INTRODUCTION TO THE THEORY OF DIVIDED DIFFERENCES
BY
TIBERIU POPOVICIU
In what follows we propose to give the demonstration of several formulas which intervene in the theory of divided differences of functions of one variable. Most of these formulas are already exposed, without demonstration, in our Thesis
1
1
^(1) { }^{1} 1 ), These formulas being in common use in the theory of higher order convex functions, it will not be useless to establish them here in all rigor. I decided to return to these questions by noting the appearance of some works where my results are not cited
2
2
^(2) { }^{2} 2 ).
The Lagrange polynomial. Consider
n
+
1
n
+
1
n+1 n+1 n + 1 distinct points
x
1
,
x
2
,
…
,
x
n
+
1
x
1
,
x
2
,
…
,
x
n
+
1
x_(1),x_(2),dots,x_(n+1) x_{1}, x_{2}, \ldots, x_{n+1} x 1 , x 2 , … , x n + 1 and either
f
=
f
(
x
)
f
=
f
(
x
)
f=f(x) f=f(x) f = f ( x ) a uniform function defined on these points. We will assume that the points
x
i
x
i
x_(i) x_{i} x i are on the real axis and that
f
f
f f f is a real function.
There exists one and only one polynomial of degree n which takes the values
f
(
x
i
)
f
x
i
f(x_(i)) \mathrm{f}\left(\mathrm{x}_{i}\right) f ( x i ) to the points
x
i
,
i
=
1
,
2
,
…
,
n
+
1
3
)
x
i
,
i
=
1
,
2
,
…
,
n
+
1
3
{:x_(i),i=1,2,dots,n+1^(3)) \left.\mathrm{x}_{i}, \mathrm{i}=1,2, \ldots, \mathrm{n}+1{ }^{3}\right) x i , i = 1 , 2 , … , n + 1 3 ) .
The existence of at least one polynomial satisfying the imposed conditions can be demonstrated by induction. For
n
=
0
n
=
0
n=0 n=0 n = 0 the property is immediate. The constant
f
(
x
1
)
f
x
1
f(x_(1)) f\left(x_{1}\right) f ( x 1 ) (polynomial of degree 0) satisfies the imposed condition. Suppose that the property is true for
n
n
n n n and we will demonstrate it for
n
+
1
n
+
1
n+1 n+1 n + 1 . There therefore exists, by hypothesis, at least one polynomial
P
(
x
)
P
(
x
)
P(x) \mathrm{P}(x) P ( x ) of degree
n
−
1
n
−
1
n-1 n-1 n − 1 taking the values
f
(
x
i
)
f
x
i
f(x_(i)) f\left(x_{i}\right) f ( x i ) to the points
x
i
,
i
=
1
x
i
,
i
=
1
x_(i),i=1 x_{i}, i=1 x i , i = 1 ,
2
,
…
,
n
2
,
…
,
n
2,dots,n 2, \ldots, n 2 , … , n . We then see that the polynomial
P
(
x
)
+
[
f
(
x
n
+
1
)
−
P
(
x
n
+
1
)
]
(
x
−
x
1
)
(
x
−
x
2
)
…
(
x
−
x
n
)
(
x
n
+
1
−
x
1
)
(
x
n
+
1
−
x
2
)
…
(
x
n
+
1
−
x
n
)
P
(
x
)
+
f
x
n
+
1
−
P
x
n
+
1
x
−
x
1
x
−
x
2
…
x
−
x
n
x
n
+
1
−
x
1
x
n
+
1
−
x
2
…
x
n
+
1
−
x
n
P(x)+[f(x_(n+1))-P(x_(n+1))]((x-x_(1))(x-x_(2))dots(x-x_(n)))/((x_(n+1)-x_(1))(x_(n+1)-x_(2))dots(x_(n+1)-x_(n))) P(x)+\left[f\left(x_{n+1}\right)-P\left(x_{n+1}\right)\right] \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{n+1}-x_{1}\right)\left(x_{n+1}-x_{2}\right) \ldots\left(x_{n+1}-x_{n}\right)} P ( x ) + [ f ( x n + 1 ) − P ( x n + 1 ) ] ( x − x 1 ) ( x − x 2 ) … ( x − x n ) ( x n + 1 − x 1 ) ( x n + 1 − x 2 ) … ( x n + 1 − x n )
is of degree
n
n
n n n and takes the values
f
(
x
i
)
f
x
i
f(x_(i)) f\left(x_{i}\right) f ( x i ) to the points
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x_(i),i=1,2,dots,n+1 x_{i}, i=1,2, \ldots, n+1 x i , i = 1 , 2 , … , n + 1 .
Uniqueness is easily obtained. If we had two polynomials
P
(
x
)
P
(
x
)
P(x) \mathrm{P}(x) P ( x ) And
Q
(
x
)
Q
(
x
)
Q(x) \mathrm{Q}(x) Q ( x ) , not identical, of degree
n
n
n n n and verifying the imposed conditions, the difference
P
(
x
)
−
Q
(
x
)
P
(
x
)
−
Q
(
x
)
P(x)-Q(x) \mathrm{P}(x)-\mathrm{Q}(x) P ( x ) − Q ( x ) would be zero for
x
=
x
1
,
x
2
,
…
,
x
n
+
1
x
=
x
1
,
x
2
,
…
,
x
n
+
1
x=x_(1),x_(2),dots,x_(n+1) x=x_{1}, x_{2}, \ldots, x_{n+1} x = x 1 , x 2 , … , x n + 1 , which is impossible.
The unique polynomial, determined as we have seen, is called the Lagrange (interpolation) polynomial of the function
f
f
f f f on the points
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x_(i),i=1,2,dots,n+1 \mathrm{x}_{i}, \mathrm{i}=1,2, \ldots, \mathrm{n}+1 x i , i = 1 , 2 , … , n + 1 .
We will designate this polynomial by
(1)
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
)
.
(1)
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
.
{:(1)P(x_(1),x_(2),dots,x_(n+1);f∣x).:} \begin{equation*}
\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right) . \tag{1}
\end{equation*} (1) P ( x 1 , x 2 , … , x n + 1 ; f ∣ x ) .
The general form of polynomials taking the values
f
(
x
i
)
f
x
i
f(x_(i)) f\left(x_{i}\right) f ( x i ) to the points
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x_(i),i=1,2,dots,n+1 x_{i}, i=1,2, \ldots, n+1 x i , i = 1 , 2 , … , n + 1 , East
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
)
+
(
x
−
x
1
)
(
x
−
x
2
)
…
(
x
−
x
n
+
1
)
Q
(
x
)
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
+
x
−
x
1
x
−
x
2
…
x
−
x
n
+
1
Q
(
x
)
P(x_(1),x_(2),dots,x_(n+1);f∣x)+(x-x_(1))(x-x_(2))dots(x-x_(n+1))Q(x) \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)+\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n+1}\right) \mathrm{Q}(x) P ( x 1 , x 2 , … , x n + 1 ; f ∣ x ) + ( x − x 1 ) ( x − x 2 ) … ( x − x n + 1 ) Q ( x )
Q
(
x
)
Q
(
x
)
Q(x) \mathrm{Q}(x) Q ( x ) being any polynomial
4
4
^(4) { }^{4} 4 ).
The uniqueness of the polynomial (1) allows us to write the following well-known formulas,
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
)
=
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
=
P(x_(1),x_(2),dots,x_(n+1);f∣x)= \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)= P ( x 1 , x 2 , … , x n + 1 ; f ∣ x ) =
=
∑
i
=
1
n
+
1
f
(
x
i
)
(
x
−
x
1
)
…
(
x
−
x
i
−
1
)
(
x
−
x
i
+
1
)
…
(
x
−
x
n
+
1
)
(
x
i
−
x
1
)
…
(
x
i
−
x
i
−
1
)
(
x
i
−
x
i
+
1
)
…
(
x
i
−
x
n
+
1
)
=
∑
i
=
1
n
+
1
f
(
x
i
)
?
(
x
)
P
′
(
x
i
)
(
x
−
x
i
)
=
∑
i
=
1
n
+
1
 
f
x
i
x
−
x
1
…
x
−
x
i
−
1
x
−
x
i
+
1
…
x
−
x
n
+
1
x
i
−
x
1
…
x
i
−
x
i
−
1
x
i
−
x
i
+
1
…
x
i
−
x
n
+
1
=
∑
i
=
1
n
+
1
 
f
x
i
?
(
x
)
P
′
x
i
x
−
x
i
=sum_(i=1)^(n+1)f(x_(i))((x-x_(1))dots(x-x_(i-1))(x-x_(i+1))dots(x-x_(n+1)))/((x_(i)-x_(1))dots(x_(i)-x_(i-1))(x_(i)-x_(i+1))dots(x_(i)-x_(n+1)))=sum_(i=1)^(n+1)(f(x_(i))?(x))/(P^(')(x_(i))(x-x_(i))) =\sum_{i=1}^{n+1} f\left(x_{i}\right) \frac{\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n+1}\right)}{\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n+1}\right)}=\sum_{i=1}^{n+1} \frac{f\left(x_{i}\right) ?(x)}{\mathcal{P}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)} = ∑ i = 1 n + 1 f ( x i ) ( x − x 1 ) … ( x − x i − 1 ) ( x − x i + 1 ) … ( x − x n + 1 ) ( x i − x 1 ) … ( x i − x i − 1 ) ( x i − x i + 1 ) … ( x i − x n + 1 ) = ∑ i = 1 n + 1 f ( x i ) ? ( x ) P ′ ( x i ) ( x − x i ) ,
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
)
=
−
|
1
x
1
x
1
2
…
x
1
n
f
(
x
1
)
1
x
2
x
2
2
…
x
2
n
f
(
x
2
)
…
…
…
…
…
…
…
1
x
n
+
1
x
n
+
1
2
…
x
n
+
1
n
f
(
x
n
+
1
)
1
x
x
2
…
x
n
0
|
|
1
x
1
x
1
2
…
x
1
n
1
x
2
x
2
2
…
x
2
n
…
…
…
…
…
…
1
x
n
+
1
x
n
+
1
2
…
x
n
+
1
n
|
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
=
−
1
x
1
x
1
2
…
x
1
n
f
x
1
1
x
2
x
2
2
…
x
2
n
f
x
2
…
…
…
…
…
…
…
1
x
n
+
1
x
n
+
1
2
…
x
n
+
1
n
f
x
n
+
1
1
x
x
2
…
x
n
0
1
x
1
x
1
2
…
x
1
n
1
x
2
x
2
2
…
x
2
n
…
…
…
…
…
…
1
x
n
+
1
x
n
+
1
2
…
x
n
+
1
n
P(x_(1),x_(2),dots,x_(n+1);f∣x)=-(|[1,x_(1),x_(1)^(2),dots,x_(1)^(n),f(x_(1))],[1,x_(2),x_(2)^(2),dots,x_(2)^(n),f(x_(2))],[dots dots,dots,dots,dots,dots,dots],[1,x_(n+1),x_(n+1)^(2),dots,x_(n+1)^(n),f(x_(n+1))],[1,x,x^(2),dots,x^(n),0]|)/(|[1,x_(1),x_(1)^(2),dots,x_(1)^(n)],[1,x_(2),x_(2)^(2),dots,x_(2)^(n)],[dots dots dots,dots,dots,dots],[1,x_(n+1),x_(n+1)^(2),dots,x_(n+1)^(n)]|) \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)=-\frac{\left|\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} & f\left(x_{1}\right) \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} & f\left(x_{2}\right) \\
\ldots \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & x_{n+1} & x_{n+1}^{2} & \ldots & x_{n+1}^{n} & f\left(x_{n+1}\right) \\
1 & x & x^{2} & \ldots & x^{n} & 0
\end{array}\right|}{\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\ldots \ldots \ldots & \ldots & \ldots & \ldots \\
1 & x_{n+1} & x_{n+1}^{2} & \ldots & x_{n+1}^{n}
\end{array}\right|} P ( x 1 , x 2 , … , x n + 1 ; f ∣ x ) = − | 1 x 1 x 1 2 … x 1 n f ( x 1 ) 1 x 2 x 2 2 … x 2 n f ( x 2 ) … … … … … … … 1 x n + 1 x n + 1 2 … x n + 1 n f ( x n + 1 ) 1 x x 2 … x n 0 | | 1 x 1 x 1 2 … x 1 n 1 x 2 x 2 2 … x 2 n … … … … … … 1 x n + 1 x n + 1 2 … x n + 1 n |
where we posed
(2)
f
(
x
)
=
(
x
−
x
1
)
(
x
−
x
2
)
…
(
x
−
x
n
+
1
)
.
(2)
f
(
x
)
=
x
−
x
1
x
−
x
2
…
x
−
x
n
+
1
.
{:(2)f(x)=(x-x_(1))(x-x_(2))dots(x-x_(n+1)).:} \begin{equation*}
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n+1}\right) . \tag{2}
\end{equation*} (2) f ( x ) = ( x − x 1 ) ( x − x 2 ) … ( x − x n + 1 ) .
Let's pose
(3)
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
=
∑
i
=
1
n
+
1
f
(
x
i
)
P
′
(
x
i
)
x
1
,
x
2
,
…
,
x
n
+
1
;
f
=
∑
i
=
1
n
+
1
 
f
x
i
P
′
x
i
[x_(1),x_(2),dots,x_(n+1);f]=sum_(i=1)^(n+1)(f(x_(i)))/(P^(')(x_(i))) \left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right]=\sum_{i=1}^{n+1} \frac{f\left(x_{i}\right)}{\mathcal{P}^{\prime}\left(x_{i}\right)} [ x 1 , x 2 , … , x n + 1 ; f ] = ∑ i = 1 n + 1 f ( x i ) P ′ ( x i )
4
4
^(4) { }^{4} 4 ) The polynomial (1) can also be characterized by the following extremal property. There exists one and only one polynomial of minimum effective degree which takes the values
f
(
x
i
)
f
x
i
f(x_(i)) f\left(x_{i}\right) f ( x i ) , For
x
=
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x
=
x
i
,
i
=
1
,
2
,
…
,
n
+
1
x=x_(i),i=1,2,dots,n+1 x=x_{i}, i=1,2, \ldots, n+1 x = x i , i = 1 , 2 , … , n + 1 .
which is the coefficient of
x
n
x
n
x^(n) x^{n} x n in the polynomial (1). This polynomial can then be written in the following forms
5
5
^(5) { }^{5} 5 )
P
(
x
1
,
x
2
,
…
,
x
n
;
f
∣
x
)
+
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
φ
(
x
)
x
−
x
n
+
1
P
(
x
2
,
x
3
,
…
,
x
n
+
1
;
f
∣
x
)
+
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
φ
(
x
)
x
−
x
1
P
x
1
,
x
2
,
…
,
x
n
;
f
∣
x
+
x
1
,
x
2
,
…
,
x
n
+
1
;
f
φ
(
x
)
x
−
x
n
+
1
P
x
2
,
x
3
,
…
,
x
n
+
1
;
f
∣
x
+
x
1
,
x
2
,
…
,
x
n
+
1
;
f
φ
(
x
)
x
−
x
1
{:[P(x_(1),x_(2),dots,x_(n);f∣x)+[x_(1),x_(2),dots,x_(n+1);f](varphi(x))/(x-x_(n+1))],[P(x_(2),x_(3),dots,x_(n+1);f∣x)+[x_(1),x_(2),dots,x_(n+1);f](varphi(x))/(x-x_(1))]:} \begin{aligned}
& \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n} ; f \mid x\right)+\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right] \frac{\varphi(x)}{x-x_{n+1}} \\
& \mathrm{P}\left(x_{2}, x_{3}, \ldots, x_{n+1} ; f \mid x\right)+\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right] \frac{\varphi(x)}{x-x_{1}}
\end{aligned} P ( x 1 , x 2 , … , x n ; f ∣ x ) + [ x 1 , x 2 , … , x n + 1 ; f ] φ ( x ) x − x n + 1 P ( x 2 , x 3 , … , x n + 1 ; f ∣ x ) + [ x 1 , x 2 , … , x n + 1 ; f ] φ ( x ) x − x 1
from which results the recurrence relation of Lagrange polynomials
(4)
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
)
=
=
(
x
−
x
1
)
P
(
x
2
,
x
3
,
…
,
x
n
+
1
;
f
∣
x
)
−
(
x
−
x
n
+
1
)
P
(
x
1
,
x
2
,
…
,
x
n
;
f
∣
x
)
x
n
+
1
−
x
1
(4)
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
=
=
x
−
x
1
P
x
2
,
x
3
,
…
,
x
n
+
1
;
f
∣
x
−
x
−
x
n
+
1
P
x
1
,
x
2
,
…
,
x
n
;
f
∣
x
x
n
+
1
−
x
1
{:[(4)P(x_(1),x_(2),dots,x_(n+1);f∣x)=],[=((x-x_(1))P(x_(2),x_(3),dots,x_(n+1);f∣x)-(x-x_(n+1))P(x_(1),x_(2),dots,x_(n);f∣x))/(x_(n+1)-x_(1))]:} \begin{gather*}
\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)= \tag{4}\\
=\frac{\left(x-x_{1}\right) \mathrm{P}\left(x_{2}, x_{3}, \ldots, x_{n+1} ; f \mid x\right)-\left(x-x_{n+1}\right) \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n} ; f \mid x\right)}{x_{n+1}-x_{1}}
\end{gather*} (4) P ( x 1 , x 2 , … , x n + 1 ; f ∣ x ) = = ( x − x 1 ) P ( x 2 , x 3 , … , x n + 1 ; f ∣ x ) − ( x − x n + 1 ) P ( x 1 , x 2 , … , x n ; f ∣ x ) x n + 1 − x 1
Divided differences. The divided difference of order n of the function f on the points
x
1
,
x
2
,
…
,
x
n
+
1
x
1
,
x
2
,
…
,
x
n
+
1
x_(1),x_(2),dots,x_(n+1) \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n+1} x 1 , x 2 , … , x n + 1 is characterized by the following properties:
a) It is a linear and homogeneous expression with respect to
f
(
x
1
)
,
f
(
x
2
)
,
…
,
f
(
x
n
+
1
)
f
x
1
,
f
x
2
,
…
,
f
x
n
+
1
f(x_(1)),f(x_(2)),dots,f(x_(n+1)) \mathrm{f}\left(\mathrm{x}_{1}\right), \mathrm{f}\left(\mathrm{x}_{2}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{n+1}\right) f ( x 1 ) , f ( x 2 ) , … , f ( x n + 1 ) , with coefficients independent of the function f .
b) It is zero identically for the functions
f
=
1
,
x
,
x
2
,
…
f
=
1
,
x
,
x
2
,
…
f=1,x,x^(2),dots \mathrm{f}=1, \mathrm{x}, \mathrm{x}^{2}, \ldots f = 1 , x , x 2 , … ,
x
n
+
1
x
n
+
1
x^(n+1) x^{n+1} x n + 1 .
c) It reduces to 1 identically for the function
f
=
x
n
f
=
x
n
f=x^(n) \mathrm{f}=\mathrm{x}^{n} f = x n .
The expression determined by these conditions
a
a
a a has ),
b
b
b b b ),
c
c
c c c ), is unique since the system
∑
i
=
1
n
+
1
λ
i
x
i
m
=
{
0
,
m
=
0
,
1
,
…
,
n
−
1
,
1
,
m
=
n
,
∑
i
=
1
n
+
1
 
λ
i
x
i
m
=
0
,
m
=
0
,
1
,
…
,
n
−
1
,
1
,
m
=
n
,
sum_(i=1)^(n+1)lambda_(i)x_(i)^(m)={[0",",m=0","1","dots","n-1","],[1",",m=n","]:} \sum_{i=1}^{n+1} \lambda_{i} x_{i}^{m}= \begin{cases}0, & m=0,1, \ldots, n-1, \\ 1, & m=n,\end{cases} ∑ i = 1 n + 1 λ i x i m = { 0 , m = 0 , 1 , … , n − 1 , 1 , m = n ,
is a system of
C
Ramer
C
Ramer
C_("Ramer ") \mathrm{C}_{\text {Ramer }} C Row in
λ
1
,
λ
2
,
…
,
λ
n
+
1
λ
1
,
λ
2
,
…
,
λ
n
+
1
lambda_(1),lambda_(2),dots,lambda_(n+1) \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1} λ 1 , λ 2 , … , λ n + 1 The determinant of this system is, in fact, the Vandermonde determinant
V
(
x
1
,
x
2
…
,
x
n
+
1
)
=
∏
i
<
j
(
x
j
−
x
i
)
V
x
1
,
x
2
…
,
x
n
+
1
=
∏
i
<
j
 
x
j
−
x
i
V(x_(1),x_(2)dots,x_(n+1))=prod_(i < j)(x_(j)-x_(i)) \mathrm{V}\left(x_{1}, x_{2} \ldots, x_{n+1}\right)=\prod_{i<j}\left(x_{j}-x_{i}\right) V ( x 1 , x 2 … , x n + 1 ) = ∏ i < I ( x I − x i )
distinct numbers
x
i
x
i
x_(i) x_{i} x i .
Note that expression (3) verifies the properties
a
a
a a has ),
b
b
b b b ),
c
c
c c c ) since
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
x
i
∣
x
)
=
x
i
,
i
=
0
,
1
,
…
,
n
−
1
,
P
x
1
,
x
2
,
…
,
x
n
+
1
;
x
i
∣
x
=
x
i
,
i
=
0
,
1
,
…
,
n
−
1
,
P(x_(1),x_(2),dots,x_(n+1);x^(i)∣x)=x^(i),i=0,1,dots,n-1, \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; x^{i} \mid x\right)=x^{i}, i=0,1, \ldots, n-1, P ( x 1 , x 2 , … , x n + 1 ; x i ∣ x ) = x i , i = 0 , 1 , … , n − 1 ,
it is therefore the value of the divided difference of f on the points
x
l
x
l
x_(l) \mathrm{x}_{l} x L .
Let us designate by
U
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
)
U
x
1
,
x
2
,
…
,
x
n
+
1
;
f
U(x_(1),x_(2),dots,x_(n+1);f) \mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f\right) U ( x 1 , x 2 , … , x n + 1 ; f ) the determinant that we obtain from
V
(
x
1
,
x
2
,
…
,
x
n
+
1
)
V
x
1
,
x
2
,
…
,
x
n
+
1
V(x_(1),x_(2),dots,x_(n+1)) V\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) V ( x 1 , x 2 , … , x n + 1 ) if we replace the elements
x
i
n
x
i
n
x_(i)^(n) x_{i}^{n} x i n by
f
(
x
i
)
f
x
i
f(x_(i)) f\left(x_{i}\right) f ( x i ) respectively. The divided difference (3) is then written
(5)
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
=
U
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
)
V
(
x
1
,
x
2
,
…
,
x
n
+
1
)
(5)
x
1
,
x
2
,
…
,
x
n
+
1
;
f
=
U
x
1
,
x
2
,
…
,
x
n
+
1
;
f
V
x
1
,
x
2
,
…
,
x
n
+
1
{:(5)[x_(1),x_(2),dots,x_(n+1);f]=(U(x_(1),x_(2),dots,x_(n+1);f))/(V(x_(1),x_(2),dots,x_(n+1))):} \begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right]=\frac{\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f\right)}{\mathrm{V}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)} \tag{5}
\end{equation*} (5) [ x 1 , x 2 , … , x n + 1 ; f ] = U ( x 1 , x 2 , … , x n + 1 ; f ) V ( x 1 , x 2 , … , x n + 1 )
in the form of the quotient of two determinants. We see that the divided difference (5) is symmetrical with respect to the points
x
i
x
i
x_(i) \mathrm{x}_{i} x i .
Formula (4) gives us the recurrence formula for divided differences
(6)
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
=
[
x
2
,
x
3
,
…
,
x
n
+
1
;
f
]
−
[
x
1
,
x
2
,
…
,
x
n
;
f
]
x
n
+
1
−
x
1
[
x
1
;
f
]
=
f
(
x
1
)
(6)
x
1
,
x
2
,
…
,
x
n
+
1
;
f
=
x
2
,
x
3
,
…
,
x
n
+
1
;
f
−
x
1
,
x
2
,
…
,
x
n
;
f
x
n
+
1
−
x
1
x
1
;
f
=
f
x
1
{:[(6)[x_(1),x_(2),dots,x_(n+1);f]=([x_(2),x_(3),dots,x_(n+1);f]-[x_(1),x_(2),dots,x_(n);f])/(x_(n+1)-x_(1))],[[x_(1);f]=f(x_(1))]:} \begin{gather*}
{\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right]=\frac{\left[x_{2}, x_{3}, \ldots, x_{n+1} ; f\right]-\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right]}{x_{n+1}-x_{1}}} \tag{6}\\
{\left[x_{1} ; f\right]=f\left(x_{1}\right)}
\end{gather*} (6) [ x 1 , x 2 , … , x n + 1 ; f ] = [ x 2 , x 3 , … , x n + 1 ; f ] − [ x 1 , x 2 , … , x n ; f ] x n + 1 − x 1 [ x 1 ; f ] = f ( x 1 )
which can also be used to define them and which justifies their name.
We can therefore write
(7)
[
x
1
,
x
2
,
…
,
x
n
+
1
;
x
m
]
=
{
0
,
m
=
0
,
1
,
…
,
n
−
1
1
,
m
=
n
(7)
x
1
,
x
2
,
…
,
x
n
+
1
;
x
m
=
0
,
m
=
0
,
1
,
…
,
n
−
1
1
,
m
=
n
{:(7)[x_(1),x_(2),dots,x_(n+1);x^(m)]={[0",",m=0","1","dots","n-1],[1",",m=n]:}:} \left[x_{1}, x_{2}, \ldots, x_{n+1} ; x^{m}\right]= \begin{cases}0, & m=0,1, \ldots, n-1 \tag{7}\\ 1, & m=n\end{cases} (7) [ x 1 , x 2 , … , x n + 1 ; x m ] = { 0 , m = 0 , 1 , … , n − 1 1 , m = n
We have
(8)
[
x
1
,
x
2
,
…
,
x
n
+
1
;
C
f
]
=
C
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
(8)
x
1
,
x
2
,
…
,
x
n
+
1
;
C
f
=
C
x
1
,
x
2
,
…
,
x
n
+
1
;
f
{:(8)[x_(1),x_(2),dots,x_(n+1);Cf]=C[x_(1),x_(2),dots,x_(n+1);f]:} \begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n+1} ; \mathrm{C} f\right]=\mathrm{C}\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right] \tag{8}
\end{equation*} (8) [ x 1 , x 2 , … , x n + 1 ; C f ] = C [ x 1 , x 2 , … , x n + 1 ; f ]
(9)
[
x
1
,
x
2
…
,
x
n
+
1
;
f
+
g
]
=
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
+
[
x
1
,
x
2
,
…
,
x
n
+
1
;
g
]
x
1
,
x
2
…
,
x
n
+
1
;
f
+
g
=
x
1
,
x
2
,
…
,
x
n
+
1
;
f
+
x
1
,
x
2
,
…
,
x
n
+
1
;
g
quad[x_(1),x_(2)dots,x_(n+1);f+g]=[x_(1),x_(2),dots,x_(n+1);f]+[x_(1),x_(2),dots,x_(n+1);g] \quad\left[x_{1}, x_{2} \ldots, x_{n+1} ; f+g\right]=\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right]+\left[x_{1}, x_{2}, \ldots, x_{n+1} ; g\right] [ x 1 , x 2 … , x n + 1 ; f + g ] = [ x 1 , x 2 , … , x n + 1 ; f ] + [ x 1 , x 2 , … , x n + 1 ; g ]
C being a constant and
f
,
g
f
,
g
f,g f, g f , g two functions defined on the points
x
,
i
=
1
,
2
,
…
,
n
+
1
x
,
i
=
1
,
2
,
…
,
n
+
1
x_(", ")i=1,2,dots,n+1 x_{\text {, }} i=1,2, \ldots, n+1 x , i = 1 , 2 , … , n + 1 .
If
{
f
m
}
f
m
{f_(m)} \left\{f_{m}\right\} { f m } is a convergent sequence of functions defined on the points
x
i
x
i
x_(i) x_{i} x i , we obviously have
lim
m
→
∞
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
m
]
=
[
x
1
,
x
2
,
…
,
x
n
+
1
;
lim
m
→
∞
f
m
]
lim
m
→
∞
 
x
1
,
x
2
,
…
,
x
n
+
1
;
f
m
=
x
1
,
x
2
,
…
,
x
n
+
1
;
lim
m
→
∞
 
f
m
lim_(m rarr oo)[x_(1),x_(2),dots,x_(n+1);f_(m)]=[x_(1),x_(2),dots,x_(n+1);lim_(m rarr oo)f_(m)] \lim _{m \rightarrow \infty}\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f_{m}\right]=\left[x_{1}, x_{2}, \ldots, x_{n+1} ; \lim _{m \rightarrow \infty} f_{m}\right] lim m → ∞ [ x 1 , x 2 , … , x n + 1 ; f m ] = [ x 1 , x 2 , … , x n + 1 ; lim m → ∞ f m ]
so, if the series
∑
m
=
0
∞
f
m
∑
m
=
0
∞
 
f
m
sum_(m=0)^(oo)f_(m) \sum_{m=0}^{\infty} f_{m} ∑ m = 0 ∞ f m converges, we have
∑
m
=
0
∞
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
m
]
=
[
x
1
,
x
2
…
,
x
n
+
1
;
∑
m
=
0
∞
f
m
]
∑
m
=
0
∞
 
x
1
,
x
2
,
…
,
x
n
+
1
;
f
m
=
x
1
,
x
2
…
,
x
n
+
1
;
∑
m
=
0
∞
 
f
m
sum_(m=0)^(oo)[x_(1),x_(2),dots,x_(n+1);f_(m)]=[x_(1),x_(2)dots,x_(n+1);sum_(m=0)^(oo)f_(m)] \sum_{m=0}^{\infty}\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f_{m}\right]=\left[x_{1}, x_{2} \ldots, x_{n+1} ; \sum_{m=0}^{\infty} f_{m}\right] ∑ m = 0 ∞ [ x 1 , x 2 , … , x n + 1 ; f m ] = [ x 1 , x 2 … , x n + 1 ; ∑ m = 0 ∞ f m ]
From the above it follows that the divided difference of order
n
n
n n n of a polynomial of degree
n
−
1
n
−
1
n-1 n-1 n − 1 is still zero.
Let us note again the formula
f
(
x
)
−
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
)
=
φ
(
x
)
[
x
1
,
x
2
,
…
,
x
n
+
1
,
x
;
f
]
f
(
x
)
−
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
=
φ
(
x
)
x
1
,
x
2
,
…
,
x
n
+
1
,
x
;
f
f(x)-P(x_(1),x_(2),dots,x_(n+1);f∣x)=varphi(x)[x_(1),x_(2),dots,x_(n+1),x;f] f(x)-\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)=\varphi(x)\left[x_{1}, x_{2}, \ldots, x_{n+1}, x ; f\right] f ( x ) − P ( x 1 , x 2 , … , x n + 1 ; f ∣ x ) = φ ( x ) [ x 1 , x 2 , … , x n + 1 , x ; f ]
which is a simple relationship between the Lagrange polynomial and the divided difference.
Application. Let us calculate the divided differences (7) for
m
m
m m m entire
>
n
>
n
> n >n > n . Without restricting the generality we can assume
x
i
≠
0
,
i
=
1
,
2
…
x
i
≠
0
,
i
=
1
,
2
…
x_(i)!=0,i=1,2dots x_{i} \neq 0, i=1,2 \ldots x i ≠ 0 , i = 1 , 2 … ,
n
+
1
n
+
1
n+1 n+1 n + 1 and either
|
z
|
<
min
(
1
|
x
1
|
,
1
|
x
2
|
,
…
,
1
|
x
n
+
1
|
)
,
z
|
z
|
<
min
1
x
1
,
1
x
2
,
…
,
1
x
n
+
1
,
z
|z| < min((1)/(|x_(1)|),(1)/(|x_(2)|),dots,(1)/(|x_(n+1)|)),z |z|<\min \left(\frac{1}{\left|x_{1}\right|}, \frac{1}{\left|x_{2}\right|}, \ldots, \frac{1}{\left|x_{n+1}\right|}\right), z | z | < min ( 1 | x 1 | , 1 | x 2 | , … , 1 | x n + 1 | ) , z being a parameter independent of
x
x
x x x . We have
z
n
(
1
−
z
x
1
)
(
1
−
z
x
2
)
…
(
1
−
z
x
n
+
1
)
=
∑
i
=
1
n
+
1
1
(
1
−
z
x
i
)
′
o
q
′
(
x
i
)
=
=
[
x
1
,
x
2
,
…
,
x
n
+
1
;
1
1
−
z
x
]
z
n
1
−
z
x
1
1
−
z
x
2
…
1
−
z
x
n
+
1
=
∑
i
=
1
n
+
1
 
1
1
−
z
x
i
′
o
q
′
x
i
=
=
x
1
,
x
2
,
…
,
x
n
+
1
;
1
1
−
z
x
{:[(z^(n))/((1-zx_(1))(1-zx_(2))dots(1-zx_(n+1)))=sum_(i=1)^(n+1)(1)/((1-zx_(i))^(')(o)/(q)^(')(x_(i)))=],[=[x_(1),x_(2),dots,x_(n+1);(1)/(1-zx)]]:} \begin{gathered}
\frac{z^{n}}{\left(1-z x_{1}\right)\left(1-z x_{2}\right) \ldots\left(1-z x_{n+1}\right)}=\sum_{i=1}^{n+1} \frac{1}{\left(1-z x_{i}\right)^{\prime} \frac{o}{q}^{\prime}\left(x_{i}\right)}= \\
=\left[x_{1}, x_{2}, \ldots, x_{n+1} ; \frac{1}{1-z x}\right]
\end{gathered} z n ( 1 − z x 1 ) ( 1 − z x 2 ) … ( 1 − z x n + 1 ) = ∑ i = 1 n + 1 1 ( 1 − z x i ) ′ o q ′ ( x i ) = = [ x 1 , x 2 , … , x n + 1 ; 1 1 − z x ]
But,
1
1
−
z
x
=
z
n
x
n
1
−
z
x
+
1
+
z
x
+
z
2
x
2
+
…
+
z
n
−
1
x
n
−
1
1
1
−
z
x
=
z
n
x
n
1
−
z
x
+
1
+
z
x
+
z
2
x
2
+
…
+
z
n
−
1
x
n
−
1
(1)/(1-zx)=(z^(n)x^(n))/(1-zx)+1+zx+z^(2)x^(2)+dots+z^(n-1)x^(n-1) \frac{1}{1-z x}=\frac{z^{n} x^{n}}{1-z x}+1+z x+z^{2} x^{2}+\ldots+z^{n-1} x^{n-1} 1 1 − z x = z n x n 1 − z x + 1 + z x + z 2 x 2 + … + z n − 1 x n − 1
and taking into account (7), (8), (9),
[
x
1
,
x
2
,
…
,
x
n
+
1
;
1
1
−
z
x
]
=
z
n
[
x
1
,
x
2
,
…
,
x
n
+
1
;
x
n
1
−
z
x
]
x
1
,
x
2
,
…
,
x
n
+
1
;
1
1
−
z
x
=
z
n
x
1
,
x
2
,
…
,
x
n
+
1
;
x
n
1
−
z
x
[x_(1),x_(2),dots,x_(n+1);(1)/(1-zx)]=z^(n)[x_(1),x_(2),dots,x_(n+1);(x^(n))/(1-zx)] \left[x_{1}, x_{2}, \ldots, x_{n+1} ; \frac{1}{1-z x}\right]=z^{n}\left[x_{1}, x_{2}, \ldots, x_{n+1} ; \frac{x^{n}}{1-z x}\right] [ x 1 , x 2 , … , x n + 1 ; 1 1 − z x ] = z n [ x 1 , x 2 , … , x n + 1 ; x n 1 − z x ]
If we therefore pose
(10)
1
(
1
−
z
x
1
)
(
1
−
z
x
2
)
…
(
1
⋯
z
x
n
+
1
)
=
S
0
+
S
1
z
+
S
2
z
2
+
…
1
1
−
z
x
1
1
−
z
x
2
…
1
⋯
z
x
n
+
1
=
S
0
+
S
1
z
+
S
2
z
2
+
…
(1)/((1-zx_(1))(1-zx_(2))dots(1cdots zx_(n+1)))=S_(0)+S_(1)z+S_(2)z^(2)+dots \frac{1}{\left(1-z x_{1}\right)\left(1-z x_{2}\right) \ldots\left(1 \cdots z x_{n+1}\right)}=\mathrm{S}_{0}+\mathrm{S}_{1} z+\mathrm{S}_{2} z^{2}+\ldots 1 ( 1 − z x 1 ) ( 1 − z x 2 ) … ( 1 ⋯ z x n + 1 ) = S 0 + S 1 z + S 2 z 2 + … We have
S
1
=
[
x
1
,
x
2
,
…
,
x
n
+
1
;
x
i
+
n
]
S
1
=
x
1
,
x
2
,
…
,
x
n
+
1
;
x
i
+
n
S_(1)=[x_(1),x_(2),dots,x_(n+1);x^(i+n)] \mathrm{S}_{1}=\left[x_{1}, x_{2}, \ldots, x_{n+1} ; x^{i+n}\right] S 1 = [ x 1 , x 2 , … , x n + 1 ; x i + n ]
If we write that the first member of (10) is equal to the product of the developments
1
1
−
z
x
i
=
1
+
z
x
i
+
z
2
x
i
2
+
…
+
z
m
x
i
m
+
…
,
i
=
1
,
2
,
…
,
n
+
1
1
1
−
z
x
i
=
1
+
z
x
i
+
z
2
x
i
2
+
…
+
z
m
x
i
m
+
…
,
i
=
1
,
2
,
…
,
n
+
1
(1)/(1-zx_(i))=1+zx_(i)+z^(2)x_(i)^(2)+dots+z^(m)x_(i)^(m)+dots,i=1,2,dots,n+1 \frac{1}{1-z x_{i}}=1+z x_{i}+z^{2} x_{i}^{2}+\ldots+z^{m} x_{i}^{m}+\ldots, i=1,2, \ldots, n+1 1 1 − z x i = 1 + z x i + z 2 x i 2 + … + z m x i m + … , i = 1 , 2 , … , n + 1
we find
S
i
=
[
x
1
,
x
2
,
…
,
x
n
+
1
;
x
i
+
n
]
=
Σ
x
1
α
1
x
2
α
2
…
x
n
+
1
α
n
+
1
S
i
=
x
1
,
x
2
,
…
,
x
n
+
1
;
x
i
+
n
=
Σ
x
1
α
1
x
2
α
2
…
x
n
+
1
α
n
+
1
S_(i)=[x_(1),x_(2),dots,x_(n+1);x^(i+n)]=Sigmax_(1)^(alpha_(1))x_(2)^(alpha_(2))dotsx_(n+1)^(alpha_(n+1)) \mathrm{S}_{i}=\left[x_{1}, x_{2}, \ldots, x_{n+1} ; x^{i+n}\right]=\Sigma x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n+1}^{\alpha_{n+1}} S i = [ x 1 , x 2 , … , x n + 1 ; x i + n ] = Σ x 1 α 1 x 2 α 2 … x n + 1 α n + 1
the summation being extended to all the whole and positive solutions of the equation
α
1
+
α
2
+
…
+
α
n
+
1
=
i
α
1
+
α
2
+
…
+
α
n
+
1
=
i
alpha_(1)+alpha_(2)+dots+alpha_(n+1)=i \alpha_{1}+\alpha_{2}+\ldots+\alpha_{n+1}=i α 1 + α 2 + … + α n + 1 = i .
3. The fundamental formula for transforming divided differences. Now consider the function
f
f
f f f set to
m
m
m m m distinct points
(11)
x
1
,
x
2
,
…
,
x
m
(
m
≧
n
+
1
)
(11)
x
1
,
x
2
,
…
,
x
m
(
m
≧
n
+
1
)
{:(11)x_(1)","x_(2)","dots","x_(m)quad(m >= n+1):} \begin{equation*}
x_{1}, x_{2}, \ldots, x_{m} \quad(m \geqq n+1) \tag{11}
\end{equation*} (11) x 1 , x 2 , … , x m ( m ≧ n + 1 )
To simplify the notations we will set
(12)
Δ
j
i
(
f
)
=
[
x
i
,
x
i
+
1
,
…
,
x
i
+
j
;
f
]
,
Δ
0
i
(
f
)
=
f
(
x
i
)
,
(13)
ξ
i
,
j
+
1
(
x
)
=
(
x
−
x
i
)
(
x
−
x
i
+
1
)
…
(
x
−
x
i
+
j
)
,
ξ
i
,
0
(
x
)
=
1
,
i
=
1
,
2
,
…
,
m
−
j
,
j
=
0
,
1
,
…
,
m
−
1
.
(12)
Δ
j
i
(
f
)
=
x
i
,
x
i
+
1
,
…
,
x
i
+
j
;
f
,
Δ
0
i
(
f
)
=
f
x
i
,
(13)
ξ
i
,
j
+
1
(
x
)
=
x
−
x
i
x
−
x
i
+
1
…
x
−
x
i
+
j
,
ξ
i
,
0
(
x
)
=
1
,
i
=
1
,
2
,
…
,
m
−
j
,
j
=
0
,
1
,
…
,
m
−
1
.
{:[(12)Delta_(j)^(i)(f)=[x_(i),x_(i+1),dots,x_(i+j);f]","Delta_(0)^(i)(f)=f(x_(i))","],[(13)xi_(i,j+1)(x)=(x-x_(i))(x-x_(i+1))dots(x-x_(i+j))","quadxi_(i,0)(x)=1","],[i=1","2","dots","m-j","quad j=0","1","dots","m-1.]:} \begin{align*}
\Delta_{j}^{i}(f) & =\left[x_{i}, x_{i+1}, \ldots, x_{i+j} ; f\right], \Delta_{0}^{i}(f)=f\left(x_{i}\right), \tag{12}\\
\xi_{i, j+1}(x) & =\left(x-x_{i}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{i+j}\right), \quad \xi_{i, 0}(x)=1, \tag{13}\\
i & =1,2, \ldots, m-j, \quad j=0,1, \ldots, m-1 .
\end{align*} (12) Δ I i ( f ) = [ x i , x i + 1 , … , x i + I ; f ] , Δ 0 i ( f ) = f ( x i ) , (13) ξ i , I + 1 ( x ) = ( x − x i ) ( x − x i + 1 ) … ( x − x i + I ) , ξ i , 0 ( x ) = 1 , i = 1 , 2 , … , m − I , I = 0 , 1 , … , m − 1 .
So
1
,
n
+
1
(
x
)
1
,
n
+
1
(
x
)
_(1,n+1)(x) { }_{1, n+1}(x) 1 , n + 1 ( x ) is precisely the polynomial (2) already considered. With these notations we have
Δ
j
i
(
f
)
=
∑
r
=
i
i
⊬
j
f
(
x
r
)
φ
i
,
j
+
1
′
(
x
r
)
Δ
j
i
(
f
)
=
∑
r
=
i
i
⊬
j
 
f
x
r
φ
i
,
j
+
1
′
x
r
Delta_(j)^(i)(f)=sum_(r=i)^(i⊬j)(f(x_(r)))/(varphi_(i,j+1)^(')(x_(r))) \Delta_{j}^{i}(f)=\sum_{r=i}^{i \nvdash j} \frac{f\left(x_{r}\right)}{\varphi_{i, j+1}^{\prime}\left(x_{r}\right)} Δ I i ( f ) = ∑ r = i i ⊬ I f ( x r ) φ i , I + 1 ′ ( x r )
We will now consider a linear and homogeneous expression of
f
(
x
i
)
f
x
i
f(x_(i)) f\left(x_{i}\right) f ( x i ) of the form
F
=
∑
i
=
1
m
λ
i
f
(
x
i
)
F
=
∑
i
=
1
m
 
λ
i
f
x
i
F=sum_(i=1)^(m)lambda_(i)f(x_(i)) \mathrm{F}=\sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right) F = ∑ i = 1 m λ i f ( x i )
THE
λ
i
λ
i
lambda_(i) \lambda_{i} λ i being independent of the function
f
f
f f f .
We can always put such an expression in the form
F
=
∑
i
=
1
n
μ
i
Δ
i
−
1
1
(
f
)
+
∑
i
=
1
m
−
n
v
i
Δ
n
i
(
f
)
F
=
∑
i
=
1
n
 
μ
i
Δ
i
−
1
1
(
f
)
+
∑
i
=
1
m
−
n
 
v
i
Δ
n
i
(
f
)
F=sum_(i=1)^(n)mu_(i)Delta_(i-1)^(1)(f)+sum_(i=1)^(m-n)v_(i)Delta_(n)^(i)(f) \mathrm{F}=\sum_{i=1}^{n} \mu_{i} \Delta_{i-1}^{1}(f)+\sum_{i=1}^{m-n} v_{i} \Delta_{n}^{i}(f) F = ∑ i = 1 n μ i Δ i − 1 1 ( f ) + ∑ i = 1 m − n v i Δ n i ( f )
where the
μ
l
μ
l
mu_(l) \mu_{l} μ L and the
ν
i
ν
i
nu_(i) \nu_{i} ν i do not depend on the function
t
t
t t t . These coefficients are completely determined by the coefficients
λ
r
λ
r
lambda_(r) \lambda_{r} λ r . Indeed, identification leads us to a linear system of
m
m
m m m equations with respect to
m
m
m m m unknowns
μ
l
,
ν
l
μ
l
,
ν
l
mu_(l),nu_(l) \mu_{l}, \nu_{l} μ L , ν L . The determinant of this system
1
φ
1
,
2
′
(
x
2
)
φ
1
,
3
′
(
x
3
)
…
φ
1
,
n
′
(
x
n
)
φ
1
,
n
+
1
′
(
x
n
+
1
)
φ
2
,
n
+
1
′
(
x
n
+
2
)
…
φ
m
−
n
,
n
+
1
′
(
x
m
)
1
φ
1
,
2
′
x
2
φ
1
,
3
′
x
3
…
φ
1
,
n
′
x
n
φ
1
,
n
+
1
′
x
n
+
1
φ
2
,
n
+
1
′
x
n
+
2
…
φ
m
−
n
,
n
+
1
′
x
m
(1)/(varphi_(1,2)^(')(x_(2))varphi_(1,3)^(')(x_(3))dotsvarphi_(1,n)^(')(x_(n))varphi_(1,n+1)^(')(x_(n+1))varphi_(2,n+1)^(')(x_(n+2))dotsvarphi_(m-n,n+1)^(')(x_(m))) \frac{1}{\varphi_{1,2}^{\prime}\left(x_{2}\right) \varphi_{1,3}^{\prime}\left(x_{3}\right) \ldots \varphi_{1, n}^{\prime}\left(x_{n}\right) \varphi_{1, n+1}^{\prime}\left(x_{n+1}\right) \varphi_{2, n+1}^{\prime}\left(x_{n+2}\right) \ldots \varphi_{m-n, n+1}^{\prime}\left(x_{m}\right)} 1 φ 1 , 2 ′ ( x 2 ) φ 1 , 3 ′ ( x 3 ) … φ 1 , n ′ ( x n ) φ 1 , n + 1 ′ ( x n + 1 ) φ 2 , n + 1 ′ ( x n + 2 ) … φ m − n , n + 1 ′ ( x m ) is different from zero.
It remains to be seen how the coefficients are determined.
μ
i
,
y
i
μ
i
,
y
i
mu_(i),y_(i) \mu_{i}, y_{i} μ i , y i We will obtain them by choosing the function appropriately.
f
f
f f f .
To have the coefficients
μ
i
μ
i
mu_(i) \mu_{i} μ i , let's take for
f
f
f f f the polynomial
φ
1
,
j
−
1
=
φ
1
,
j
−
1
(
x
)
φ
1
,
j
−
1
=
φ
1
,
j
−
1
(
x
)
varphi_(1,j-1)=varphi_(1,j-1)(x) \varphi_{1, j-1}=\varphi_{1, j-1}(x) φ 1 , I − 1 = φ 1 , I − 1 ( x ) . We then have
Δ
i
−
1
1
(
φ
1
,
j
−
1
)
=
{
0
,
i
=
1
,
2
,
…
,
j
−
1
1
,
i
=
j
0
,
i
=
j
+
1
,
j
+
2
,
…
,
n
Δ
n
t
(
ℑ
1
,
j
−
1
)
=
0
,
i
=
1
,
2
,
…
,
m
−
n
Δ
i
−
1
1
φ
1
,
j
−
1
=
0
,
i
=
1
,
2
,
…
,
j
−
1
1
,
i
=
j
0
,
i
=
j
+
1
,
j
+
2
,
…
,
n
Δ
n
t
ℑ
1
,
j
−
1
=
0
,
i
=
1
,
2
,
…
,
m
−
n
{:[Delta_(i-1)^(1)(varphi_(1,j-1))={[0",",i=1","2","dots","j-1],[1",",i=j],[0",",i=j+1","j+2","dots","n]:}],[Delta_(n)^(t)(ℑ_(1,j-1))=0","i=1","2","dots","m-n]:} \begin{aligned}
\Delta_{i-1}^{1}\left(\varphi_{1, j-1}\right) & = \begin{cases}0, & i=1,2, \ldots, j-1 \\
1, & i=j \\
0, & i=j+1, j+2, \ldots, n\end{cases} \\
\Delta_{n}^{t}\left(\Im_{1, j-1}\right) & =0, i=1,2, \ldots, m-n
\end{aligned} Δ i − 1 1 ( φ 1 , I − 1 ) = { 0 , i = 1 , 2 , … , I − 1 1 , i = I 0 , i = I + 1 , I + 2 , … , n Δ n t ( No. 1 , I − 1 ) = 0 , i = 1 , 2 , … , m − n
SO
(14)
μ
j
=
∑
i
=
1
m
λ
i
f
1
,
j
−
1
(
x
l
)
=
∑
i
=
j
m
λ
i
(
x
i
−
x
1
)
(
x
i
−
x
2
)
…
(
x
i
−
x
j
−
1
)
j
=
1
,
2
,
…
,
n
.
(14)
μ
j
=
∑
i
=
1
m
 
λ
i
f
1
,
j
−
1
x
l
=
∑
i
=
j
m
 
λ
i
x
i
−
x
1
x
i
−
x
2
…
x
i
−
x
j
−
1
j
=
1
,
2
,
…
,
n
.
{:[(14)mu_(j)=sum_(i=1)^(m)lambda_(i)f_(1,j-1)(x_(l))=sum_(i=j)^(m)lambda_(i)(x_(i)-x_(1))(x_(i)-x_(2))dots(x_(i)-x_(j-1))],[j=1","2","dots","n.]:} \begin{gather*}
\mu_{j}=\sum_{i=1}^{m} \lambda_{i} f_{1, j-1}\left(x_{l}\right)=\sum_{i=j}^{m} \lambda_{i}\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right) \ldots\left(x_{i}-x_{j-1}\right) \tag{14}\\
j=1,2, \ldots, n .
\end{gather*} (14) μ I = ∑ i = 1 m λ i f 1 , I − 1 ( x L ) = ∑ i = I m λ i ( x i − x 1 ) ( x i − x 2 ) … ( x i − x I − 1 ) I = 1 , 2 , … , n .
To obtain the coefficients
%
i
%
i
%_(i) \%_{i} % i , we take for
f
f
f f f the following functions
(15)
f
j
∗
=
f
j
∗
(
x
)
=
{
0
,
pour
x
=
x
1
,
x
2
,
…
,
x
j
+
n
−
1
φ
j
+
1
,
n
−
1
(
x
)
,
pour
x
=
x
j
+
n
,
x
j
+
n
+
1
,
…
,
x
m
j
=
1
,
2
,
…
,
m
−
n
(15)
f
j
∗
=
f
j
∗
(
x
)
=
0
,
pour
x
=
x
1
,
x
2
,
…
,
x
j
+
n
−
1
φ
j
+
1
,
n
−
1
(
x
)
,
pour
x
=
x
j
+
n
,
x
j
+
n
+
1
,
…
,
x
m
j
=
1
,
2
,
…
,
m
−
n
{:(15)f_(j)^(**)=f_(j)^(**)(x)={[0","," pour "x=x_(1)","x_(2)","dots","x_(j+n-1)],[varphi_(j+1,n-1)(x)","," pour "x=x_(j+n)","x_(j+n+1)","dots","x_(m)],[j=1","2","dots",",m-n]:}:} \begin{align*}
f_{j}^{*}=f_{j}^{*}(x)= & \begin{cases}0, & \text { pour } x=x_{1}, x_{2}, \ldots, x_{j+n-1} \\
\varphi_{j+1, n-1}(x), & \text { pour } x=x_{j+n}, x_{j+n+1}, \ldots, x_{m} \\
j=1,2, \ldots, & m-n\end{cases} \tag{15}
\end{align*} (15) f I ∗ = f I ∗ ( x ) = { 0 , For x = x 1 , x 2 , … , x I + n − 1 φ I + 1 , n − 1 ( x ) , For x = x I + n , x I + n + 1 , … , x m I = 1 , 2 , … , m − n
We have
Δ
i
−
1
1
(
f
j
∗
)
=
0
,
i
=
1
,
2
,
…
,
n
Δ
n
i
(
f
j
∗
)
=
{
0
,
i
=
1
,
2
,
…
,
j
−
1
Δ
n
j
(
f
j
∗
)
,
i
=
j
0
,
i
=
j
+
1
,
j
+
2
,
…
,
m
−
n
Δ
i
−
1
1
f
j
∗
=
0
,
i
=
1
,
2
,
…
,
n
Δ
n
i
f
j
∗
=
0
,
i
=
1
,
2
,
…
,
j
−
1
Δ
n
j
f
j
∗
,
i
=
j
0
,
i
=
j
+
1
,
j
+
2
,
…
,
m
−
n
{:[Delta_(i-1)^(1)(f_(j)^(**))=0","i=1","2","dots","n],[Delta_(n)^(i)(f_(j)^(**))={[0",",i=1","2","dots","j-1],[Delta_(n)^(j)(f_(j)^(**))",",i=j],[0",",i=j+1","j+2","dots","m-n]:}]:} \begin{aligned}
\Delta_{i-1}^{1}\left(f_{j}^{*}\right) & =0, i=1,2, \ldots, n \\
\Delta_{n}^{i}\left(f_{j}^{*}\right) & = \begin{cases}0, & i=1,2, \ldots, j-1 \\
\Delta_{n}^{j}\left(f_{j}^{*}\right), & i=j \\
0, & i=j+1, j+2, \ldots, m-n\end{cases}
\end{aligned} Δ i − 1 1 ( f I ∗ ) = 0 , i = 1 , 2 , … , n Δ n i ( f I ∗ ) = { 0 , i = 1 , 2 , … , I − 1 Δ n I ( f I ∗ ) , i = I 0 , i = I + 1 , I + 2 , … , m − n
SO
F
=
y
j
Δ
n
j
(
f
j
∗
)
=
f
j
∗
(
x
j
+
n
)
(
x
j
+
n
−
x
j
)
(
x
j
+
n
−
x
j
+
1
)
…
(
x
j
+
n
−
x
j
+
n
−
1
)
=
v
j
x
j
+
n
−
x
j
F
=
y
j
Δ
n
j
f
j
∗
=
f
j
∗
x
j
+
n
x
j
+
n
−
x
j
x
j
+
n
−
x
j
+
1
…
x
j
+
n
−
x
j
+
n
−
1
=
v
j
x
j
+
n
−
x
j
F=y_(j)Delta_(n)^(j)(f_(j)^(**))=(f_(j)^(**)(x_(j+n)))/((x_(j+n)-x_(j))(x_(j+n)-x_(j+1))dots(x_(j+n)-x_(j+n-1)))=(v_(j))/(x_(j+n)-x_(j)) \mathrm{F}=y_{j} \Delta_{n}^{j}\left(f_{j}^{*}\right)=\frac{f_{j}^{*}\left(x_{j+n}\right)}{\left(x_{j+n}-x_{j}\right)\left(x_{j+n}-x_{j+1}\right) \ldots\left(x_{j+n}-x_{j+n-1}\right)}=\frac{v_{j}}{x_{j+n}-x_{j}} F = y I Δ n I ( f I ∗ ) = f I ∗ ( x I + n ) ( x I + n − x I ) ( x I + n − x I + 1 ) … ( x I + n − x I + n − 1 ) = v I x I + n − x I .
We deduce from this
(16)
y
j
=
(
x
j
+
n
−
x
j
)
∑
i
=
1
m
λ
i
f
j
∗
(
x
i
)
=
(
x
j
+
n
−
x
j
)
∑
i
=
j
+
n
m
λ
i
φ
j
+
1
,
n
−
1
(
x
i
)
=
=
(
x
j
+
n
−
x
j
)
∑
i
=
j
+
n
m
λ
i
(
x
i
−
x
j
+
1
)
(
x
i
−
x
j
+
2
)
…
(
x
i
−
x
j
+
n
−
1
)
.
(16)
y
j
=
x
j
+
n
−
x
j
∑
i
=
1
m
 
λ
i
f
j
∗
x
i
=
x
j
+
n
−
x
j
∑
i
=
j
+
n
m
 
λ
i
φ
j
+
1
,
n
−
1
x
i
=
=
x
j
+
n
−
x
j
∑
i
=
j
+
n
m
 
λ
i
x
i
−
x
j
+
1
x
i
−
x
j
+
2
…
x
i
−
x
j
+
n
−
1
.
{:[(16)y_(j)=(x_(j+n)-x_(j))sum_(i=1)^(m)lambda_(i)f_(j)^(**)(x_(i))=(x_(j+n)-x_(j))sum_(i=j+n)^(m)lambda_(i)varphi_(j+1,n-1)(x_(i))=],[=(x_(j+n)-x_(j))sum_(i=j+n)^(m)lambda_(i)(x_(i)-x_(j+1))(x_(i)-x_(j+2))dots(x_(i)-x_(j+n-1)).]:} \begin{align*}
y_{j} & =\left(x_{j+n}-x_{j}\right) \sum_{i=1}^{m} \lambda_{i} f_{j}^{*}\left(x_{i}\right)=\left(x_{j+n}-x_{j}\right) \sum_{i=j+n}^{m} \lambda_{i} \varphi_{j+1, n-1}\left(x_{i}\right)= \tag{16}\\
& =\left(x_{j+n}-x_{j}\right) \sum_{i=j+n}^{m} \lambda_{i}\left(x_{i}-x_{j+1}\right)\left(x_{i}-x_{j+2}\right) \ldots\left(x_{i}-x_{j+n-1}\right) .
\end{align*} (16) y I = ( x I + n − x I ) ∑ i = 1 m λ i f I ∗ ( x i ) = ( x I + n − x I ) ∑ i = I + n m λ i φ I + 1 , n − 1 ( x i ) = = ( x I + n − x I ) ∑ i = I + n m λ i ( x i − x I + 1 ) ( x i − x I + 2 ) … ( x i − x I + n − 1 ) .
The fundamental transformation formula is therefore finally written in the following form
(17)
∑
i
=
1
m
λ
i
f
(
x
i
)
=
∑
j
=
1
n
[
∑
i
=
j
m
λ
i
ρ
1
,
j
−
1
(
x
i
)
]
Δ
j
−
1
1
(
f
)
+
+
∑
j
=
1
m
−
n
[
(
x
j
+
n
−
x
j
)
∑
i
=
j
+
n
m
λ
i
φ
j
+
1
,
n
−
1
(
x
l
)
]
Δ
n
j
(
f
)
(17)
∑
i
=
1
m
 
λ
i
f
x
i
=
∑
j
=
1
n
 
∑
i
=
j
m
 
λ
i
ρ
1
,
j
−
1
x
i
Δ
j
−
1
1
(
f
)
+
+
∑
j
=
1
m
−
n
 
x
j
+
n
−
x
j
∑
i
=
j
+
n
m
 
λ
i
φ
j
+
1
,
n
−
1
x
l
Δ
n
j
(
f
)
{:[(17)sum_(i=1)^(m)lambda_(i)f(x_(i))=sum_(j=1)^(n)[sum_(i=j)^(m)lambda_(i)rho_(1,j-1)(x_(i))]Delta_(j-1)^(1)(f)+],[+sum_(j=1)^(m-n)[(x_(j+n)-x_(j))sum_(i=j+n)^(m)lambda_(i)varphi_(j+1,n-1)(x_(l))]Delta_(n)^(j)(f)]:} \begin{align*}
& \sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right)=\sum_{j=1}^{n}\left[\sum_{i=j}^{m} \lambda_{i} \rho_{1, j-1}\left(x_{i}\right)\right] \Delta_{j-1}^{1}(f)+ \tag{17}\\
& +\sum_{j=1}^{m-n}\left[\left(x_{j+n}-x_{j}\right) \sum_{i=j+n}^{m} \lambda_{i} \varphi_{j+1, n-1}\left(x_{l}\right)\right] \Delta_{n}^{j}(f)
\end{align*} (17) ∑ i = 1 m λ i f ( x i ) = ∑ I = 1 n [ ∑ i = I m λ i ρ 1 , I − 1 ( x i ) ] Δ I − 1 1 ( f ) + + ∑ I = 1 m − n [ ( x I + n − x I ) ∑ i = I + n m λ i φ I + 1 , n − 1 ( x L ) ] Δ n I ( f )
For any natural number
n
n
n n n we have such a formula. The coefficients
μ
i
,
ν
i
μ
i
,
ν
i
mu_(i),nu_(i) \mu_{i}, \nu_{i} μ i , ν i can also be obtained by recurrence relations. If we denote by
μ
i
(
n
)
,
v
i
(
n
)
μ
i
(
n
)
,
v
i
(
n
)
mu_(i)^((n)),v_(i)^((n)) \mu_{i}^{(n)}, v_{i}^{(n)} μ i ( n ) , v i ( n ) these coefficients, to highlight the number
n
n
n n n , We have
μ
j
(
n
)
=
μ
j
(
n
−
1
)
,
j
=
1
,
2
,
…
,
n
−
1
μ
n
(
n
)
=
v
1
(
n
−
1
)
+
v
2
(
n
−
1
)
+
…
…
+
v
m
−
n
+
1
(
n
−
1
)
v
j
(
n
)
=
(
x
j
+
n
−
x
j
)
[
v
j
+
1
(
n
−
1
)
+
v
j
+
2
(
n
−
1
)
+
…
+
v
m
−
n
+
1
(
n
−
1
)
]
j
=
1
,
2
,
…
,
m
−
n
μ
j
(
n
)
=
μ
j
(
n
−
1
)
,
j
=
1
,
2
,
…
,
n
−
1
μ
n
(
n
)
=
v
1
(
n
−
1
)
+
v
2
(
n
−
1
)
+
…
…
+
v
m
−
n
+
1
(
n
−
1
)
v
j
(
n
)
=
x
j
+
n
−
x
j
v
j
+
1
(
n
−
1
)
+
v
j
+
2
(
n
−
1
)
+
…
+
v
m
−
n
+
1
(
n
−
1
)
j
=
1
,
2
,
…
,
m
−
n
{:[mu_(j)^((n))=mu_(j)^((n-1))","j=1","2","dots","n-1],[mu_(n)^((n))=v_(1)^((n-1))+v_(2)^((n-1))+dots dots+v_(m-n+1)^((n-1))],[v_(j)^((n))=(x_(j+n)-x_(j))[v_(j+1)^((n-1))+v_(j+2)^((n-1))+dots+v_(m-n+1)^((n-1))]],[j=1","2","dots","m-n]:} \begin{gathered}
\mu_{j}^{(n)}=\mu_{j}^{(n-1)}, j=1,2, \ldots, n-1 \\
\mu_{n}^{(n)}=v_{1}^{(n-1)}+v_{2}^{(n-1)}+\ldots \ldots+v_{m-n+1}^{(n-1)} \\
v_{j}^{(n)}=\left(x_{j+n}-x_{j}\right)\left[v_{j+1}^{(n-1)}+v_{j+2}^{(n-1)}+\ldots+v_{m-n+1}^{(n-1)}\right] \\
j=1,2, \ldots, m-n
\end{gathered} μ I ( n ) = μ I ( n − 1 ) , I = 1 , 2 , … , n − 1 μ n ( n ) = v 1 ( n − 1 ) + v 2 ( n − 1 ) + … … + v m − n + 1 ( n − 1 ) v I ( n ) = ( x I + n − x I ) [ v I + 1 ( n − 1 ) + v I + 2 ( n − 1 ) + … + v m − n + 1 ( n − 1 ) ] I = 1 , 2 , … , m − n
I. Let
f
=
f
(
x
)
,
g
=
g
(
x
)
f
=
f
(
x
)
,
g
=
g
(
x
)
f=f(x),g=g(x) f=f(x), g=g(x) f = f ( x ) , g = g ( x ) two functions defined on the points
x
i
x
i
x_(i) x_{i} x i . Consider the divided difference
F
=
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
g
]
F
=
x
1
,
x
2
,
…
,
x
n
+
1
;
f
g
F=[x_(1),x_(2),dots,x_(n+1);fg] \mathrm{F}=\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f g\right] F = [ x 1 , x 2 , … , x n + 1 ; f g ]
of the product
f
g
f
g
fg f g f g . In this case we have
λ
i
=
g
(
x
i
)
g
1
n
+
1
′
(
x
i
)
,
i
=
1
,
2
,
…
,
n
+
1
,
λ
i
=
0
,
i
>
n
+
1
.
λ
i
=
g
x
i
g
1
n
+
1
′
x
i
,
i
=
1
,
2
,
…
,
n
+
1
,
λ
i
=
0
,
i
>
n
+
1
.
lambda_(i)=(g(x_(i)))/(g_(1n+1)^(')(x_(i))),i=1,2,dots,n+1,lambda_(i)=0,i > n+1. \lambda_{i}=\frac{g\left(x_{i}\right)}{g_{1 n+1}^{\prime}\left(x_{i}\right)}, i=1,2, \ldots, n+1, \lambda_{i}=0, i>n+1 . λ i = g ( x i ) g 1 n + 1 ′ ( x i ) , i = 1 , 2 , … , n + 1 , λ i = 0 , i > n + 1 .
If we notice that
′
1
,
n
+
1
=
φ
1
,
j
−
1
⋅
φ
j
,
n
−
j
+
2
′
1
,
n
+
1
=
φ
1
,
j
−
1
⋅
φ
j
,
n
−
j
+
2
^(')_(1,n+1)=varphi_(1,j-1)*varphi_(j,n-j+2) { }^{\prime}{ }_{1, n+1}=\varphi_{1, j-1} \cdot \varphi_{j, n-j+2} ′ 1 , n + 1 = φ 1 , I − 1 ⋅ φ I , n − I + 2 , we deduce from this
φ
1
,
j
−
1
(
x
i
)
=
φ
1
,
n
+
1
′
(
x
i
)
φ
j
,
n
−
j
+
2
′
(
x
i
)
, pour
j
≦
i
≦
n
+
1
φ
1
,
j
−
1
x
i
=
φ
1
,
n
+
1
′
x
i
φ
j
,
n
−
j
+
2
′
x
i
, pour
j
≦
i
≦
n
+
1
varphi_(1,j-1)(x_(i))=(varphi_(1,n+1)^(')(x_(i)))/(varphi_(j,n-j+2)^(')(x_(i)))", pour "j <= i <= n+1 \varphi_{1, j-1}\left(x_{i}\right)=\frac{\varphi_{1, n+1}^{\prime}\left(x_{i}\right)}{\varphi_{j, n-j+2}^{\prime}\left(x_{i}\right)} \text {, pour } j \leqq i \leqq n+1 φ 1 , I − 1 ( x i ) = φ 1 , n + 1 ′ ( x i ) φ I , n − I + 2 ′ ( x i ) , For I ≦ i ≦ n + 1
and formula (14) gives us
μ
j
=
∑
i
=
j
n
+
1
g
(
x
i
)
ψ
j
,
n
−
j
+
2
(
x
i
)
=
[
x
j
,
x
j
+
1
,
…
,
x
n
+
1
;
g
]
,
j
=
1
,
2
,
…
,
n
.
μ
j
=
∑
i
=
j
n
+
1
 
g
x
i
ψ
j
,
n
−
j
+
2
x
i
=
x
j
,
x
j
+
1
,
…
,
x
n
+
1
;
g
,
j
=
1
,
2
,
…
,
n
.
mu_(j)=sum_(i=j)^(n+1)(g(x_(i)))/(psi_(j,n-j+2)(x_(i)))=[x_(j),x_(j+1),dots,x_(n+1);g],j=1,2,dots,n. \mu_{j}=\sum_{i=j}^{n+1} \frac{g\left(x_{i}\right)}{\psi_{j, n-j+2}\left(x_{i}\right)}=\left[x_{j}, x_{j+1}, \ldots, x_{n+1} ; g\right], j=1,2, \ldots, n . μ I = ∑ i = I n + 1 g ( x i ) ψ I , n − I + 2 ( x i ) = [ x I , x I + 1 , … , x n + 1 ; g ] , I = 1 , 2 , … , n .
Formula (16) gives us
v
1
=
g
(
x
n
+
1
)
,
v
j
=
0
,
j
=
2
,
3
,
…
v
1
=
g
x
n
+
1
,
v
j
=
0
,
j
=
2
,
3
,
…
v_(1)=g(x_(n+1)),v_(j)=0,j=2,3,dots v_{1}=g\left(x_{n+1}\right), v_{j}=0, j=2,3, \ldots v 1 = g ( x n + 1 ) , v I = 0 , I = 2 , 3 , …
As a result, we have the following formula
(18)
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
g
]
=
∑
i
=
1
n
+
1
[
x
1
,
x
2
,
…
,
x
i
;
f
]
⌊
x
i
,
x
i
+
1
,
…
x
n
+
1
;
g
]
x
1
,
x
2
,
…
,
x
n
+
1
;
f
g
=
∑
i
=
1
n
+
1
 
x
1
,
x
2
,
…
,
x
i
;
f
x
i
,
x
i
+
1
,
…
x
n
+
1
;
g
[x_(1),x_(2),dots,x_(n+1);fg]=sum_(i=1)^(n+1)[x_(1),x_(2),dots,x_(i);f]|__x_(i),x_(i+1),dotsx_(n+1);g] \left[x_{1}, x_{2}, \ldots, x_{n+1} ; f g\right]=\sum_{i=1}^{n+1}\left[x_{1}, x_{2}, \ldots, x_{i} ; f\right]\left\lfloor x_{i}, x_{i+1}, \ldots x_{n+1} ; g\right] [ x 1 , x 2 , … , x n + 1 ; f g ] = ∑ i = 1 n + 1 [ x 1 , x 2 , … , x i ; f ] ⌊ x i , x i + 1 , … x n + 1 ; g ] , which gives the divided difference of a product. This is the generalization of Leibniz's formula.
II. The Lagrange polynomial (1) is of the form F. A simple calculation shows us that in this case
λ
i
=
S
1
,
n
+
1
(
x
)
(
x
−
x
i
)
P
1
,
n
+
1
′
(
x
i
)
,
i
=
1
,
2
,
…
,
n
+
1
,
λ
i
=
0
,
i
>
n
+
1
.
λ
i
=
S
1
,
n
+
1
(
x
)
x
−
x
i
P
1
,
n
+
1
′
x
i
,
i
=
1
,
2
,
…
,
n
+
1
,
λ
i
=
0
,
i
>
n
+
1
.
lambda_(i)=(S_(1,n+1)(x))/((x-x_(i))P_(1,n+1)^(')(x_(i))),i=1,2,dots,n+1,lambda_(i)=0,i > n+1. \lambda_{i}=\frac{\mathrm{S}_{1, n+1}(x)}{\left(x-x_{i}\right) \mathrm{P}_{1, n+1}^{\prime}\left(x_{i}\right)}, i=1,2, \ldots, n+1, \lambda_{i}=0, i>n+1 . λ i = S 1 , n + 1 ( x ) ( x − x i ) P 1 , n + 1 ′ ( x i ) , i = 1 , 2 , … , n + 1 , λ i = 0 , i > n + 1 .
Formula (14) gives us
μ
j
=
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
φ
1
,
j
−
1
∣
x
)
=
φ
1
,
j
−
1
(
x
)
,
j
=
1
,
2
,
…
,
n
μ
j
=
P
x
1
,
x
2
,
…
,
x
n
+
1
;
φ
1
,
j
−
1
∣
x
=
φ
1
,
j
−
1
(
x
)
,
j
=
1
,
2
,
…
,
n
mu_(j)=P(x_(1),x_(2),dots,x_(n+1);varphi_(1,j-1)∣x)=varphi_(1,j-1)(x),j=1,2,dots,n \mu_{j}=\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; \varphi_{1, j-1} \mid x\right)=\varphi_{1, j-1}(x), \mathrm{j}=1,2, \ldots, n μ I = P ( x 1 , x 2 , … , x n + 1 ; φ 1 , I − 1 ∣ x ) = φ 1 , I − 1 ( x ) , I = 1 , 2 , … , n
And
y
1
=
(
x
n
+
1
−
x
1
)
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
1
∗
∣
x
)
=
=
(
x
n
+
1
−
x
1
)
∗
1
,
n
(
x
)
f
1
∗
(
x
n
+
1
)
ξ
1
,
n
+
1
′
(
x
n
+
1
)
=
ξ
1
,
n
(
x
)
,
y
i
=
0
,
i
>
1
y
1
=
x
n
+
1
−
x
1
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
1
∗
∣
x
=
=
x
n
+
1
−
x
1
∗
1
,
n
(
x
)
f
1
∗
x
n
+
1
ξ
1
,
n
+
1
′
x
n
+
1
=
ξ
1
,
n
(
x
)
,
y
i
=
0
,
i
>
1
{:[y_(1)=(x_(n+1)-x_(1))P(x_(1),x_(2),dots,x_(n+1);f_(1)^(**)∣x)=],[=(x_(n+1)-x_(1))_(**_(1,n))(x)(f_(1)^(**)(x_(n+1)))/(xi_(1,n+1)^(')(x_(n+1)))=xi_(1,n)(x)","y_(i)=0","i > 1]:} \begin{gathered}
y_{1}=\left(x_{n+1}-x_{1}\right) \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f_{1}^{*} \mid x\right)= \\
=\left(x_{n+1}-x_{1}\right){ }_{*_{1, n}}(x) \frac{f_{1}^{*}\left(x_{n+1}\right)}{\xi_{1, n+1}^{\prime}\left(x_{n+1}\right)}=\xi_{1, n}(x), y_{i}=0, i>1
\end{gathered} y 1 = ( x n + 1 − x 1 ) P ( x 1 , x 2 , … , x n + 1 ; f 1 ∗ ∣ x ) = = ( x n + 1 − x 1 ) ∗ 1 , n ( x ) f 1 ∗ ( x n + 1 ) ξ 1 , n + 1 ′ ( x n + 1 ) = ξ 1 , n ( x ) , y i = 0 , i > 1
and we get the well-known interpolation formula
P
(
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
)
=
f
(
x
1
)
+
(
x
−
x
1
)
[
x
1
,
x
2
;
f
]
+
+
(
x
−
x
1
)
(
x
−
x
2
)
[
x
1
,
x
2
,
x
3
;
f
]
+
…
+
(
x
−
x
1
)
(
x
−
x
2
)
…
(
x
−
x
n
)
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
P
x
1
,
x
2
,
…
,
x
n
+
1
;
f
∣
x
=
f
x
1
+
x
−
x
1
x
1
,
x
2
;
f
+
+
x
−
x
1
x
−
x
2
x
1
,
x
2
,
x
3
;
f
+
…
+
x
−
x
1
x
−
x
2
…
x
−
x
n
x
1
,
x
2
,
…
,
x
n
+
1
;
f
{:[P(x_(1),x_(2),dots,x_(n+1);f∣x)=f(x_(1))+(x-x_(1))[x_(1),x_(2);f]+],[+(x-x_(1))(x-x_(2))[x_(1),x_(2),x_(3);f]+dots],[+(x-x_(1))(x-x_(2))dots(x-x_(n))[x_(1),x_(2),dots,x_(n+1);f]]:} \begin{gathered}
\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)=f\left(x_{1}\right)+\left(x-x_{1}\right)\left[x_{1}, x_{2} ; f\right]+ \\
+\left(x-x_{1}\right)\left(x-x_{2}\right)\left[x_{1}, x_{2}, x_{3} ; f\right]+\ldots \\
+\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right]
\end{gathered} P ( x 1 , x 2 , … , x n + 1 ; f ∣ x ) = f ( x 1 ) + ( x − x 1 ) [ x 1 , x 2 ; f ] + + ( x − x 1 ) ( x − x 2 ) [ x 1 , x 2 , x 3 ; f ] + … + ( x − x 1 ) ( x − x 2 ) … ( x − x n ) [ x 1 , x 2 , … , x n + 1 ; f ]
III. Let us take
F
=
[
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
;
f
]
−
[
x
1
,
x
2
,
…
,
x
n
;
f
]
.
F
=
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
;
f
−
x
1
,
x
2
,
…
,
x
n
;
f
.
F=[x_(n+1),x_(n+2),dots,x_(2n);f]-[x_(1),x_(2),dots,x_(n);f]. \mathrm{F}=\left[x_{n+1}, x_{n+2}, \ldots, x_{2 n} ; f\right]-\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right] . F = [ x n + 1 , x n + 2 , … , x 2 n ; f ] − [ x 1 , x 2 , … , x n ; f ] .
It is easily verified that
μ
j
=
0
,
j
=
1
,
2
,
…
,
n
μ
j
=
0
,
j
=
1
,
2
,
…
,
n
mu_(j)=0,j=1,2,dots,n \mu_{j}=0, j=1,2, \ldots, n μ I = 0 , I = 1 , 2 , … , n . We find
y
j
=
(
x
j
+
n
−
x
j
)
{
[
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
;
f
j
∗
]
−
[
x
1
,
x
2
,
.
,
x
n
;
f
j
∗
]
}
=
=
(
x
j
+
n
−
x
n
)
[
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
;
P
j
+
1
,
n
−
1
]
=
(
x
j
+
n
−
x
j
)
y
j
=
x
j
+
n
−
x
j
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
;
f
j
∗
−
x
1
,
x
2
,
.
,
x
n
;
f
j
∗
=
=
x
j
+
n
−
x
n
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
;
P
j
+
1
,
n
−
1
=
x
j
+
n
−
x
j
{:[y_(j)=(x_(j+n)-x_(j)){[x_(n+1),x_(n+2),dots,x_(2n);f_(j)^(**)]-[x_(1),x_(2),.,x_(n);f_(j)^(**)]}=],[=(x_(j+n)-x_(n))[x_(n+1),x_(n+2),dots,x_(2n);P_(j+1,n-1)]=(x_(j+n)-x_(j))]:} \begin{aligned}
y_{j}= & \left(x_{j+n}-x_{j}\right)\left\{\left[x_{n+1}, x_{n+2}, \ldots, x_{2 n} ; f_{j}^{*}\right]-\left[x_{1}, x_{2}, ., x_{n} ; f_{j}^{*}\right]\right\}= \\
= & \left(x_{j+n}-x_{n}\right)\left[x_{n+1}, x_{n+2}, \ldots, x_{2 n} ; \mathscr{P}_{j+1, n-1}\right]=\left(x_{j+n}-x_{j}\right)
\end{aligned} y I = ( x I + n − x I ) { [ x n + 1 , x n + 2 , … , x 2 n ; f I ∗ ] − [ x 1 , x 2 , . , x n ; f I ∗ ] } = = ( x I + n − x n ) [ x n + 1 , x n + 2 , … , x 2 n ; P I + 1 , n − 1 ] = ( x I + n − x I )
and we have, with the notations (12), the following formula
(19)
Δ
n
−
1
n
+
1
(
t
)
−
Δ
n
−
1
1
(
f
)
=
∑
j
=
1
n
(
x
j
+
n
−
x
j
)
Δ
n
j
(
f
)
(19)
Δ
n
−
1
n
+
1
(
t
)
−
Δ
n
−
1
1
(
f
)
=
∑
j
=
1
n
 
x
j
+
n
−
x
j
Δ
n
j
(
f
)
{:(19)Delta_(n-1)^(n+1)(t)-Delta_(n-1)^(1)(f)=sum_(j=1)^(n)(x_(j+n)-x_(j))Delta_(n)^(j)(f):} \begin{equation*}
\Delta_{n-1}^{n+1}(t)-\Delta_{n-1}^{1}(f)=\sum_{j=1}^{n}\left(x_{j+n}-x_{j}\right) \Delta_{n}^{j}(f) \tag{19}
\end{equation*} (19) Δ n − 1 n + 1 ( t ) − Δ n − 1 1 ( f ) = ∑ I = 1 n ( x I + n − x I ) Δ n I ( f )
which can, moreover, be established just as simply using the recurrence formula (6)
IV. Let
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
(
1
≦
i
1
<
i
2
<
…
<
i
n
+
1
≦
m
)
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
1
≦
i
1
<
i
2
<
…
<
i
n
+
1
≦
m
x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1))quad(1 <= i_(1) < i_(2) < dots < i_(n+1) <= m) x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} \quad\left(1 \leqq i_{1}<i_{2}<\ldots<i_{n+1} \leqq m\right) x i 1 , x i 2 , … , x i n + 1 ( 1 ≦ i 1 < i 2 < … < i n + 1 ≦ m )
a partial sequence extracted from the sequence (11). Let us take
F
=
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
]
F
=
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
F=[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f] \mathrm{F}=\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f\right] F = [ x i 1 , x i 2 , … , x i n + 1 ; f ]
The fordamental formula (17) then gives us
(20)
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
]
=
∑
j
=
4
m
−
n
(
x
j
+
n
−
x
j
)
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
j
∗
]
Δ
n
j
(
f
)
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
=
∑
j
=
4
m
−
n
 
x
j
+
n
−
x
j
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
j
∗
Δ
n
j
(
f
)
[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f]=sum_(j=4)^(m-n)(x_(j+n)-x_(j))[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f_(j)^(**)]Delta_(n)^(j)(f) \left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f\right]=\sum_{j=4}^{m-n}\left(x_{j+n}-x_{j}\right)\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f_{j}^{*}\right] \Delta_{n}^{j}(f) [ x i 1 , x i 2 , … , x i n + 1 ; f ] = ∑ I = 4 m − n ( x I + n − x I ) [ x i 1 , x i 2 , … , x i n + 1 ; f I ∗ ] Δ n I ( f ) .
Remarks.
1
0
1
0
1^(0) 1^{0} 1 0 . When F is identically zero for any polynomial of degree
r
−
1
r
−
1
r-1 r-1 r − 1 We have
μ
j
=
0
,
j
=
1
,
2
,
…
,
r
μ
j
=
0
,
j
=
1
,
2
,
…
,
r
mu_(j)=0,j=1,2,dots,r \mu_{j}=0, j=1,2, \ldots, r μ I = 0 , I = 1 , 2 , … , r .
2
0
2
0
2^(0) 2^{0} 2 0 . Formula (19) is valid even if the
x
i
x
i
x_(i) x_{i} x i are not all distinct. It is sufficient that each of the sequences
x
1
,
x
2
,
…
,
x
n
;
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
,
x
j
,
x
j
+
1
,
…
,
x
j
+
n
,
j
=
1
,
2
,
…
,
n
,
x
1
,
x
2
,
…
,
x
n
;
x
n
+
1
,
x
n
+
2
,
…
,
x
2
n
,
x
j
,
x
j
+
1
,
…
,
x
j
+
n
,
j
=
1
,
2
,
…
,
n
,
{:[x_(1)","x_(2)","dots","x_(n);quadx_(n+1)","x_(n+2)","dots","x_(2n)","],[x_(j)","x_(j+1)","dots","x_(j+n)","quad j=1","2","dots","n","]:} \begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n} ; \quad x_{n+1}, x_{n+2}, \ldots, x_{2 n}, \\
& x_{j}, x_{j+1}, \ldots, x_{j+n}, \quad j=1,2, \ldots, n,
\end{aligned} x 1 , x 2 , … , x n ; x n + 1 , x n + 2 , … , x 2 n , x I , x I + 1 , … , x I + n , I = 1 , 2 , … , n ,
is formed by distinct points. We deduce that if
α
1
,
α
2
,
…
,
α
j
,
β
1
,
β
2
,
…
,
β
j
,
α
j
+
1
=
β
j
+
1
,
α
j
+
2
=
β
j
+
2
,
…
,
α
n
=
β
n
α
1
,
α
2
,
…
,
α
j
,
β
1
,
β
2
,
…
,
β
j
,
α
j
+
1
=
β
j
+
1
,
α
j
+
2
=
β
j
+
2
,
…
,
α
n
=
β
n
alpha_(1),alpha_(2),dots,alpha_(j),beta_(1),beta_(2),dots,beta_(j),alpha_(j+1)=beta_(j+1),alpha_(j+2)=beta_(j+2),dots,alpha_(n)=beta_(n) \alpha_{1}, \alpha_{2}, \ldots, \alpha_{j}, \beta_{1}, \beta_{2}, \ldots, \beta_{j}, \alpha_{j+1}=\beta_{j+1}, \alpha_{j+2}=\beta_{j+2}, \ldots, \alpha_{n}=\beta_{n} α 1 , α 2 , … , α I , β 1 , β 2 , … , β I , α I + 1 = β I + 1 , α I + 2 = β I + 2 , … , α n = β n
are distinct points, we have the following formula
[
α
1
,
α
2
,
…
,
α
n
;
f
]
−
[
β
1
,
β
2
,
…
,
β
n
;
f
]
=
=
∑
i
=
1
j
(
α
i
−
β
i
)
[
α
1
,
α
2
,
…
,
α
i
,
β
i
,
β
i
+
1
,
…
,
β
n
;
f
]
α
1
,
α
2
,
…
,
α
n
;
f
−
β
1
,
β
2
,
…
,
β
n
;
f
=
=
∑
i
=
1
j
 
α
i
−
β
i
α
1
,
α
2
,
…
,
α
i
,
β
i
,
β
i
+
1
,
…
,
β
n
;
f
{:[[alpha_(1),alpha_(2),dots,alpha_(n);f]-[beta_(1),beta_(2),dots,beta_(n);f]=],[quad=sum_(i=1)^(j)(alpha_(i)-beta_(i))[alpha_(1),alpha_(2),dots,alpha_(i),beta_(i),beta_(i+1),dots,beta_(n);f]]:} \begin{aligned}
& {\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} ; f\right]-\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n} ; f\right]=} \\
& \quad=\sum_{i=1}^{j}\left(\alpha_{i}-\beta_{i}\right)\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \beta_{i}, \beta_{i+1}, \ldots, \beta_{n} ; f\right]
\end{aligned} [ α 1 , α 2 , … , α n ; f ] − [ β 1 , β 2 , … , β n ; f ] = = ∑ i = 1 I ( α i − β i ) [ α 1 , α 2 , … , α i , β i , β i + 1 , … , β n ; f ]
The formula for the mean of the divided differences. We will now assume that the points (11) are ordered, so that
x
1
<
x
2
<
…
<
x
m
.
x
1
<
x
2
<
…
<
x
m
.
x_(1) < x_(2) < dots < x_(m). x_{1}<x_{2}<\ldots<x_{m} . x 1 < x 2 < … < x m .
The determinant
V
(
x
1
,
x
2
,
…
,
x
n
+
1
)
V
x
1
,
x
2
,
…
,
x
n
+
1
V(x_(1),x_(2),dots,x_(n+1)) \mathrm{V}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) V ( x 1 , x 2 , … , x n + 1 ) then has a positive value and if we set
sg
α
=
{
−
1
,
α
<
0
,
0
,
α
=
0
,
1
,
α
>
0
,
sg
α
=
−
1
,
α
<
0
,
0
,
α
=
0
,
1
,
α
>
0
,
sg alpha={[-1","quad alpha < 0","],[0","quad alpha=0","],[1","quad alpha > 0","]:} \operatorname{sg} \alpha=\left\{\begin{array}{r}
-1, \quad \alpha<0, \\
0, \quad \alpha=0, \\
1, \quad \alpha>0,
\end{array}\right. sg α = { − 1 , α < 0 , 0 , α = 0 , 1 , α > 0 ,
We have
s
g
[
x
1
,
x
2
,
…
,
x
n
+
1
;
f
]
=
sgU
(
x
1
,
x
2
,
…
x
n
+
1
;
f
)
s
g
x
1
,
x
2
,
…
,
x
n
+
1
;
f
=
sgU
x
1
,
x
2
,
…
x
n
+
1
;
f
sg[x_(1),x_(2),dots,x_(n+1);f]=sgU(x_(1),x_(2),dotsx_(n+1);f) s g\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right]=\operatorname{sgU}\left(x_{1}, x_{2}, \ldots x_{n+1} ; f\right) s g [ x 1 , x 2 , … , x n + 1 ; f ] = sgU ( x 1 , x 2 , … x n + 1 ; f )
Let us then take up formula (20). The following
x
l
1
,
x
i
2
,
…
,
x
i
n
+
1
x
l
1
,
x
i
2
,
…
,
x
i
n
+
1
x_(l_(1)),x_(i_(2)),dots,x_(i_(n+1)) x_{l_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} x L 1 , x i 2 , … , x i n + 1 is also ordered and we have
i
n
+
1
−
i
1
=
p
≧
n
i
n
+
1
−
i
1
=
p
≧
n
i_(n+1)-i_(1)=p >= n i_{n+1}-i_{1}=p \geqq n i n + 1 − i 1 = p ≧ n . We will demonstrate that then all the coefficients of
Δ
n
j
(
f
)
Δ
n
j
(
f
)
Delta_(n)^(j)(f) \Delta_{n}^{j}(f) Δ n I ( f ) are
≥
0
≥
0
>= 0 \geq 0 ≥ 0 The demonstration can be done by induction on the number
p
p
p p p . The property is obvious to
p
=
n
p
=
n
p=n p=n p = n , because in this case
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
]
=
Δ
n
i
1
(
f
)
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
=
Δ
n
i
1
(
f
)
[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f]=Delta_(n)^(i_(1))(f) \left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f\right]=\Delta_{n}^{i_{1}}(f) [ x i 1 , x i 2 , … , x i n + 1 ; f ] = Δ n i 1 ( f ) .
For
p
=
n
+
1
p
=
n
+
1
p=n+1 p=n+1 p = n + 1 , let's take
i
1
=
i
,
i
2
=
i
+
1
,
…
,
i
j
=
i
+
j
−
1
i
j
+
1
=
i
+
j
+
1
,
i
j
+
2
=
i
+
j
+
2
,
…
,
i
n
+
1
=
i
+
n
+
1
i
1
=
i
,
i
2
=
i
+
1
,
…
,
i
j
=
i
+
j
−
1
i
j
+
1
=
i
+
j
+
1
,
i
j
+
2
=
i
+
j
+
2
,
…
,
i
n
+
1
=
i
+
n
+
1
{:[i_(1)=i","i_(2)=i+1","dots","i_(j)=i+j-1],[i_(j+1)=i+j+1","i_(j+2)=i+j+2","dots","i_(n+1)=i+n+1]:} \begin{gathered}
i_{1}=i, i_{2}=i+1, \ldots, i_{j}=i+j-1 \\
i_{j+1}=i+j+1, i_{j+2}=i+j+2, \ldots, i_{n+1}=i+n+1
\end{gathered} i 1 = i , i 2 = i + 1 , … , i I = i + I − 1 i I + 1 = i + I + 1 , i I + 2 = i + I + 2 , … , i n + 1 = i + n + 1
and a simple calculation then gives us
(21)
[
x
i
,
x
i
+
1
,
…
,
x
i
+
j
−
1
,
x
i
+
j
+
1
,
…
,
x
i
+
n
+
1
;
f
]
=
=
(
x
i
+
j
−
x
i
)
Δ
n
i
(
f
)
+
(
x
i
+
n
+
1
−
x
i
+
j
)
Δ
n
i
+
1
(
f
)
x
i
+
n
+
1
−
x
i
x
i
,
x
i
+
1
,
…
,
x
i
+
j
−
1
,
x
i
+
j
+
1
,
…
,
x
i
+
n
+
1
;
f
=
=
x
i
+
j
−
x
i
Δ
n
i
(
f
)
+
x
i
+
n
+
1
−
x
i
+
j
Δ
n
i
+
1
(
f
)
x
i
+
n
+
1
−
x
i
{:[[x_(i),x_(i+1),dots,x_(i+j-1),x_(i+j+1),dots,x_(i+n+1);f]=],[=((x_(i+j)-x_(i))Delta_(n)^(i)(f)+(x_(i+n+1)-x_(i+j))Delta_(n)^(i+1)(f))/(x_(i+n+1)-x_(i))]:} \begin{gathered}
{\left[x_{i}, x_{i+1}, \ldots, x_{i+j-1}, x_{i+j+1}, \ldots, x_{i+n+1} ; f\right]=} \\
=\frac{\left(x_{i+j}-x_{i}\right) \Delta_{n}^{i}(f)+\left(x_{i+n+1}-x_{i+j}\right) \Delta_{n}^{i+1}(f)}{x_{i+n+1}-x_{i}}
\end{gathered} [ x i , x i + 1 , … , x i + I − 1 , x i + I + 1 , … , x i + n + 1 ; f ] = = ( x i + I − x i ) Δ n i ( f ) + ( x i + n + 1 − x i + I ) Δ n i + 1 ( f ) x i + n + 1 − x i
In general, for
p
=
n
+
1
,
i
j
+
1
−
i
j
=
2
p
=
n
+
1
,
i
j
+
1
−
i
j
=
2
p=n+1,i_(j+1)-i_(j)=2 p=n+1, i_{j+1}-i_{j}=2 p = n + 1 , i I + 1 − i I = 2 we can write
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
]
=
(
x
i
j
+
1
−
x
i
1
)
Δ
n
i
1
(
f
)
+
(
x
i
n
+
1
−
x
i
j
+
1
)
Δ
n
i
1
+
1
(
f
)
x
i
n
+
1
−
x
i
1
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
=
x
i
j
+
1
−
x
i
1
Δ
n
i
1
(
f
)
+
x
i
n
+
1
−
x
i
j
+
1
Δ
n
i
1
+
1
(
f
)
x
i
n
+
1
−
x
i
1
[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f]=((x_(i_(j)+1)-x_(i_(1)))Delta_(n)^(i_(1))(f)+(x_(i_(n)+1)-x_(i_(j)+1))Delta_(n)^(i_(1)+1)(f))/(x_(i_(n+1))-x_(i_(1))) \left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f\right]=\frac{\left(x_{i_{j}+1}-x_{i_{1}}\right) \Delta_{n}^{i_{1}}(f)+\left(x_{i_{n}+1}-x_{i_{j}+1}\right) \Delta_{n}^{i_{1}+1}(f)}{x_{i_{n+1}}-x_{i_{1}}} [ x i 1 , x i 2 , … , x i n + 1 ; f ] = ( x i I + 1 − x i 1 ) Δ n i 1 ( f ) + ( x i n + 1 − x i I + 1 ) Δ n i 1 + 1 ( f ) x i n + 1 − x i 1
Now suppose that the property is true for
p
=
n
p
=
n
p=n p=n p = n ,
n
+
1
,
…
,
n
+
r
n
+
1
,
…
,
n
+
r
n+1,dots,n+r n+1, \ldots, n+r n + 1 , … , n + r and demonstrate that it will also be true for
p
=
n
+
r
+
1
p
=
n
+
r
+
1
p=n+r+1 p=n+r+1 p = n + r + 1 .
If
i
n
+
1
−
i
1
=
n
+
r
+
1
i
n
+
1
−
i
1
=
n
+
r
+
1
i_(n+1)-i_(1)=n+r+1 i_{n+1}-i_{1}=n+r+1 i n + 1 − i 1 = n + r + 1 , formula (21) gives us
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
]
=
=
1
x
i
n
+
1
−
x
i
1
{
(
x
i
j
+
1
−
x
i
1
)
[
x
i
1
,
x
i
2
,
…
,
x
i
j
,
x
i
j
+
1
,
x
i
j
+
1
,
…
,
x
i
n
;
f
]
+
+
(
x
i
n
+
1
−
x
i
j
+
1
)
[
x
i
2
,
x
i
3
,
…
,
x
i
j
,
x
i
j
+
1
,
x
i
j
+
1
,
…
,
x
i
n
+
1
;
f
]
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
=
=
1
x
i
n
+
1
−
x
i
1
x
i
j
+
1
−
x
i
1
x
i
1
,
x
i
2
,
…
,
x
i
j
,
x
i
j
+
1
,
x
i
j
+
1
,
…
,
x
i
n
;
f
+
+
x
i
n
+
1
−
x
i
j
+
1
x
i
2
,
x
i
3
,
…
,
x
i
j
,
x
i
j
+
1
,
x
i
j
+
1
,
…
,
x
i
n
+
1
;
f
{:[[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f]=],[=(1)/(x_(i_(n+1))-x_(i_(1))){(x_(i_(j+1))-x_(i_(1)))[x_(i_(1)),x_(i_(2)),dots,x_(i_(j)),x_(i_(j+1)),x_(i_(j+1)),dots,x_(i_(n));f]+:}],[+(x_(i_(n+1))-x_(i_(j+1)))[x_(i_(2)),x_(i_(3)),dots,x_(i_(j)),x_(i_(j+1)),x_(i_(j+1)),dots,x_(i_(n+1));f]]:} \begin{gathered}
{\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f\right]=} \\
=\frac{1}{x_{i_{n+1}}-x_{i_{1}}}\left\{\left(x_{i_{j+1}}-x_{i_{1}}\right)\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{j}}, x_{i_{j+1}}, x_{i_{j+1}}, \ldots, x_{i_{n}} ; f\right]+\right. \\
+\left(x_{i_{n+1}}-x_{i_{j+1}}\right)\left[x_{i_{2}}, x_{i_{3}}, \ldots, x_{i_{j}}, x_{i_{j+1}}, x_{i_{j+1}}, \ldots, x_{i_{n+1}} ; f\right]
\end{gathered} [ x i 1 , x i 2 , … , x i n + 1 ; f ] = = 1 x i n + 1 − x i 1 { ( x i I + 1 − x i 1 ) [ x i 1 , x i 2 , … , x i I , x i I + 1 , x i I + 1 , … , x i n ; f ] + + ( x i n + 1 − x i I + 1 ) [ x i 2 , x i 3 , … , x i I , x i I + 1 , x i I + 1 , … , x i n + 1 ; f ]
Or
j
j
j j I is an index such that
i
j
+
1
<
i
j
+
1
i
j
+
1
<
i
j
+
1
i_(j)+1 < i_(j+1) i_{j}+1<i_{j+1} i I + 1 < i I + 1 . The property results immediately.
By taking
f
=
x
n
f
=
x
n
f=x^(n) f=x^{n} f = x n in (20), we see that the sum of the coefficients in the second member is equal to 1. We therefore have the following property.
If the sequence (11) is ordered, any divided difference
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
]
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f] \left[\mathrm{x}_{i_{1}}, \mathrm{x}_{i_{2}}, \ldots, \mathrm{x}_{i_{n+1}} ; \mathrm{f}\right] [ x i 1 , x i 2 , … , x i n + 1 ; f ] on
n
+
1
n
+
1
n+1 \mathrm{n}+1 n + 1 of these points is an arithmetic (generalized) mean of the differences quoted
Δ
n
1
(
f
)
,
Δ
n
2
(
f
)
,
…
,
Δ
n
m
−
n
(
f
)
Δ
n
1
(
f
)
,
Δ
n
2
(
f
)
,
…
,
Δ
n
m
−
n
(
f
)
Delta_(n)^(1)(f),Delta_(n)^(2)(f),dots,Delta_(n)^(m-n)(f) \Delta_{n}^{1}(\mathrm{f}), \Delta_{n}^{2}(\mathrm{f}), \ldots, \Delta_{n}^{m-n}(\mathrm{f}) Δ n 1 ( f ) , Δ n 2 ( f ) , … , Δ n m − n ( f ) . So we have
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
]
=
∑
j
=
1
m
−
n
A
j
Δ
n
j
(
f
)
A
j
≧
0
,
j
=
1
,
2
,
.
.
,
m
−
n
,
∑
j
=
1
m
−
n
A
j
=
1
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
=
∑
j
=
1
m
−
n
 
A
j
Δ
n
j
(
f
)
A
j
≧
0
,
j
=
1
,
2
,
.
.
,
m
−
n
,
∑
j
=
1
m
−
n
 
A
j
=
1
{:[{:[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f]=sum_(j=1)^(m-n)A_(j)Delta_(n)^(j)(f):}],[A_(j) >= 0","j=1","2","..","m-n","sum_(j=1)^(m-n)A_(j)=1]:} \begin{aligned}
& {\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f\right]=\sum_{j=1}^{m-n} \mathrm{~A}_{j} \Delta_{n}^{j}(f)} \\
& \mathrm{A}_{j} \geqq 0, j=1,2, . ., m-n, \sum_{j=1}^{m-n} \mathrm{~A}_{j}=1
\end{aligned} [ x i 1 , x i 2 , … , x i n + 1 ; f ] = ∑ I = 1 m − n HAS I Δ n I ( f ) HAS I ≧ 0 , I = 1 , 2 , . . , m − n , ∑ I = 1 m − n HAS I = 1
THE
A
j
A
j
A_(j) \mathrm{A}_{j} HAS I being independent of the function f .
The coefficients
A
j
A
j
A_(j) \mathrm{A}_{j} HAS I are given by formula (20). The previous demonstration shows us, moreover, that
A
j
=
0
,
j
=
1
,
2
,
…
,
i
1
−
1
,
i
n
+
1
−
n
+
1
,
i
n
+
1
−
n
+
2
,
…
,
m
−
n
,
A
j
=
0
,
j
=
1
,
2
,
…
,
i
1
−
1
,
i
n
+
1
−
n
+
1
,
i
n
+
1
−
n
+
2
,
…
,
m
−
n
,
A_(j)=0,j=1,2,dots,i_(1)-1,i_(n+1)-n+1,i_(n+1)-n+2,dots,m-n, \mathrm{A}_{j}=0, j=1,2, \ldots, i_{1}-1, i_{n+1}-n+1, i_{n+1}-n+2, \ldots, m-n, HAS I = 0 , I = 1 , 2 , … , i 1 − 1 , i n + 1 − n + 1 , i n + 1 − n + 2 , … , m − n ,
which can also be seen in formula (20), taking into account definition (15) of the functions
t
j
∗
t
j
∗
t_(j)^(**) t_{j}^{*} t I ∗ . The coefficients
A
i
1
,
A
i
n
+
1
−
n
A
i
1
,
A
i
n
+
1
−
n
A_(i_(1)),A_(i_(n+1)-n) \mathrm{A}_{i_{1}}, \mathrm{~A}_{i_{n+1}-n} HAS i 1 , HAS i n + 1 − n are surely positive. We can easily calculate their values. The function
f
i
∗
f
i
∗
f_(i)^(**) f_{i}^{*} f i ∗ can be considered, on the points
x
i
1
,
x
i
2
…
,
x
i
n
+
1
x
i
1
,
x
i
2
…
,
x
i
n
+
1
x_(i_(1)),x_(i_(2))dots,x_(i_(n+1)) x_{i_{1}}, x_{i_{2}} \ldots, x_{i_{n+1}} x i 1 , x i 2 … , x i n + 1 , as the sum of the polynomial
f
1
+
1
,
n
−
1
f
1
+
1
,
n
−
1
_(f_(1)+1,n-1) { }_{f_{1}+1, n-1} f 1 + 1 , n − 1 of degree
n
−
1
n
−
1
n-1 n-1 n − 1 and a function
g
=
g
(
x
)
g
=
g
(
x
)
g=g(x) g=g(x) g = g ( x ) equal to
φ
i
1
+
1
,
n
−
1
(
x
i
1
)
φ
i
1
+
1
,
n
−
1
x
i
1
varphi_(i_(1)+1,n-1)(x_(i_(1))) \varphi_{i_{1}+1, n-1}\left(x_{i_{1}}\right) φ i 1 + 1 , n − 1 ( x i 1 ) For
x
=
x
i
1
x
=
x
i
1
x=x_(i_(1)) x=x_{i_{1}} x = x i 1 and zero outside this point. We then have
A
i
1
=
(
x
i
1
+
n
−
x
i
1
)
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
i
∗
]
=
(
x
i
1
+
n
−
x
i
1
)
[
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
g
]
=
=
(
−
1
)
n
+
1
(
x
i
1
+
n
−
x
i
1
)
V
(
x
i
2
,
x
i
3
,
…
,
x
i
n
+
1
)
q
i
1
+
1
,
n
−
1
(
x
i
1
)
V
(
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
)
=
=
(
x
i
1
+
1
−
x
i
1
)
(
x
i
1
+
2
−
x
i
1
)
…
(
x
i
1
+
n
−
x
i
1
)
(
x
i
2
−
x
i
1
)
(
x
i
3
−
x
i
1
)
…
(
x
i
n
+
1
−
x
i
1
)
A
i
1
=
x
i
1
+
n
−
x
i
1
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
f
i
∗
=
x
i
1
+
n
−
x
i
1
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
;
g
=
=
(
−
1
)
n
+
1
x
i
1
+
n
−
x
i
1
V
x
i
2
,
x
i
3
,
…
,
x
i
n
+
1
q
i
1
+
1
,
n
−
1
x
i
1
V
x
i
1
,
x
i
2
,
…
,
x
i
n
+
1
=
=
x
i
1
+
1
−
x
i
1
x
i
1
+
2
−
x
i
1
…
x
i
1
+
n
−
x
i
1
x
i
2
−
x
i
1
x
i
3
−
x
i
1
…
x
i
n
+
1
−
x
i
1
{:[A_(i_(1))=(x_(i_(1)+n)-x_(i_(1)))[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));f_(i)^(**)]=(x_(i_(1)+n)-x_(i_(1)))[x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1));g]=],[=((-1)^(n+1)(x_(i_(1)+n)-x_(i_(1)))V(x_(i_(2)),x_(i_(3)),dots,x_(i_(n+1)))q_(i_(1)+1,n-1)(x_(i_(1))))/(V(x_(i_(1)),x_(i_(2)),dots,x_(i_(n+1))))=],[=((x_(i_(1)+1)-x_(i_(1)))(x_(i_(1)+2)-x_(i_(1)))dots(x_(i_(1)+n)-x_(i_(1))))/((x_(i_(2))-x_(i_(1)))(x_(i_(3))-x_(i_(1)))dots(x_(i_(n+1))-x_(i_(1))))]:} \begin{gathered}
\mathrm{A}_{i_{1}}=\left(x_{i_{1}+n}-x_{i_{1}}\right)\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; f_{i}^{*}\right]=\left(x_{i_{1}+n}-x_{i_{1}}\right)\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}} ; \mathrm{g}\right]= \\
=\frac{(-1)^{n+1}\left(x_{i_{1}+n}-x_{i_{1}}\right) \mathrm{V}\left(x_{i_{2}}, x_{i_{3}}, \ldots, x_{i_{n+1}}\right) q_{i_{1}+1, n-1}\left(x_{i_{1}}\right)}{\mathrm{V}\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}}\right)}= \\
=\frac{\left(x_{i_{1}+1}-x_{i_{1}}\right)\left(x_{i_{1}+2}-x_{i_{1}}\right) \ldots\left(x_{i_{1}+n}-x_{i_{1}}\right)}{\left(x_{i_{2}}-x_{i_{1}}\right)\left(x_{i_{3}}-x_{i_{1}}\right) \ldots\left(x_{i_{n+1}}-x_{i_{1}}\right)}
\end{gathered} HAS i 1 = ( x i 1 + n − x i 1 ) [ x i 1 , x i 2 , … , x i n + 1 ; f i ∗ ] = ( x i 1 + n − x i 1 ) [ x i 1 , x i 2 , … , x i n + 1 ; g ] = = ( − 1 ) n + 1 ( x i 1 + n − x i 1 ) V ( x i 2 , x i 3 , … , x i n + 1 ) q i 1 + 1 , n − 1 ( x i 1 ) V ( x i 1 , x i 2 , … , x i n + 1 ) = = ( x i 1 + 1 − x i 1 ) ( x i 1 + 2 − x i 1 ) … ( x i 1 + n − x i 1 ) ( x i 2 − x i 1 ) ( x i 3 − x i 1 ) … ( x i n + 1 − x i 1 )
We find in the same way
A
i
n
+
1
−
n
=
(
x
i
n
+
1
−
x
i
n
+
1
−
1
)
(
x
i
n
+
1
−
x
i
n
+
1
−
2
)
…
(
x
i
n
+
1
−
x
i
n
+
1
−
n
)
(
x
i
n
+
1
−
x
i
1
)
(
x
i
n
+
1
−
x
i
2
)
…
(
x
i
n
+
1
−
x
i
n
)
A
i
n
+
1
−
n
=
x
i
n
+
1
−
x
i
n
+
1
−
1
x
i
n
+
1
−
x
i
n
+
1
−
2
…
x
i
n
+
1
−
x
i
n
+
1
−
n
x
i
n
+
1
−
x
i
1
x
i
n
+
1
−
x
i
2
…
x
i
n
+
1
−
x
i
n
A_(i_(n+1)-n)=((x_(i_(n+1))-x_(i_(n+1)-1))(x_(i_(n+1))-x_(i_(n+1)-2))dots(x_(i_(n+1))-x_(i_(n+1)-n)))/((x_(i_(n+1))-x_(i_(1)))(x_(i_(n+1))-x_(i_(2)))dots(x_(i_(n+1))-x_(i_(n)))) \mathrm{A}_{i_{n+1}-n}=\frac{\left(x_{i_{n+1}}-x_{i_{n+1}-1}\right)\left(x_{i_{n+1}}-x_{i_{n+1}-2}\right) \ldots\left(x_{i_{n+1}}-x_{i_{n+1}-n}\right)}{\left(x_{i_{n+1}}-x_{i_{1}}\right)\left(x_{i_{n+1}}-x_{i_{2}}\right) \ldots\left(x_{i_{n+1}}-x_{i_{n}}\right)} HAS i n + 1 − n = ( x i n + 1 − x i n + 1 − 1 ) ( x i n + 1 − x i n + 1 − 2 ) … ( x i n + 1 − x i n + 1 − n ) ( x i n + 1 − x i 1 ) ( x i n + 1 − x i 2 ) … ( x i n + 1 − x i n )
Note. The previous demonstration shows us that the functions
f
j
∗
f
j
∗
f_(j)^(**) f_{j}^{*} f I ∗ are non-concave of order
n
−
1
n
−
1
n-1 n-1 n − 1 on points (11). This property can also be established directly.
6. The divided difference of a function of function. We have established formula (18) giving the divided difference of a product of two functions. Let us now consider a function of function
G
(
f
)
G
(
f
)
G(f) \mathrm{G}(f) G ( f ) and we propose to find an expression for the divided difference
F
=
[
x
1
,
x
2
,
…
,
x
n
+
1
;
G
(
f
)
]
F
=
x
1
,
x
2
,
…
,
x
n
+
1
;
G
(
f
)
F=[x_(1),x_(2),dots,x_(n+1);G(f)] \mathrm{F}=\left[x_{1}, x_{2}, \ldots, x_{n+1} ; \mathrm{G}(f)\right] F = [ x 1 , x 2 , … , x n + 1 ; G ( f ) ]
If we pose
f
i
=
f
(
x
i
)
,
i
=
1
,
2
,
…
,
n
+
1
f
i
=
f
x
i
,
i
=
1
,
2
,
…
,
n
+
1
f_(i)=f(x_(i)),i=1,2,dots,n+1 f_{i}=f\left(x_{i}\right), i=1,2, \ldots, n+1 f i = f ( x i ) , i = 1 , 2 , … , n + 1 , the expression F is linear and homogeneous in
G
(
f
1
)
,
G
(
f
2
)
,
…
,
G
(
f
n
+
1
)
G
f
1
,
G
f
2
,
…
,
G
f
n
+
1
G(f_(1)),G(f_(2)),dots,G(f_(n+1)) \mathrm{G}\left(f_{1}\right), \mathrm{G}\left(f_{2}\right), \ldots, \mathrm{G}\left(f_{n+1}\right) G ( f 1 ) , G ( f 2 ) , … , G ( f n + 1 ) , therefore of the form
F
=
∑
i
=
1
n
+
1
λ
l
G
(
f
i
)
F
=
∑
i
=
1
n
+
1
 
λ
l
G
f
i
F=sum_(i=1)^(n+1)lambda_(l)G(f_(i)) \mathrm{F}=\sum_{i=1}^{n+1} \lambda_{l} \mathrm{G}\left(f_{i}\right) F = ∑ i = 1 n + 1 λ L G ( f i )
So we will have
F
=
∑
i
=
1
n
+
1
μ
i
[
f
1
,
f
2
,
…
,
f
i
;
G
]
F
=
∑
i
=
1
n
+
1
 
μ
i
f
1
,
f
2
,
…
,
f
i
;
G
F=sum_(i=1)^(n+1)mu_(i)[f_(1),f_(2),dots,f_(i);G] \mathrm{F}=\sum_{i=1}^{n+1} \mu_{i}\left[f_{1}, f_{2}, \ldots, f_{i} ; \mathrm{G}\right] F = ∑ i = 1 n + 1 μ i [ f 1 , f 2 , … , f i ; G ]
We have
λ
i
=
1
j
i
1
,
n
+
1
′
(
x
i
)
,
i
=
1
,
2
…
,
n
+
1
λ
i
=
1
j
i
1
,
n
+
1
′
x
i
,
i
=
1
,
2
…
,
n
+
1
lambda_(i)=(1)/(j_(i1,n+1)^(')(x_(i))),i=1,2dots,n+1 \lambda_{i}=\frac{1}{{\underset{i 1, n+1}{j}}^{\prime}\left(x_{i}\right)}, i=1,2 \ldots, n+1 λ i = 1 I i 1 , n + 1 ′ ( x i ) , i = 1 , 2 … , n + 1
and formula (14) shows us that if we set
g
j
=
g
j
(
x
)
=
(
f
−
f
1
)
(
f
−
f
2
)
…
(
f
−
f
j
−
1
)
,
g
1
=
1
j
=
1
,
2
,
…
,
n
+
1
g
j
=
g
j
(
x
)
=
f
−
f
1
f
−
f
2
…
f
−
f
j
−
1
,
g
1
=
1
j
=
1
,
2
,
…
,
n
+
1
{:[g_(j)=g_(j)(x)=(f-f_(1))(f-f_(2))dots(f-f_(j-1))","quadg_(1)=1],[j=1","2","dots","n+1]:} \begin{gathered}
g_{j}=g_{j}(x)=\left(f-f_{1}\right)\left(f-f_{2}\right) \ldots\left(f-f_{j-1}\right), \quad g_{1}=1 \\
j=1,2, \ldots, n+1
\end{gathered} g I = g I ( x ) = ( f − f 1 ) ( f − f 2 ) … ( f − f I − 1 ) , g 1 = 1 I = 1 , 2 , … , n + 1
We have
(22)
μ
j
=
[
x
1
,
x
2
,
.
.
x
n
+
1
;
g
j
]
,
j
=
1
,
2
,
…
,
n
+
1
(22)
μ
j
=
x
1
,
x
2
,
.
.
x
n
+
1
;
g
j
,
j
=
1
,
2
,
…
,
n
+
1
{:(22)mu_(j)=[x_(1),x_(2),..x_(n+1);g_(j)]","j=1","2","dots","n+1:} \begin{equation*}
\mu_{j}=\left[x_{1}, x_{2}, . . x_{n+1} ; g_{j}\right], j=1,2, \ldots, n+1 \tag{22}
\end{equation*} (22) μ I = [ x 1 , x 2 , . . x n + 1 ; g I ] , I = 1 , 2 , … , n + 1
In particular, we have
μ
1
=
0
μ
1
=
0
mu_(1)=0 \mu_{1}=0 μ 1 = 0 . Taking into account (18), formulas
[
x
1
;
f
−
f
1
]
=
0
,
[
x
2
;
f
−
f
2
]
=
0
x
1
;
f
−
f
1
=
0
,
x
2
;
f
−
f
2
=
0
[x_(1);f-f_(1)]=0,[x_(2);f-f_(2)]=0 \left[x_{1} ; f-f_{1}\right]=0,\left[x_{2} ; f-f_{2}\right]=0 [ x 1 ; f − f 1 ] = 0 , [ x 2 ; f − f 2 ] = 0 and relations (7), (8), (9), we can write
μ
2
=
∑
i
=
3
n
+
1
[
x
1
,
x
3
,
…
x
i
;
f
]
[
x
i
,
x
i
+
1
,
…
,
x
n
+
1
,
x
2
;
f
]
μ
2
=
∑
i
=
3
n
+
1
 
x
1
,
x
3
,
…
x
i
;
f
x
i
,
x
i
+
1
,
…
,
x
n
+
1
,
x
2
;
f
mu_(2)=sum_(i=3)^(n+1)[x_(1),x_(3),dotsx_(i);f][x_(i),x_(i+1),dots,x_(n+1),x_(2);f] \mu_{2}=\sum_{i=3}^{n+1}\left[x_{1}, x_{3}, \ldots x_{i} ; f\right]\left[x_{i}, x_{i+1}, \ldots, x_{n+1}, x_{2} ; f\right] μ 2 = ∑ i = 3 n + 1 [ x 1 , x 3 , … x i ; f ] [ x i , x i + 1 , … , x n + 1 , x 2 ; f ]
This coefficient is therefore a sum of
n
−
1
n
−
1
n-1 n-1 n − 1 products of divided differences of order
≥
1
≥
1
>= 1 \geq 1 ≥ 1 of
f
f
f f f , each product being formed by two divided differences whose sum of orders is equal to
n
n
n n n . Let us demonstrate that in general
The coefficient
μ
j
μ
j
mu_(j) \mu_{j} μ I is a sum of products of divided differences of order
≧
1
≧
1
>= 1 \geqq 1 ≧ 1 of
f
f
f \mathfrak{f} f , each product being formed by divided differences whose sum of orders is equal to n.
Each divided difference is taken, of course, at certain points of the sequence
x
1
,
x
2
,
…
,
x
n
+
1
x
1
,
x
2
,
…
,
x
n
+
1
x_(1),x_(2),dots,x_(n+1) x_{1}, x_{2}, \ldots, x_{n+1} x 1 , x 2 , … , x n + 1
The demonstration is done by induction. We have seen that the property is true for the coefficient
μ
2
μ
2
mu_(2) \mu_{2} μ 2 , regardless of
n
n
n n n . Assume the property is true for the coefficient
μ
j
μ
j
mu_(j) \mu_{j} μ I for all possible values ​​of
n
n
n n n and let's demonstrate it for
μ
j
+
1
μ
j
+
1
mu_(j+1) \mu_{j+1} μ I + 1 . We have, taking into account (22), formula (18) and
g
j
+
1
=
g
j
(
f
−
f
j
)
g
j
+
1
=
g
j
f
−
f
j
g_(j+1)=g_(j)(f-f_(j)) g_{j+1}=g_{j}\left(f-f_{j}\right) g I + 1 = g I ( f − f I ) ,
(23)
μ
j
+
1
=
∑
i
=
j
+
1
n
+
1
[
x
1
,
x
2
,
…
,
x
j
−
1
,
x
j
+
1
,
…
,
x
i
;
g
j
]
[
x
i
,
x
i
+
1
,
…
,
x
n
+
1
,
x
j
;
f
]
(23)
μ
j
+
1
=
∑
i
=
j
+
1
n
+
1
 
x
1
,
x
2
,
…
,
x
j
−
1
,
x
j
+
1
,
…
,
x
i
;
g
j
x
i
,
x
i
+
1
,
…
,
x
n
+
1
,
x
j
;
f
{:(23)mu_(j+1)=sum_(i=j+1)^(n+1)[x_(1),x_(2),dots,x_(j-1),x_(j+1),dots,x_(i);g_(j)][x_(i),x_(i+1),dots,x_(n+1),x_(j);f]:} \begin{equation*}
\mu_{j+1}=\sum_{i=j+1}^{n+1}\left[x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{i} ; g_{j}\right]\left[x_{i}, x_{i+1}, \ldots, x_{n+1}, x_{j} ; f\right] \tag{23}
\end{equation*} (23) μ I + 1 = ∑ i = I + 1 n + 1 [ x 1 , x 2 , … , x I − 1 , x I + 1 , … , x i ; g I ] [ x i , x i + 1 , … , x n + 1 , x I ; f ]
which demonstrates the property.
This formula also tells us the number of terms of the coefficient
μ
j
μ
j
mu_(j) \mu_{j} μ I . Either
N
j
n
N
j
n
N_(j)^(n) \mathrm{N}_{j}^{n} N I n the number of terms of
μ
j
μ
j
mu_(j) \mu_{j} μ I For
n
+
1
n
+
1
n+1 n+1 n + 1 points. We then have
N
2
n
=
n
−
1
N
2
n
=
n
−
1
N_(2)^(n)=n-1 \mathrm{N}_{2}^{n}=n-1 N 2 n = n − 1 and formula (23) shows us that
N
j
+
1
n
=
N
j
j
−
1
+
+
N
j
j
+
…
+
N
j
n
−
1
N
j
+
1
n
=
N
j
j
−
1
+
+
N
j
j
+
…
+
N
j
n
−
1
N_(j+1)^(n)=N_(j)^(j-1)++N_(j)^(j)+dots+N_(j)^(n-1) \mathrm{N}_{j+1}^{n}=\mathrm{N}_{j}^{j-1}+ +\mathrm{N}_{j}^{j}+\ldots+\mathrm{N}_{j}^{n-1} N I + 1 n = N I I − 1 + + N I I + … + N I n − 1 from which we easily deduce,
N
j
n
=
(
n
−
1
)
(
n
−
2
)
⋅
(
n
−
j
+
1
)
(
j
−
1
)
!
N
j
n
=
(
n
−
1
)
(
n
−
2
)
⋅
(
n
−
j
+
1
)
(
j
−
1
)
!
N_(j)^(n)=((n-1)(n-2)*(n-j+1))/((j-1)!) \mathrm{N}_{j}^{n}=\frac{(n-1)(n-2) \cdot(n-j+1)}{(j-1)!} N I n = ( n − 1 ) ( n − 2 ) ⋅ ( n − I + 1 ) ( I − 1 ) !
Let us designate by
d
r
′
,
d
r
′
′
,
…
d
r
′
,
d
r
′
′
,
…
d_(r)^('),d_(r)^(''),dots d_{r}^{\prime}, d_{r}^{\prime \prime}, \ldots d r ′ , d r ′ ′ , … divided differences of order
r
r
r r r of
f
f
f f f taken from groups of
r
+
1
r
+
1
r+1 r+1 r + 1 points of the sequence
x
1
,
x
2
,
…
,
x
n
+
1
x
1
,
x
2
,
…
,
x
n
+
1
x_(1),x_(2),dots,x_(n+1) x_{1}, x_{2}, \ldots, x_{n+1} x 1 , x 2 , … , x n + 1 . We then have
(24)
μ
j
=
∑
d
1
′
d
1
′
′
…
d
1
(
j
1
)
d
2
′
d
2
′
′
…
d
2
(
j
2
)
…
d
n
′
d
n
′
′
…
d
n
(
j
n
)
(24)
μ
j
=
∑
d
1
′
d
1
′
′
…
d
1
j
1
d
2
′
d
2
′
′
…
d
2
j
2
…
d
n
′
d
n
′
′
…
d
n
j
n
{:(24)mu_(j)=sumd_(1)^(')d_(1)^('')dotsd_(1)^((j_(1)))d_(2)^(')d_(2)^('')dotsd_(2)^((j_(2)))dotsd_(n)^(')d_(n)^('')dotsd_(n)^((j_(n))):} \begin{equation*}
\mu_{j}=\sum d_{1}^{\prime} d_{1}^{\prime \prime} \ldots d_{1}^{\left(j_{1}\right)} d_{2}^{\prime} d_{2}^{\prime \prime} \ldots d_{2}^{\left(j_{2}\right)} \ldots d_{n}^{\prime} d_{n}^{\prime \prime} \ldots d_{n}^{\left(j_{n}\right)} \tag{24}
\end{equation*} (24) μ I = ∑ d 1 ′ d 1 ′ ′ … d 1 ( I 1 ) d 2 ′ d 2 ′ ′ … d 2 ( I 2 ) … d n ′ d n ′ ′ … d n ( I n )
Or
(25)
j
1
+
j
2
+
…
+
j
n
=
j
,
j
1
+
2
j
2
+
…
+
n
j
n
=
n
(25)
j
1
+
j
2
+
…
+
j
n
=
j
,
j
1
+
2
j
2
+
…
+
n
j
n
=
n
{:(25)j_(1)+j_(2)+dots+j_(n)=j","quadj_(1)+2j_(2)+dots+nj_(n)=n:} \begin{equation*}
j_{1}+j_{2}+\ldots+j_{n}=j, \quad j_{1}+2 j_{2}+\ldots+n j_{n}=n \tag{25}
\end{equation*} (25) I 1 + I 2 + … + I n = I , I 1 + 2 I 2 + … + n I n = n
The summation (24) extends to all integer and positive or zero solutions of the system (25) with respect to
j
1
,
j
2
,
…
,
j
n
j
1
,
j
2
,
…
,
j
n
j_(1),j_(2),dots,j_(n) j_{1}, j_{2}, \ldots, j_{n} I 1 , I 2 , … , I n . Any solution corresponds to
n
!
j
1
!
j
2
!
…
j
n
!
n
!
j
1
!
j
2
!
…
j
n
!
(n!)/(j_(1)!j_(2)!dotsj_(n)!) \frac{n!}{j_{1}!j_{2}!\ldots j_{n}!} n ! I 1 ! I 2 ! … I n ! terms in
μ
j
μ
j
mu_(j) \mu_{j} μ I .
7. The case of differentiable functions. We have assumed that the points (11) are all distict. We can also assume the opposite. We then obtain limit formulas from (17) by making several of the points tend
x
i
x
i
x_(i) x_{i} x i towards each other. The divided differences which are introduced then have the values ​​which we have given in our Thesis
6
6
^(6) { }^{6} 6 ). We
let us suppose, well extended, that these are now functions defined in an interval containing the points
x
i
x
i
x_(i) x_{i} x i et un nombre suffisant de fois dérivables. Par exemple si tous les points viennent se confondre, la formule (18) devient la formule de Leibniz donnant la dérivée nème d'un produit. La formule de la différence divisée d'une fonction de fonction devient la formule donnant la
n
eme
n
eme
n^("eme ") n^{\text {eme }} n eme dérivée d'une fonction de fonction.
Bucureşti, le 29 octobre 1940.