Abstract
In this paper we deal with a linear operator of Baskakov-type which has been constructed in [1] by using wavelets. Now, we estimate the order of approximation in \(L_{p}\)-space \(\left( 1<p\leq\infty\right)\) for smooth functions.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Baskakov-type operators; order of approximation; wavelets.
Paper coordinates
O. Agratini, Approximation theorem in Lp for a class of operators constructed by wavelets, Studia Univ. ”Babeș-Bolyai”, Mathematica, 41 (1996) no. 4, pp. 11-16.
About this paper
Journal
Studia Universitatis “Babes-Bolyai” Mathematica
Publisher Name
Mathematica
DOI
Print ISSN
Online ISSN
google scholar link
[1] O.Agratini, Construciton of Baskakov-type operators by wavelets, Revue d’Analyse Numerique et de Theorie de l’Approximation, tome 26, 1-2, 1997, to appear.
[2] Yu.A. Brudnyi and N. Ya. Krugliak, Interpolation Functors and Interpolation Spaces, vol.I, North-Holland Mathematical Library, 1991.
[3] Charles K.Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.
[4] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Appl. Math., 61, SIAM Publ.,Philadelphia, 1992., 1992.
[5] H.H.Gonska and Ding-Xuan Zhou, Using wavelets for Szasz-type operators, Revue d’Analyse Num erique et de Theorie de l’Approximation, tome 24, 1-2, 1995, 131-145.
[6] Yyes Meyer, Ondelettes et Operateurs, vol. I and vol.II, Hermann, Paris, 1990, Also, Y. Meyer and R.R. Coifman, vol. III, 1991.