Posts by Radu Precup

Abstract

We analyze a general class of coupled systems of stationary Navier-Stokes type equations with variable coefficients and non-homogeneous terms of reaction type in the incompressible case. Existence of solutions satisfying the homogeneous Dirichlet condition in a bounded domain in \({R^N}\), \({N≤3}\), the corresponding kinetic energy and enstrophy are obtained by using a variational approach and the fixed point index theory.

Authors

Mirela Kohr
Faculty of Mathematics and Computer Science, Babeş–Bolyai University, Cluj-Napoca, Romania

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Navier–Stokes equations; multidisperse porous media; fixed point index

Paper coordinates

M. Kohr, R. Precup, Localization of energies in Navier–Stokes models with reaction terms, Analysis and Applications, 22 (2024) no. 6, pp. 1053-1073, https://doi.org/10.1142/S0219530524500118

PDF

About this paper

Journal

Analysis and Applications

Publisher Name

World Scientific

Print ISSN

0219-5305

Online ISSN

1793-6861

google scholar link

[1]. C. Amrouche and M. A. Rodríguez-Bellido , The Oseen and Navier–Stokes equations in a non-solenoidal framework, Math. Methods Appl. Sci. 39 (2016) 5066–5090. CrossrefGoogle Scholar

[2]. F. Boyer and P. Fabrie , Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models (Springer, New York, 2013). CrossrefGoogle Scholar

[3]. C. E. Brennen , Fundamentals of Multiphase Flows (Cambridge University Press, 2005). CrossrefGoogle Scholar

[4]. M. Bulíček, J. Málek and J. Žabenský , On generalized Stokes’ and Brinkman’s equations with a pressure- and shear-dependent viscosity and drag coefficient, Nonlinear Anal. Real World Appl. 26 (2015) 109–132. CrossrefGoogle Scholar

[5]. R. Bunoiu and R. Precup , Localization and multiplicity in the homogenization of nonlinear problems, Adv. Nonlinear Anal. 9 (2020) 292–304. CrossrefGoogle Scholar

[6]. F. Capone, M. Gentile and G. Massa , The onset of thermal convection in anisotropic and rotating bidisperse porous media, Z. Angew. Math. Phys. 72 (2021) 169. Crossref, Web of ScienceGoogle Scholar

[7]. Z. Q. Chen, P. Cheng and C. T. Hsu , A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media, Int. Commun. Heat Mass Transf. 27 (2000) 601–610. Crossref, Web of ScienceGoogle Scholar

[8]. C. Y. Cheng , Natural convection heat transfer about a vertical cone embedded in a tridisperse porous medium, Transp. Porous Media 107 (2015) 765–779. CrossrefGoogle Scholar

[9]. P. Constantin and C. Foias , Navier–Stokes Equations (The University of Chicago Press, Chicago, 1988). CrossrefGoogle Scholar

[10]. M. Costabel , Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal. 19 (1988) 613–626. Crossref, Web of ScienceGoogle Scholar

[11]. K. Deimling , Nonlinear Functional Analysis (Springer, Berlin, 1985). CrossrefGoogle Scholar

[12]. E. Fabes, C. Kenig and G. Verchota , The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J. 57 (1988) 769–793. CrossrefGoogle Scholar

[13]. C. Foias, O. Manley, R. Rosa and R. Temam , Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, Vol. 83 (Cambridge University Press, Cambridge, 2001). CrossrefGoogle Scholar

[14]. G. P. Galdi , An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. (Springer, New York, 2011). CrossrefGoogle Scholar

[15]. M. Gentile and B. Straughan , Tridispersive thermal convection, Nonlinear Anal. Real World Appl. 42 (2018) 378–386. Crossref, Web of ScienceGoogle Scholar

[16]. M. Ghalambaz, H. Hendizadeh, H. Zargartalebi and I. Pop , Free convection in a square cavity filled with a tridisperse porous medium, Transp. Porous Media 116 (2017) 379–392. Crossref, Web of ScienceGoogle Scholar

[17]. A. Granas and J. Dugundji , Fixed Point Theory (Springer-Verlag, New York, 2003). CrossrefGoogle Scholar

[18]. G. C. Hsiao and W. L. Wendland , Boundary Integral Equations, 1st edn. (Springer-Verlag, Heidelberg, 2008); 2nd edn. (Springer, Cham, 2021). CrossrefGoogle Scholar

[19]. M. Kohr, M. Lanza de Cristoforis and W. L. Wendland , Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains, Potential Anal. 38 (2013) 1123–1171. Crossref, Web of ScienceGoogle Scholar

[20]. M. Kohr, S. E. Mikhailov and W. L. Wendland , Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier–Stokes systems in Lipschitz domains with transversal interfaces, Calc. Var. Partial Differential Equations 61 (2022) 198. Crossref, Web of ScienceGoogle Scholar

[21]. M. Kohr, S. E. Mikhailov and W. L. Wendland , On some mixed-transmission problems for the anisotropic Stokes and Navier–Stokes systems in Lipschitz domains with transversal interfaces, J. Math. Anal. Appl. 516 (2022) 126464. Crossref, Web of ScienceGoogle Scholar

[22]. M. Kohr and R. Precup , Analysis of Navier–Stokes models for flows in bidisperse porous media, J. Math. Fluid Mech. 25(2) (2023) 38. Crossref, Web of ScienceGoogle Scholar

[23]. M. Kohr and W. L. Wendland , Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differential Equations 57 (2018) 165. CrossrefGoogle Scholar

[24]. M. Kohr and W. L. Wendland , Boundary value problems for the Brinkman system with coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, J. Math. Pures Appl. 131 (2019) 17–63. CrossrefGoogle Scholar

[25]. M. V. Korobkov, K. Pileckas and R. Russo , On the flux problem in the theory of steady Navier–Stokes equations with non-homogeneous boundary conditions, Arch. Ration. Mech. Anal. 207 (2013) 185–213. Crossref, Web of ScienceGoogle Scholar

[26]. A. V. Kuznetsov and D. A. Nield , The onset of convection in a tridisperse porous medium, Int. J. Heat Mass Transf. 54 (2011) 3120–3127. Crossref, Web of ScienceGoogle Scholar

[27]. P. G. Lemarié-Rieusset , The Navier–Stokes Problem in the 21st Century (CRC Press, Boca Raton, 2016). CrossrefGoogle Scholar

[28]. G. Łukaszewicz and P. Kalita , Navier–Stokes Equations. An Introduction with Applications, Advances in Mechanics and Mathematics, Vol. 34 (Springer, Cham, 2016). CrossrefGoogle Scholar

[29]. A. L. Mazzucato and V. Nistor , Well-posedness and regularity for the elasticity equation with mixed boundary conditions on polyhedral domains and domains with cracks, Arch. Ration. Mech. Anal. 195 (2010) 25–73. CrossrefGoogle Scholar

[30]. M. Mitrea and M. Wright , Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque 344 (2012) viii+241 pp. Google Scholar

[31]. D. A. Nield , A note on the modelling of bidisperse porous media, Transp. Porous. Media 111 (2016) 517–520. CrossrefGoogle Scholar

[32]. D. A. Nield and A. Bejan , Convection in Porous Media, 3rd edn. (Springer, New York, 2013). CrossrefGoogle Scholar

[33]. D. A. Nield and A. V. Kuznetsov , A two-velocity two-temperature model for a bi-dispersed porous medium: Forced convection in a channel, Transp. Porous Media 59 (2005) 325–339. Crossref, Web of ScienceGoogle Scholar

[34]. D. A. Nield and A. V. Kuznetsov , The onset of convection in a bidisperse porous medium, Int. J. Heat Mass Transf. 49 (2006) 3068–3074. Crossref, Web of ScienceGoogle Scholar

[35]. D. A. Nield and A. V. Kuznetsov , A three-velocity three-temperature model for a tridisperse porous medium: Forced convection in a channel, Int. J. Heat Mass Transf. 54 (2011) 2490–2498. Crossref, Web of ScienceGoogle Scholar

[36]. D. A. Nield and A. V. Kuznetsov , A note on modeling high speed flow in a bidisperse porous medium, Transp. Porous Med. 96 (2013) 495–499. Crossref, Web of ScienceGoogle Scholar

[37]. F. O. Pătrulescu, T. Groşsan and I. Pop , Natural convection from a vertical plate embedded in a non-Darcy bidisperse porous medium, J. Heat Transf. 142 (2020) 012504. Crossref, Web of ScienceGoogle Scholar

[38]. R. Precup , Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl. 352 (2009) 48–56. CrossrefGoogle Scholar

[39]. R. Precup , Moser–Harnack inequality, Krasnoselskii type fixed point theorems in cones and elliptic problems. Topol. Methods Nonlinear Anal. 40 (2012) 301–313. Google Scholar

[40]. R. Precup , Abstract weak Harnack inequality, multiple fixed points and p-Laplace equations, J. Fixed Point Theory Appl. 12 (2012) 193–206. CrossrefGoogle Scholar

[41]. R. Precup , Linear and Semilinear Partial Differential Equations (De Gruyter, Berlin, 2013). Google Scholar

[42]. R. Precup and P. Rubbioni , Stationary solutions of Fokker–Planck equations with nonlinear reaction terms in bounded domains, Potential Anal. 57 (2022) 181–199. CrossrefGoogle Scholar

[43]. C. Revnic, T. Groşan, I. Pop and D. B. Ingham , Free convection in a square cavity filled with a bidisperse porous medium, Int. J. Thermal Sci. 48 (2009) 1876–1883. CrossrefGoogle Scholar

[44]. G. Seregin , Lecture Notes on Regularity Theory for the Navier–Stokes Equations (World Scientific, London, 2015). Google Scholar

[45]. B. Straughan , Bidispersive porous media, in Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, Advances in Mechanics and Mathematics, Vol. 32 (Springer, Cham, 2015). CrossrefGoogle Scholar

[46]. B. Straughan , Anisotropic bidispersive convection, Proc. Math. Phys. Eng. Sci. 475 (2019) 20190206. Google Scholar

[47]. R. Temam , Navier–Stokes Equations. Theory and Numerical Analysis, enAMS Chelsea edn. (American Mathematical Society, 2001). Google Scholar

[48]. W. Varnhorn , The Stokes Equations (Akademie Verlag, Berlin, 1994). Google Scholar

Related Posts