (z,c)in Gamma(z, c) \in \Gamma(z,c)Γ we obtain G ( z ) G 1 ( z ) = G 2 ( z ) G ( z ) G 1 ( z ) = G 2 ( z ) G(z) >= G_(1)(z)=G_(2)(z)G(z) \geqslant G_{1}(z)= G_{2}(z)G(z)G1(z)=G2(z). Since the converse inequality holds for all x X x X x in Xx \in XxX, it follows G ( z ) G ( z ) G(z)G(z)G(z) G 1 ( z ) = G 2 ( z ) G 1 ( z ) = G 2 ( z ) G_(1)(z)=G_(2)(z)G_{1}(z)=G_{2}(z)G1(z)=G2(z), for all z Y z Y z in Yz \in YzY.
(v) < G ( x ) < + < G ( x ) < + -oo < G(x) < +oo-\infty<G(x)<+\infty<G(x)<+ for all x X x X x in Xx \in XxX. The relations ( x , G 1 ( x ) 1 ) x , G 1 ( x ) 1 (x,G_(1)(x)-1)in\left(x, G_{1}(x)-1\right) \in(x,G1(x)1) epi' G 1 Γ G 1 Γ G_(1)sub GammaG_{1} \subset \GammaG1Γ and (13) imply G ( x ) G 1 ( x ) + 1 < G ( x ) G 1 ( x ) + 1 < G(x) <= G_(1)(x)+1 < ooG(x) \leqslant G_{1}(x)+1<\inftyG(x)G1(x)+1<. Suppose there exists x X x X x in Xx \in XxX such that G ( x ) = G ( x ) = G(x)=-ooG(x)=-\inftyG(x)=. Choose an element y Y y Y y in Yy \in YyY and put z = 2 y x z = 2 y x z=2y-xz=2 y-xz=2yx. Then, by (iv) and the convexity of G G GGG we get
G 1 ( y ) = G ( y ) 2 1 ( F ( x ) + F ( z ) ) = , G 1 ( y ) = G ( y ) 2 1 ( F ( x ) + F ( z ) ) = , G_(1)(y)=G(y) <= 2^(-1)(F(x)+F(z))=-oo,G_{1}(y)=G(y) \leqslant 2^{-1}(F(x)+F(z))=-\infty,G1(y)=G(y)21(F(x)+F(z))=,
implying G 1 ( y ) = G 1 ( y ) = G_(1)(y)=-ooG_{1}(y)=-\inftyG1(y)=, which is impossible.
(vi) Equality of the norms: G = f | Y = G 1 = G 2 G = f Y = G 1 = G 2 ||G||=||f|_(Y)=||G_(1)||=||G_(2)||\|G\|=\left\|\left.f\right|_{Y}=\right\| G_{1}\|=\| G_{2} \|G=f|Y=G1=G2. Since G | Y = G 1 | Y f G Y = G 1 Y f G|_(Y)=G_(1)|_(Y)-f\left.G\right|_{Y}=\left.G_{1}\right|_{Y}-fG|Y=G1|Yf, it follows G G 1 | 1 G G 1 1 ||G|| >= ||G_(1)|_(1)\|G\| \geqslant \|\left. G_{1}\right|_{1}GG1|1. Suppose G > G 1 G > G 1 ||G|| > ||G_(1)||\|G\|>\left\|G_{1}\right\|G>G1. By the definition (2) of the norm in Lip X X XXX, there exist x , y X , x y x , y X , x y x,y in X,x!=yx, y \in X, x \neq yx,yX,xy such that | G ( x ) G ( y ) | / | | x y | | > | | G 1 | | | G ( x ) G ( y ) | / | | x y | | > G 1 |G(x)-G(y)|//||x-y|| > ||G_(1)|||G(x)-G(y)| /||x-y||>\left|\left|G_{1}\right|\right||G(x)G(y)|/||xy||>||G1||, say
| G ( x ) G ( y ) | / x y = | G 1 | + ϵ , | G ( x ) G ( y ) | / x y = G 1 + ϵ , |G(x)-G(y)|//||x-y||=|G_(1)|∣+epsilon,|G(x)-G(y)| /\|x-y\|=\left|G_{1}\right| \mid+\epsilon,|G(x)G(y)|/xy=|G1|+ϵ,
for an ϵ 0 ϵ 0 epsilon≫0\epsilon \gg 0ϵ0. Without loss of generality we can suppose
(14) G ( y ) G ( x ) x y = G 1 + ϵ . (14) G ( y ) G ( x ) x y = G 1 + ϵ . {:(14)(G(y)-G(x))/(||x-y||)=||G_(1)||+epsilon.:}\begin{equation*} \frac{G(y)-G(x)}{\|x-y\|}=\left\|G_{1}\right\|+\epsilon . \tag{14} \end{equation*}(14)G(y)G(x)xy=G1+ϵ.
Let x y = { x + t ( y x ) : t 0 } x y = { x + t ( y x ) : t 0 } vec(xy)={x+t(y-x):t >= 0}\overrightarrow{x y}=\{x+t(y-x): t \geqslant 0\}xy={x+t(yx):t0} be the half-line determined by x x xxx and y y yyy. Define φ : ] 0 , [ R φ : ] 0 , R varphi:]0,oo[rarr R:}\varphi:] 0, \infty\left[\rightarrow R\right.φ:]0,[R by φ ( t ) = t 1 ( G ( x + t ( y x ) ) G ( x ) ) φ ( t ) = t 1 ( G ( x + t ( y x ) ) G ( x ) ) varphi(t)=t^(-1)(G(x+t(y-x))-G(x))\varphi(t)=t^{-1}(G(x+t(y-x))-G(x))φ(t)=t1(G(x+t(yx))G(x)). By Holmes [3, p. 17], the function φ φ varphi\varphiφ is nondecreasing, so that
G ( x + t ( y x ) ) G ( x ) t ( y x ) = 1 y x φ ( t ) 1 y x φ ( 1 ) = G ( y ) G ( x ) y x = G 1 + ϵ G 1 ( x + t ( y x ) ) G 1 ( x ) t ( y x ) + ϵ G ( x + t ( y x ) ) G ( x ) t ( y x ) = 1 y x φ ( t ) 1 y x φ ( 1 ) = G ( y ) G ( x ) y x = G 1 + ϵ G 1 ( x + t ( y x ) ) G 1 ( x ) t ( y x ) + ϵ {:[(G(x+t(y-x))-G(x))/(||t(y-x)||)=(1)/(||y-x||)*varphi(t) >= (1)/(||y-x||)*varphi(1)],[=(G(y)-G(x))/(||y-x||)=||G_(1)||+epsilon],[ >= (G_(1)(x+t(y-x))-G_(1)(x))/(||t(y-x)||)+epsilon]:}\begin{aligned} \frac{G(x+t(y-x))-G(x)}{\|t(y-x)\|} & =\frac{1}{\|y-x\|} \cdot \varphi(t) \geqslant \frac{1}{\|y-x\|} \cdot \varphi(1) \\ & =\frac{G(y)-G(x)}{\|y-x\|}=\left\|G_{1}\right\|+\epsilon \\ & \geqslant \frac{G_{1}(x+t(y-x))-G_{1}(x)}{\|t(y-x)\|}+\epsilon \end{aligned}G(x+t(yx))G(x)t(yx)=1yxφ(t)1yxφ(1)=G(y)G(x)yx=G1+ϵG1(x+t(yx))G1(x)t(yx)+ϵ
for all t 1 t 1 t >= 1t \geqslant 1t1.
Therefore
G 1 ( x + t ( y x ) ) G ( x + t ( y x ) ) ( G ( x ) G 1 ( x ) + t ϵ y x ) G 1 ( x + t ( y x ) ) G ( x + t ( y x ) ) G ( x ) G 1 ( x ) + t ϵ y x G_(1)(x+t(y-x)) <= G(x+t(y-x))-(G(x)-G_(1)(x)+t epsilon||y-x||)G_{1}(x+t(y-x)) \leqslant G(x+t(y-x))-\left(G(x)-G_{1}(x)+t \epsilon\|y-x\|\right)G1(x+t(yx))G(x+t(yx))(G(x)G1(x)+tϵyx)
for all t 1 t 1 t >= 1t \geqslant 1t1. But for t t ttt sufficiently large, G ( x ) G 1 ( x ) + t ϵ y x > 0 G ( x ) G 1 ( x ) + t ϵ y x > 0 G(x)-G_(1)(x)+t epsilon||y-x|| > 0G(x)-G_{1}(x)+t \epsilon\|y-x\|>0G(x)G1(x)+tϵyx>0, so
that G 1 ( x + t ( y x ) ) < G ( x + t ( y x ) ) G 1 ( x + t ( y x ) ) < G ( x + t ( y x ) ) G_(1)(x+t(y-x)) < G(x+t(y-x))G_{1}(x+t(y-x))<G(x+t(y-x))G1(x+t(yx))<G(x+t(yx)), contradicting the inequality G G 1 ( iv ) G G 1 ( iv ) G <= G_(1)(iv)G \leqslant G_{1}(\mathrm{iv})GG1(iv).
Lemma 4 is completely proved.
Proof of Theorem 3. Let F 2 F 2 F_(2)F_{2}F2 be the maximal norm-preserving extension (4) of f f fff. By the proof of Theorem 1, F 2 F 2 F_(2)F_{2}F2 is convex and since F 2 ( x ) F ( x ) F 2 ( x ) F ( x ) F_(2)(x) >= F(x)F_{2}(x) \geqslant F(x)F2(x)F(x) for every norm-preserving extension F F FFF of f f fff, this is a fortiori true for the convex norm-preserving extensions of f f fff.
Put
(15) F 1 ( x ) = inf { F ( x ) : F E Y c ( f ) } . (15) F 1 ( x ) = inf F ( x ) : F E Y c ( f ) . {:(15)F_(1)(x)=i n f{F(x):F inE_(Y)^(c)(f)}.:}\begin{equation*} F_{1}(x)=\inf \left\{F(x): F \in E_{Y}^{c}(f)\right\} . \tag{15} \end{equation*}(15)F1(x)=inf{F(x):FEYc(f)}.
To end the proof we have to show that F 1 F 1 F_(1)F_{1}F1 is a convex norm-preserving extension of f f fff.
(i) F 1 F 1 F_(1)F_{1}F1 is a convex function. Let x , y X , α [ 0 , 1 ] , ϵ > 0 x , y X , α [ 0 , 1 ] , ϵ > 0 x,y sub X,alpha in[0,1],epsilon > 0x, y \subset X, \alpha \in[0,1], \epsilon>0x,yX,α[0,1],ϵ>0 and let G 1 G 1 G_(1)G_{1}G1, G 2 E Y c ( f ) G 2 E Y c ( f ) G_(2)inE_(Y)^(c)(f)G_{2} \in E_{Y}{ }^{c}(f)G2EYc(f) be such that G 1 ( x ) < F 1 ( x ) + ϵ G 1 ( x ) < F 1 ( x ) + ϵ G_(1)(x) < F_(1)(x)+epsilonG_{1}(x)<F_{1}(x)+\epsilonG1(x)<F1(x)+ϵ and G 2 ( y ) < F 1 ( y ) + ϵ G 2 ( y ) < F 1 ( y ) + ϵ G_(2)(y) < F_(1)(y)+epsilonG_{2}(y)<F_{1}(y)+\epsilonG2(y)<F1(y)+ϵ. Since, by Lemma 4, the set E Y c ( f ) E Y c ( f ) E_(Y)^(c)(f)E_{Y}{ }^{c}(f)EYc(f) is downward directed, there exists G 3 E Y c ( f ) G 3 E Y c ( f ) G_(3)inE_(Y)^(c)(f)G_{3} \in E_{Y}{ }^{c}(f)G3EYc(f) such that G 3 G 1 G 3 G 1 G_(3) <= G_(1)G_{3} \leqslant G_{1}G3G1 and G 3 G 2 G 3 G 2 G_(3) <= G_(2)G_{3} \leqslant G_{2}G3G2. Then
F 1 ( α x + ( 1 α ) y ) G 3 ( α x + ( 1 α ) y ) α G 3 ( x ) + ( 1 α ) G 3 ( y ) α G 1 ( x ) + ( 1 α ) G 2 ( y ) < α F 1 ( x ) + ( 1 α ) F 2 ( y ) + ϵ F 1 ( α x + ( 1 α ) y ) G 3 ( α x + ( 1 α ) y ) α G 3 ( x ) + ( 1 α ) G 3 ( y ) α G 1 ( x ) + ( 1 α ) G 2 ( y ) < α F 1 ( x ) + ( 1 α ) F 2 ( y ) + ϵ {:[F_(1)(alpha x+(1-alpha)y)],[quad <= G_(3)(alpha x+(1-alpha)y) <= alphaG_(3)(x)+(1-alpha)G_(3)(y)],[quad <= alphaG_(1)(x)+(1-alpha)G_(2)(y) < alphaF_(1)(x)+(1-alpha)F_(2)(y)+epsilon]:}\begin{aligned} & F_{1}(\alpha x+(1-\alpha) y) \\ & \quad \leqslant G_{3}(\alpha x+(1-\alpha) y) \leqslant \alpha G_{3}(x)+(1-\alpha) G_{3}(y) \\ & \quad \leqslant \alpha G_{1}(x)+(1-\alpha) G_{2}(y)<\alpha F_{1}(x)+(1-\alpha) F_{2}(y)+\epsilon \end{aligned}F1(αx+(1α)y)G3(αx+(1α)y)αG3(x)+(1α)G3(y)αG1(x)+(1α)G2(y)<αF1(x)+(1α)F2(y)+ϵ
Since ϵ > 0 ϵ > 0 epsilon > 0\epsilon>0ϵ>0 is arbitrary, it follows that
F 1 ( α x + ( 1 α ) y ) α F 1 ( x ) + ( 1 α ) F 2 ( y ) , F 1 ( α x + ( 1 α ) y ) α F 1 ( x ) + ( 1 α ) F 2 ( y ) , F_(1)(alpha x+(1-alpha)y) <= alphaF_(1)(x)+(1-alpha)F_(2)(y),F_{1}(\alpha x+(1-\alpha) y) \leqslant \alpha F_{1}(x)+(1-\alpha) F_{2}(y),F1(αx+(1α)y)αF1(x)+(1α)F2(y),
i.e., the function F 1 F 1 F_(1)F_{1}F1 is convex.
(ii) F 1 | Y = f F 1 Y = f F_(1)|_(Y)=f\left.F_{1}\right|_{Y}=fF1|Y=f. This is obvious since F ( y ) = f ( y ) F ( y ) = f ( y ) F(y)=f(y)F(y)=f(y)F(y)=f(y) for all y Y y Y y in Yy \in YyY and F E Y c ( f ) F E Y c ( f ) F inE_(Y)^(c)(f)F \in E_{Y}{ }^{c}(f)FEYc(f).
(iii) Equality of the norms: F 1 = f Y F 1 = f Y ||F_(1)||=||f||_(Y)\left\|F_{1}\right\|=\|f\|_{Y}F1=fY. Obviously, F 1 f Y F 1 f Y ∣F_(1)|| >= ||f||_(Y)\mid F_{1}\|\geqslant\| f \|_{Y}F1fY. Let us suppose F 1 > f Y F 1 > f Y ||F_(1)|| > ||f||_(Y)\left\|F_{1}\right\|>\|f\|_{Y}F1>fY. Then there exists δ > 0 δ > 0 delta > 0\delta>0δ>0 such that F 1 = f Y + δ F 1 = f Y + δ ||F_(1)||=||f||_(Y)+delta\left\|F_{1}\right\|= \|f\|_{Y}+\deltaF1=fY+δ. By the definition of the norm in Lip X X XXX, there exist x , y X , x y x , y X , x y x,y in X,x!=yx, y \in X, x \neq yx,yX,xy such that
(16) ( F 1 ( y ) F 1 ( x ) ) / y x f Y + ϵ , (16) F 1 ( y ) F 1 ( x ) / y x f Y + ϵ , {:(16)(F_(1)(y)-F_(1)(x))//||y-x|| >= ||f||_(Y)+epsilon",":}\begin{equation*} \left(F_{1}(y)-F_{1}(x)\right) /\|y-x\| \geqslant\|f\|_{Y}+\epsilon, \tag{16} \end{equation*}(16)(F1(y)F1(x))/yxfY+ϵ,
where 0 < ϵ < δ 0 < ϵ < δ 0 < epsilon < delta0<\epsilon<\delta0<ϵ<δ. By definition (15) of F 1 F 1 F_(1)F_{1}F1, for 0 < η < ϵ x y 0 < η < ϵ x y 0 < eta < epsilon||x-y||0<\eta<\epsilon\|x-y\|0<η<ϵxy, there exist G 1 , G 2 E Y c ( f ) G 1 , G 2 E Y c ( f ) G_(1),G_(2)inE_(Y)^(c)(f)G_{1}, G_{2} \in E_{Y}^{c}(f)G1,G2EYc(f) such that G 1 ( x ) < F 1 ( x ) + η G 1 ( x ) < F 1 ( x ) + η G_(1)(x) < F_(1)(x)+etaG_{1}(x)<F_{1}(x)+\etaG1(x)<F1(x)+η and G 2 ( y ) < F 1 ( y ) + η G 2 ( y ) < F 1 ( y ) + η G_(2)(y) < F_(1)(y)+etaG_{2}(y)<F_{1}(y)+\etaG2(y)<F1(y)+η. The set E Y c ( f ) E Y c ( f ) E_(Y)^(c)(f)E_{Y}{ }^{c}(f)EYc(f) being downward directed (Lemma 4), there exists G 3 E Y c ( f ) G 3 E Y c ( f ) G_(3)inE_(Y)^(c)(f)G_{3} \in E_{Y}{ }^{c}(f)G3EYc(f) such that G 3 G 1 G 3 G 1 G_(3) <= G_(1)G_{3} \leqslant G_{1}G3G1 and G 3 G 2 G 3 G 2 G_(3) <= G_(2)G_{3} \leqslant G_{2}G3G2. Consequently
F 1 ( x ) G 3 ( x ) < F 1 ( x ) + η F 1 ( x ) G 3 ( x ) < F 1 ( x ) + η F_(1)(x) <= G_(3)(x) < F_(1)(x)+etaF_{1}(x) \leqslant G_{3}(x)<F_{1}(x)+\etaF1(x)G3(x)<F1(x)+η
and
F 1 ( y ) G 3 ( y ) < F 1 ( y ) + η F 1 ( y ) G 3 ( y ) < F 1 ( y ) + η F_(1)(y) <= G_(3)(y) < F_(1)(y)+etaF_{1}(y) \leqslant G_{3}(y)<F_{1}(y)+\etaF1(y)G3(y)<F1(y)+η
or, equivalently,
0 G 3 ( x ) Γ 1 ( x ) < η , 0 G 3 ( x ) Γ 1 ( x ) < η , 0 <= G_(3)(x)-Gamma_(1)(x) < eta,0 \leqslant G_{3}(x)-\Gamma_{1}(x)<\eta,0G3(x)Γ1(x)<η,
and
0 G 3 ( y ) F 1 ( y ) < η . 0 G 3 ( y ) F 1 ( y ) < η . 0 <= G_(3)(y)-F_(1)(y) < eta.0 \leqslant G_{3}(y)-F_{1}(y)<\eta .0G3(y)F1(y)<η.
From these inequalities one obtains
G 3 ( x ) F 1 ( x ) ( G 3 ( y ) F 1 ( y ) ) G 3 ( x ) F 1 ( x ) < η , G 3 ( x ) F 1 ( x ) G 3 ( y ) F 1 ( y ) G 3 ( x ) F 1 ( x ) < η , G_(3)(x)-F_(1)(x)-(G_(3)(y)-F_(1)(y)) <= G_(3)(x)-F_(1)(x) < eta,G_{3}(x)-F_{1}(x)-\left(G_{3}(y)-F_{1}(y)\right) \leqslant G_{3}(x)-F_{1}(x)<\eta,G3(x)F1(x)(G3(y)F1(y))G3(x)F1(x)<η,
so that
(17) G 3 ( y ) G 3 ( x ) > F 1 ( y ) F 1 ( x ) η . (17) G 3 ( y ) G 3 ( x ) > F 1 ( y ) F 1 ( x ) η . {:(17)G_(3)(y)-G_(3)(x) > F_(1)(y)-F_(1)(x)-eta.:}\begin{equation*} G_{3}(y)-G_{3}(x)>F_{1}(y)-F_{1}(x)-\eta . \tag{17} \end{equation*}(17)G3(y)G3(x)>F1(y)F1(x)η.
Taking into account (16) and (17)
G 3 ( y ) G 3 ( x ) y x > F 1 ( y ) F 1 ( x ) y x η y x > f Y + ϵ η y x > f Y . G 3 ( y ) G 3 ( x ) y x > F 1 ( y ) F 1 ( x ) y x η y x > f Y + ϵ η y x > f Y . {:[(G_(3)(y)-G_(3)(x))/(||y-x||) > (F_(1)(y)-F_(1)(x))/(||y-x||)-(eta)/(||y-x||)],[ > ||f||_(Y)+epsilon-(eta)/(y-x) > ||f||_(Y).]:}\begin{aligned} \frac{G_{3}(y)-G_{3}(x)}{\|y-x\|} & >\frac{F_{1}(y)-F_{1}(x)}{\|y-x\|}-\frac{\eta}{\|y-x\|} \\ & >\|f\|_{Y}+\epsilon-\frac{\eta}{y-x}>\|f\|_{Y} . \end{aligned}G3(y)G3(x)yx>F1(y)F1(x)yxηyx>fY+ϵηyx>fY.
But then G 3 > f Y G 3 > f Y ||G_(3)|| > ||f||_(Y)\left\|G_{3}\right\|>\|f\|_{Y}G3>fY, in contradiction to G 3 E Y c ( f ) G 3 E Y c ( f ) G_(3)inE_(Y)^(c)(f)G_{3} \in E_{Y}{ }^{c}(f)G3EYc(f).
Theorem 3 is proved.
Remark. Let X = R X = R X=RX=RX=R and Y = [ a , b ] , 0 Y Y = [ a , b ] , 0 Y Y=[a,b],0in YY=[a, b], 0 \in YY=[a,b],0Y. For f K Y f K Y f inK_(Y)^(')f \in K_{Y}^{\prime}fKY, let
m 1 = min ( | f ( a + 0 ) | , | f ( b 0 ) | ) m 1 = min f ( a + 0 ) , f ( b 0 ) m_(1)=min(|f^(')(a+0)|,|f^(')(b-0)|)m_{1}=\min \left(\left|f^{\prime}(a+0)\right|,\left|f^{\prime}(b-0)\right|\right)m1=min(|f(a+0)|,|f(b0)|)
and
m 2 = max ( | f ( a + 0 ) | , | f ( b 0 ) | ) . m 2 = max f ( a + 0 ) , f ( b 0 ) . m_(2)=max(|f^(')(a+0)|,|f^(')(b-0)|).m_{2}=\max \left(\left|f^{\prime}(a+0)\right|,\left|f^{\prime}(b-0)\right|\right) .m2=max(|f(a+0)|,|f(b0)|).
Then the minimal and maximal convex norm-preserving extensions F 1 F 1 F_(1)F_{1}F1 and F 2 F 2 F_(2)F_{2}F2, respectively, of f f fff, are given by
F i ( x ) f ( x ) for x [ a , b ] , = f ( x ) m i ( x a ) for x ] , a [ , = f ( x ) + m i ( x b ) for x ] b , + [ ; F i ( x ) f ( x )  for  x [ a , b ] , = f ( x ) m i ( x a )  for  x ] , a [ , = f ( x ) + m i ( x b )  for  x ] b , + [ ; {:[F_(i)(x)-f(x)" for "x in[a","b]","],[=f(x)-m_(i)(x-a)" for "x in]-oo","a[","],[=f(x)+m_(i)(x-b)" for "x in]b","+oo[;]:}\begin{aligned} F_{i}(x) & -f(x) & & \text { for } x \in[a, b], \\ & =f(x)-m_{i}(x-a) & & \text { for } x \in]-\infty, a[, \\ & =f(x)+m_{i}(x-b) & & \text { for } x \in] b,+\infty[; \end{aligned}Fi(x)f(x) for x[a,b],=f(x)mi(xa) for x],a[,=f(x)+mi(xb) for x]b,+[;
i = 1 , 2 i = 1 , 2 i=1,2i=1,2i=1,2.
Let now X X XXX be a normed linear space, Y Y YYY a convex subset of X X XXX such that 0 Y 0 Y 0in Y0 \in Y0Y, and Z Z ZZZ a nonvoid bounded subset of X X XXX.
Consider the space
Lip 0 ( X , Z ) = { f | Z : f Lip 0 X } , Lip 0 ( X , Z ) = f Z : f Lip 0 X , Lip_(0)(X,Z)={f|_(Z):f inLip_(0)X},\operatorname{Lip}_{0}(X, Z)=\left\{\left.f\right|_{Z}: f \in \operatorname{Lip}_{0} X\right\},Lip0(X,Z)={f|Z:fLip0X},
normed by the uniform norm
f | Z u = sup { | f | Z ( x ) ∣: x Z } . f Z u = sup | f | Z ( x ) ∣: x Z . ||f|_(Z)||_(u)=s u p{|f|_(Z)(x)∣:x in Z}.\left\|\left.f\right|_{Z}\right\|_{u}=\sup \left\{|f|_{Z}(x) \mid: x \in Z\right\} .f|Zu=sup{|f|Z(x)∣:xZ}.
Consider the following problem:
(A) For f K X f K X f inK_(X)f \in K_{X}fKX, find two elements g g g_(**)g_{*}g and g g g^(**)g^{*}g in P Y c ( f ) P Y c ( f ) P_(Y_(c)^(_|_))(f)P_{Y_{c}^{\perp}}(f)PYc(f) such that
f | Z g | Z u = inf { f | Z g | Z u : g P Y c ( f ) } f Z g Z u = inf f Z g Z u : g P Y c ( f ) ||f|_(Z)-g_(**)|_(Z)||_(u)=i n f{||f|_(Z)-g|_(Z)||_(u):g inP_(Y_(c)^(_|_))(f)}\left\|\left.f\right|_{Z}-\left.g_{*}\right|_{Z}\right\|_{u}=\inf \left\{\left\|\left.f\right|_{Z}-\left.g\right|_{Z}\right\|_{u}: g \in P_{Y_{c}^{\perp}}(f)\right\}f|Zg|Zu=inf{f|Zg|Zu:gPYc(f)}
and
f | z g | z u = sup { f | z g | z | u : g P Y c ( f ) } f z g z u = sup f z g z u : g P Y c ( f ) ||f|_(z)-g^(**)|_(z)||_(u)=s u p{||f|_(z)-g|_(z)|_(u):g inP_(Y_(c)^(_|_))(f)}\left\|\left.f\right|_{z}-\left.g^{*}\right|_{z}\right\|_{u}=\sup \left\{\|\left. f\right|_{z}-\left.\left.g\right|_{z}\right|_{u}: g \in P_{Y_{c}^{\perp}}(f)\right\}f|zg|zu=sup{f|zg|z|u:gPYc(f)}
Theorem 5. Problem (A) has a solution for all f K X f K X f inK_(X)f \in K_{X}fKX.
Proof. By Theorem 2(b) every g g ggg in P Y o ( f ) P Y o ( f ) P_(Y_(o)^(_|_))(f)P_{Y_{o}^{\perp}}(f)PYo(f) has the form g = f F g = f F g=f-Fg=f-Fg=fF for a convex norm-preserving extension F F FFF of f | Y f Y f|_(Y)\left.f\right|_{Y}f|Y. By Theorem 3, there exist two convex norm-preserving extensions F 1 F 1 F_(1)F_{1}F1 and F 2 F 2 F_(2)F_{2}F2 of f | Y f Y f|_(Y)\left.f\right|_{Y}f|Y such that
F 1 ( x ) F ( x ) F 2 ( x ) F 1 ( x ) F ( x ) F 2 ( x ) F_(1)(x) <= F(x) <= F_(2)(x)F_{1}(x) \leqslant F(x) \leqslant F_{2}(x)F1(x)F(x)F2(x)
for all x X x X x in Xx \in XxX, i.e.,
f ( x ) g 1 ( x ) f ( x ) g ( x ) f ( x ) g 2 ( x ) , f ( x ) g 1 ( x ) f ( x ) g ( x ) f ( x ) g 2 ( x ) , f(x)-g_(1)(x) <= f(x)-g(x) <= f(x)-g_(2)(x),f(x)-g_{1}(x) \leqslant f(x)-g(x) \leqslant f(x)-g_{2}(x),f(x)g1(x)f(x)g(x)f(x)g2(x),
for all x X x X x in Xx \in XxX, where g i = f F i , i = 1 , 2 g i = f F i , i = 1 , 2 g_(i)=f-F_(i),i=1,2g_{i}=f-F_{i}, i=1,2gi=fFi,i=1,2. Therefore
min ( f | Z g 1 | Z u , f | Z g 2 | Z u ) f | Z g | Z u max ( f | Z g 1 | Z u , | f | Z g 2 | Z u ) min f Z g 1 Z u , f Z g 2 Z u f Z g Z u max f Z g 1 Z u , | f | Z g 2 Z u {:[ min(||f|_(Z)-g_(1)|_(Z)||_(u),||f|_(Z)-g_(2)|_(Z)||_(u)) <= ||f|_(Z)-g|_(Z)||_(u)],[quad <= max(||f|_(Z)-g_(1)|_(Z)||_(u),|f|_(Z)-g_(2)|_(Z)||_(u))]:}\begin{aligned} & \min \left(\left\|\left.f\right|_{Z}-\left.g_{1}\right|_{Z}\right\|_{u},\left\|\left.f\right|_{Z}-\left.g_{2}\right|_{Z}\right\|_{u}\right) \leqslant\left\|\left.f\right|_{Z}-\left.g\right|_{Z}\right\|_{u} \\ & \quad \leqslant \max \left(\left\|\left.f\right|_{Z}-\left.g_{1}\right|_{Z}\right\|_{u},|f|_{Z}-\left.g_{2}\right|_{Z} \|_{u}\right) \end{aligned}min(f|Zg1|Zu,f|Zg2|Zu)f|Zg|Zumax(f|Zg1|Zu,|f|Zg2|Zu)
It follows that a solution of Problem (A) is given by g = g i g = g i g_(**)=g_(i)g_{*}=g_{i}g=gi and g = g j g = g j g^(**)=g_(j)g^{*}=g_{j}g=gj, where i , j { 1 , 2 } i , j { 1 , 2 } i,j in{1,2}i, j \in\{1,2\}i,j{1,2} are such that
i 1 f | Z g i | Z u = min ( f | Z g 1 | Z u , f | Z g 2 | Z | u ) i 1 f Z g i Z u = min f Z g 1 Z u , f Z g 2 Z u i_(1)f|_(Z)-g_(i)|_(Z)||_(u)=min(||f|_(Z)quadg_(1)|_(Z)||_(u),||f|_(Z)-g_(2)|_(Z)|_(u))\left.i_{1} f\right|_{Z}-\left.g_{i}\right|_{Z} \|_{u}=\min \left(\left\|\left.\left.f\right|_{Z} \quad g_{1}\right|_{Z}\right\|_{u}, \|\left. f\right|_{Z}-\left.\left.g_{2}\right|_{Z}\right|_{u}\right)i1f|Zgi|Zu=min(f|Zg1|Zu,f|Zg2|Z|u)
and
| f | Z g i | Z u = max ( f | Z g 1 | Z u , f | Z g 9 | Z u ) . | f | Z g i Z u = max f Z g 1 Z u , f Z g 9 Z u . |f|_(Z)-g_(i)|_(Z)||_(u)=max(||f|_(Z)-g_(1)|_(Z)||_(u),||f|_(Z)-g_(9)|_(Z)||_(u)).|f|_{Z}-\left.g_{i}\right|_{Z} \|_{u}=\max \left(\left\|\left.f\right|_{Z}-\left.g_{1}\right|_{Z}\right\|_{u},\left\|\left.f\right|_{Z}-\left.g_{9}\right|_{Z}\right\|_{u}\right) .|f|Zgi|Zu=max(f|Zg1|Zu,f|Zg9|Zu).

References

  1. S. BANACH, "Wstep do teorii funkji rzeczwistych," Warszawa/Wroclav, 1951.
  2. J. Czipser and L. Geher, Extension of function satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220.
  3. R. B. Holmes, "A Course on Optimisation and Best Approximation," Lecture Notes in Mathematics No. 257, Springer-Verlag, Berlin/Heidelberg/New York, 1972.
  4. I. Kolumbán, Ob edinstvennosti prodolženija lineinyh funkcionalov, Mathematica (Cluj) 4 (1962), 267-270.
  5. P. J. Laurent, "Approximation et optimisation," Hermann, Paris, 1972.
  6. C. Mustăta, Asupra unor subspaţii cebịşeviene din spaţiul normat al funcțiilor lipschitziene, Rev. Anal. Num. Teoria Aproximatiei 2 (1973), 81-87.
  7. C. Mustăța, O proprietate de monotonie a operatorului de cea mai buná aproximație în spațiul funcțiilor lipschitziene, Rev. Anal. Num. Teoria Aproximației 3 (1974), 153-160.
  8. C. Mustăta, Asupra unicitătii prelungirii p p ppp-seminormelor continue, Rev. Ahal. Num. Teoria Aproximatici 2 (1973), 173-177.
  9. C. Mustăta, Best approximation and unique extension of Lipschitz functions, J J JJJ. Approximation Theory 19 (1977), 222-230.
  10. C. Mustäța, A characterisation of Chebyshevian subspace of Y t y p e , R e v . A n a l . Y t y p e , R e v . A n a l . Y^(-type,Rev.Anal.)Y^{-t y p e, ~ R e v . ~ A n a l . ~}Ytype, Rev. Anal.  Num. Theor. Approximation 6 (1977), 51-56.
  11. R. R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans, Amer. Math. Soc. 95 (1960), 238-255.
1978

Related Posts