Abstract
A new variational method based on Ekeland’s principle is introduced for the existence, localization and multiplicity of periodic solutions of a prescribed minimal period to second-order Hamiltonian systems. The oscillatory property at zero or infinity of only one component of the gradient of the potential function is sufficient for the existence of infinitely many solutions. Also, oscillating properties of several components of the gradient of the potential function yield sequences of solutions with some of the components tending in norm to zero and others to infinity.
Authors
Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
second-order Hamiltonian system; periodic solution; minimal period; anti-periodic solution; multiple solutions; Ekeland’s variational principle.
Paper coordinates
R. Precup, Multiple periodic solutions with prescribed minimal period to second-order Hamiltonian systems, Dyn. Syst. 29 (2014), no. 3, 424-438, https://doi.org/10.1080/14689367.2014.911410
??
About this paper
Print ISSN
1468-9367
Online ISSN
1468-9375
google scholar link
[1] Rabinowitz PH. Periodic solutions of Hamiltonian systems. Commun Pure Appl Math. 1978; 31: 157–184. [Crossref], [Web of Science ®], [Google Scholar]
[2] Ambrosetti A, Mancini G. Solutions of minimal period for a class of convex Hamiltonian systems. Math Ann. 1981; 255: 405–421. [Crossref], [Web of Science ®], [Google Scholar]
[3] Benci V, Capozzi A, Fortunato D. Periodic solutions of Hamiltonian systems of a prescribed period. Madison: University of Wisconsin; 1983. (MRC Tech. Sum. Report No. 2508). [Google Scholar]
[4] Brezis H, Coron JM. Periodic solutions of nonlinear wave equations and Hamiltonian systems. Amer J Math. 1981; 103: 559–570. [Crossref], [Web of Science ®], [Google Scholar]
[5] Clarke FH, Ekeland I. Hamiltonian trajectories having prescribed minimal period. Commun Pure Appl Math. 1980; 33: 103–116. [Crossref], [Web of Science ®], [Google Scholar]
[6] Ekeland I, Hofer H. Periodic solutions with prescribed period for convex autonomous Hamiltonian systems. Invent Math. 1985; 81: 155–188. [Crossref], [Web of Science ®], [Google Scholar]
[7] Fei G, Wang T. Some results on the minimal period problem of nonconvex second order Hamiltonian systems. Chin Ann Math. 1999; 20B: 83–92. [Crossref], [Web of Science ®], [Google Scholar]
[8] Girardi M, Matzeu M. Periodic solutions of convex autonomous Hamiltonian systems with a quadratic growth at the origin and superquadratic at infinity. Ann Mat Pura Appl. 1987; 147: 21–72. [Crossref], [Web of Science ®], [Google Scholar]
[9] Girardi M, Matzeu M. Existence of periodic solutions for some second order quasilinear Hamiltonian systems. Rend Lincei Mat Appl. 2007; 18: 1–9. [Google Scholar]
[10] Long Y. The minimal period problem for classical Hamiltonian systems with even potentials. Ann Inst H Poincaré Anal Non Linéaire. 1993; 10: 605–626. [Web of Science ®], [Google Scholar]
[11] Long Y. The minimal period problem of periodic solutions for autonomous superquadratic second order Hamiltonian systems. J Differential Equations. 1994; 111: 147–174. [Crossref], [Web of Science ®], [Google Scholar]
[12] Long Y. On the minimal period for periodic solutions of nonlinear Hamiltonian systems. Chin Ann Math. 1997; 18B: 481–484. [Google Scholar]
[13] Mawhin J, Willem M. Critical point theory and Hamiltonian systems. New York (NY): Springer; 1989. [Crossref], [Google Scholar]
[14] Rabinowitz PH. Critical point theory and applications to differential equations: a survey. In: Matzeu M, Vignoli A, editors. Topological nonlinear analysis. Boston (MA): Birkhauser; 1995. p. 464–513. [Crossref], [Google Scholar]
[15] D’Agui G, Livrea R. Periodic solutions for second order Hamiltonian systems. Le Matematiche. 2011; 66: 125–134. [Google Scholar]
[16] Xiao YM. Periodic solutions with prescribed minimal period for the second order Hamiltonian systems with even potentials. Acta Math Sinica English Ser. 2010; 26: 825–830. [Crossref], [Web of Science ®], [Google Scholar]
[17] Zhang X, Tang X. A note on the minimal periodic solutions of nonconvex superlinear Hamiltonian system. Appl Math Comput. 2013; 219: 7586–7590. [Crossref], [Web of Science ®], [Google Scholar]
[18] Precup R. A vector version of Krasnoselskii’s fixed point theorem in cones and positive periodic solutions of nonlinear systems. J Fixed Point Theory Appl. 2007; 2: 141–151. [Crossref], [Web of Science ®], [Google Scholar]
[19] Precup R. Two positive nontrivial solutions for a class of semilinear elliptic variational systems. J Math Anal Appl. 2011; 373: 138–146. [Crossref], [Web of Science ®], [Google Scholar]
[20] Precup R. On a bounded critical point theorem of Schechter. Studia Univ Babeş–Bolyai Math. 2013; 58: 87–95. [Google Scholar]
[21] Precup R. Critical point localization theorems via Ekeland’s variational principle. Dyn Syst Appl. 2013; 22: 355–370. [Web of Science ®], [Google Scholar]
[22] Struwe M. Variational methods. Berlin: Springer; 1990. [Crossref], [Google Scholar]