Abstract
In this paper the method of quasiliniarization, an application of Newton’s method, recently generalized in [1], is used for the quadratic, monotonic, bilateral approximation of the solution of the delay problem (5). The result is applied to an integral equation from biomathematics.
Authors
Radu Precup
Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
Keywords
??
Paper cordinates
R. Precup, Convexity and quadratic monotone approximation in delay differential equations, Rev. Anal. Numér. Théor. Approx. 30 (2001), 89-93.
About this paper
Journal
Revue d’analyse numérique et de théorie d’approximation
Publisher Name
Academia Republicii S.R.
Paper on the journal website
Print ISSN
Not available yet.
Online ISSN
Not available yet.
Google Scholar Profile
References
[1] V. Lakshmikantham, S. Leela and S. Sivasundaram, Extensions of the method of quasilinearization, J. Optim. Theory Appl., 87 (1995), 379–401.
[2] L. C. Piccinini, G. Stampacchia and G. Vidossich, Ordinary Differential Equations in Rn, Springer-Verlag, Berlin, 1984.
[3] R. Precup, Positive solutions of the initial value problem for an integral equation modeling infectious disease, in Seminar on Fixed Point Theory: Preprint Nr. 3, 1991, University ”Babes-Bolyai”, Cluj, 1991, 25–30.
[4] R. Precup, Periodic solutions for an integral equation from biomathematics via Leray-Schauder principle, Studia Univ. Babes–Bolyai Math., 39 (1994), 47–58.
[5] R. Precup, Monotone technique to the initial values problem for a delay integral equation from biomathematics, Studia Univ. Babes–Bolyai Math., 40 (1995), 63–73.
[6] R. Precup and E. Kirr, Analysis of a nonlinear integral equation modelling infection diseases, in Proceedings of the International Conference, Timisoara 19–21 May 1997, 179–195.