Multiple positive standing wave solutions for Schrödinger equations with oscillating state-dependent potentials

Abstract

Motivated by relevant physical applications, we study Schrödinger equations with state-dependent potentials. Existence, localization and multiplicity results are established for positive standing wave solutions in the case of oscillating potentials. To this aim, a localized Pucci-Serrin type critical point theorem is first obtained. Two examples are then given to illustrate the new theory.

Authors

Renata Bunoiu
Institut Elie Cartan de Lorraine and CNRS, UMR 7502, Univerité de Lorraine, Metz, 57045, France

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Csaba Varga
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj, 400084, Romania
Department of Mathematics, University of Pécs, Pécs, 7624, Hungary

Keywords

Paper coordinates

R. Bunoiu, R. Precup, C. Varga, Multiple positive standing wave solutions for Schrödinger equations with oscillating state-dependent potentials, Comm. Pure Appl. Anal. 16 (2017), 953-972, http://dx.doi.org/10.3934/cpaa.2017046

PDF

??

About this paper

Journal

Communications on Pure and Aplied Analysis

 

 

 

Publisher Name

American Institute of Mathematical Sciences

Print ISSN
Online ISSN
15340392

google scholar link

[1] N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams, Chapman and Hall, London,1997

[2]A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007.http://dx.doi.org/10.1017/CBO9780511618260

[3]A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear singularly perturbed elliptic problems on Rn, Arch. Rat. Mech. Anal., 159 (2001), 253-271, http://dx.doi.org/10.1007/s002050100152

[4] T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds. and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var., 37 (2010), 345-361.  http://dx.doi.org/10.1007/s00526-009-0265-y

[5] V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer, Cham, 2014. http://dx.doi.org/10.1007/978-3-319-06914-2

[6] P. Böhi, Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip, Nature Physics, 5 (2009), 592-597.  scholar

[7] G. Bonanno and G. Molica Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl, 382 (2011), 1-8.  http://dx.doi.org/10.1016/j.jmaa.2011.04.026

[8] G. Bonanno and G. Molica Bisci, O’Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Model, 52 (2010), 152-160.
http://dx.doi.org/10.1016/j.mcm.2010.02.004

[9] J. Bourgain, Global Solutions of Nonlinear Schrodinger Equations, AMS, 1999. http://dx.doi.org/10.1090/coll/046

[10] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200, http://dx.doi.org/10.1007/s00205-006-0019-3

[11] J. Byeon and Z. Q. Wang, Standing waves for nonlinear Schrödinger equations with singular potentials, Ann. I. H. Poincar′e -AN, 26 (2009), 943-958, http://dx.doi.org/10.1016/j.anihpc.2008.03.009

[12] R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations, World Scientific, Singapore, 2008. http://dx.doi.org/10.1142/9789812793133

[13] T. Cazenave, Semilinear Schrödinger Equations, Amer. Math. Soc., CIMS 10, 2003. doi: 10.1090/cln/010.CrossRef math-review 83 scholar

[14] M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32, http://dx.doi.org/10.1007/s002080200327

[15] I. Ekeland, On the variational principle, J. Math. Anal. Appl, 47 (1974), 443-474, http://dx.doi.org/10.1016/0022-247X(74)90025-0

[16] M. Garcia-Huidobro, R. Manasevich and K. Schmitt, Positive radial solutions of quasilinear elliptic partial differential equations on a ball, Nonlinear Anal., 35 (1999), 175-190.  http://dx.doi.org/10.1016/S0362-546X(97)00613-5

[17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, (1983), http://dx.doi.org/10.1007/978-3-642-61798-0

[18] D. D. Hai and K. Schmitt, On radial solutions of quasilinear boundary value problems, in Progress in Nonlinear Differential equations and Their Applications (J. Escher and G. Simonett eds. ), Birkhäuser, (1999), 349-361.math-review 83 scholar

[19] M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.math-review 83 scholar

[20] A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Cambridge, 2010. http://dx.doi.org/10.1017/CBO9780511760631

[21] Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials, Commun. Math. Phys., 131 (1990), 223-253.

[22] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations, 21 (1996), 721-733.  http://dx.doi.org/10.1080/03605309608821205

[23] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford, 2003

[24] R. Precup, On a bounded critical point theorem of Schechter, Studia Univ. Babeş-Bolyai Math., 58 (2013), 87-95.  math-review scholar

[25] R. Precup, Critical point theorems in cones and multiple positive solutions of elliptic problems, Nonlinear Anal., 75 (2012), 834-851, http://dx.doi.org/10.1016/j.na.2011.09.016

[26] R. Precup, Critical point localization theorems via Ekeland’s variational principle, Dynam. Systems Appl., 22 (2013), 355-370.

[27] R. Precup, P. Pucci and C. Varga, A three critical points result in a bounded domain of a Banach space and applications, Differential Integral Equations, to appear.

[28] P. Pucci and J. Serrin, Extensions of mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210, http://dx.doi.org/10.1016/0022-1236(84)90072-7

[29] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149, http://dx.doi.org/10.1016/0022-0396(85)90125-1

[30] P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007

[31] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226, http://dx.doi.org/10.1007/s000130050496.

[32] B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157.  http://dx.doi.org/10.1016/j.na.2009.02.074.

[33] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc., 331 (1992), 681-703, http://dx.doi.org/10.2307/2154135

[34] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Basel, 1999, http://dx.doi.org/10.1007/978-1-4612-1596-7.

[35] M. Struwe, Variational Methods, Springer, Berlin, 1990, http://dx.doi.org/10.1007/978-3-662-02624-3.

[36] C. Sulem and P. -L. Sulem, The Nonlinear Schrödinger Equation, Springer, New York, 1999.

[37] M. E. Taylor, Partial Differential Equations, Vols. Ⅰ-Ⅲ, Springer, New York, 1996, http://dx.doi.org/10.1007/978-1-4684-9320-7.

[38] R. Tian and Z.-Q Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. 

2017

Related Posts