[1] A. Granas, J. Dugundji,
Fixed Point Theory, Springer, New York (2003),
Google Scholar
[2] D. Guo, V. Lakshmikantham, X. Liu,
Nonlinear Integral Equations in Abstract Spaces, Kluwer, Dordrecht (1996),
Google Scholar
[3] M.A. Krasnoselskii,
Positive Solutions of Operator Equations, Noordhoff, Groningen (1964),
Google Scholar
[4] D. O’Regan, R. Precup,
Theorems of Leray–Schauder Type and Applications, Taylor and Francis, London (2002),
Google Scholar
[5] R.P. Agarwal, M. Meehan, D. O’Regan, R. Precup,
Location of nonnegative solutions for differential equations on finite and semi-infinite intervals, Dynam. Systems Appl., 12 (2003), pp. 323-332,
CrossRefGoogle Scholar
[6] R.P. Agarwal, D. O’Regan, P.J.Y. Wong,
Positive solutions of differential, Difference and Integral Equations, Kluwer, Dordrecht (1999),
Google Scholar
[7] L.H. Erbe, S. Hu, H. Wang,
Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184 (1994), pp. 640-648
Google Scholar
[8] L.H. Erbe, H. Wang,
On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), pp. 743-748,
Google Scholar
[9] J. Henderson, H. Wang,
Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 208 (1997), pp. 252-259,
Google Scholar
[10] K. Lan, J.R.L. Webb,
Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), pp. 407-421,
Google Scholar
[11] M. Meehan, D. O’Regan,
Positive Lp solutions of Hammerstein integral equations, Arch. Math., 76 (2001), pp. 366-376,
Google Scholar
[12] D. O’Regan, H. Wang,
Positive periodic solutions of systems of second order ordinary differential equations, Positivity, 10 (2006), pp. 285-298,
Google Scholar
[13] H. Wang,
On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 109 (1994), pp. 1-7,
Google Scholar
[14] R. Precup,
Existence and localization results for the nonlinear wave equation, Fixed Point Theory, 5 (2004), pp. 309-321,
Google Scholar
[15] R. Precup,
Positive solutions of evolution operator equations, Austral. J. Math. Anal. Appl., 2 (1) (2005), pp. 1-10, (electronic),
Google Scholar
[16] R. Precup,
Positive solutions of semi-linear elliptic problems via Krasnoselskii type theorems in cones and Harnack’s inequality, Mathematical Analysis and Applications, C.P. Niculescu, V.D. Radulescu (Eds.), AIP Conf. Proc., vol. 835 (2006), pp. 125-132,
Google Scholar
[17] M. Schechter,
A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc., 331 (1992), pp. 681-703,
Google Scholar
[18] M. Schechter,
Linking Methods in Critical Point Theory, Birkhäuser, Basel (1999)
Google Scholar
[19] M. Schechter, K. Tintarev,
Nonlinear eigenvalues and mountain pass methods, Topol. Methods Nonlinear Anal., 1 (1993), pp. 183-201,
CrossRefGoogle Scholar
[20] R. Precup,
The Leray–Schauder condition in critical point theory, Nonlinear Anal., 71 (2009), pp. 3218-3228,
Google Scholar
[21] R. Precup,
Two positive solutions of some singular boundary value problems, Anal. Appl. Singap., 8 (3) (2010), pp. 305-314,
Google Scholar
[22] R. Precup,
Two positive nontrivial solutions for a class of semilinear elliptic variational systems, J. Math. Anal. Appl., 373 (2011), pp. 138-146,
Google Scholar
[23] R. Precup,
A compression type mountain pass theorem in conical shells, J. Math. Anal. Appl., 338 (2008), pp. 1116-1130,
Google Scholar
[24] K. Deimling,
Ordinary Differential Equations in Banach Spaces, Springer, Berlin (1977)
Google Scholar
[25] M. Frigon,
On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations, 153 (1999), pp. 96-120,
Google Scholar
[26] M. Struwe,
Variational Methods, Springer, Berlin (1990),
Google Scholar
[27] J. Jost,
Partial Differential Equations, Springer, New York (2007),
Google Scholar