Two‐dimension potentials which generate spatial families of orbits

Abstract

We consider the following case of the 3D inverse problem of dynamics: Given a spatial two-parametric family of curves \(f(x,y,z)=c_{1},g(x,y,z)=c_{2}\), find possibly existing two-dimension potentials under whose action the curves of the family are trajectories for a unit mass particle. First we establish the
conditions which must be fulfilled by the family so that potentials of the form \(w(y,z)\) give rise to the curves of the family, and we present some applications. Then we examine briefly the existence of potentials depending on \((x,z)\), respectively \((x,y)\), which are compatible with the given family.

Authors

Mira Cristiana Anisiu
T. Popoviciu Institute of Numerical Analysis,  Cluj-Napoca, Romania

George Bozis
Aristotle University of Thesaloniki, GR-54006, Greece

Keywords

celestial mechanics – stellar dynamics

PDF

Cite this paper as:

Anisiu, M-C., Bozis, G, Two-dimension potentials which generate spatial families of orbits, Astronomische Nachrichten, vol.330, issue 4,  2009, pag.411-415

About this paper

Journal

Online Library

Publisher Name
Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

References

Anisiu, M.-C.: 2005, Inverse Probl. Sci. Eng. 13, 545
Anisiu, M.-C., Bozis, G.: 2008, Didactica Mathematica 26, 9
Borghero, F., Melis, A.: 1990, CMDA 49, 273
Bozis, G.: 1983, CeMec 31, 129
Bozis, G., Kotoulas, T.A.: 2004, Rendiconti del Seminario della
Facolta di Scienze dell’ Universita di Cagliari 74, 83
Bozis, G., Kotoulas, T.A.: 2005, Inverse Problems 21, 343
Bozis, G., Nakhla, A.: 1986, CeMec 38, 357
Erdi, B.: 1982, CeMec 28, 209 ´
Kotoulas, T.A., Bozis, G.: 2006, JPhA 39, 9223
Melis, A., Borghero, F.: 1986, Mecc 21, 71
Mertens, R.: 1981, ZAMM 61, 252
Puel, F.: 1992, CMDA 53, 207
Shorokhov, S.G.: 1988, CeMec 44, 193
Szebehely, V.: 1974, in: G. Proverbio (ed.), Proc. of the Internat.
Meeting on Earth’s Rotation by Satellite Observation, p. 31
Varadi, F., Erdi, B.: 1983, CeMec 32, 395

2009

Related Posts