Abstract
Starting by the notion of convex funcitons of \(n\)-order introduced by Tiberiu Popoviciu, we aim to record those theorems obtained in time by several mathematicians, which show how the behaviour of a function \(f\) is mirrored by sequences of linear and positive operators. From the perspective openend by T. Popoviciu, this survey paper presents the monotonicity properties of the well-known operators of Bernstein, Bleimann Butzer and Hahn, Meyer Koning and Zeller, Szasz Favard-Mirakyan and Baskakov. This way we take the opportunity to emphasize the importance of the powerful school founded by Popoviciu in Cluj.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
n-convexity; n-th divided difference; Meyer-Konig and Zeller operator; Favard-Szasz-Mirakyan operator; Baskakov operator
Paper coordinates
O. Agratini, Application of Popoviciu’s high convexity to the study of some sequences properties, Seminaire de la Theorie de la Meilleure Approximation, Convexite et Optimisation Cluj-Napoca, 26 octobre – 29 octobre, 2000, pp. 1-15.
About this paper
Journal
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
[1] U. Abel, M. Ivan, Some identities for the operator of Bleimann, Butzer and Hahn involving divided differences, Calcolo, 36 (1999), 143-160.
[2] J.A. Adell, F.G. Badia, J. de la Cal, On the iterates of some Bernstein-type operators, J. Math. anal. Appl., 209 (1997), 529-541.
[3] Gh. Coman, Analiză Numerică. Editura Libris, Cluj-Napoca, 1995.
[4] B. Della Vecchia, On the monotonicity of the derivatives of the sequences of Farvard and Baskakov operators, Ricerche di Matematica, 36 (1987), f.2^{o}, 263-269.
[5] B. Della Vecchia, On the monotonicity properties of some sewuences of linear positive operators, Facta Universitatis (Nis), Ser. Math. Inform., 6 (1991), 73-82.
[6] B. Della Vecchia, Some properties of a rational operator of Bernstein type, In:”Progress in approximaiton Theory”, P. Nevai and A. Pinkus (eds), Boston, Academic Press, 1991, 177-185.
[7] R.A. DeVore, G.G. Lorentz, Constructive Approximation, A Series of Comprehensive Studies in Mathematics. 303, Springer-Verlag, Berlin Heidelberg New York, 1993.
[8] I. Horova, A note on the sequence formed by the first order derivatives of the Szasz Mirakyain operators, Mathematica, Tome 24(47), 1982, no.1-2, 49-52.
[9] M. Ivan, A note on the Bleimann-Butzer-Hahn operator. Automat. Comput. Appl.Math., 6(1997), 11-15.
[10] R.A. Khan, Some properties of a Bernstein-type operator of Bleimann, Butzer and Hahn. In: “Progress in Approximation Theory”, P. Nevai and A. Pinkus (eds.), Boston, Academic Press, 1991, 497-504.
[11] A. Lupas, On Bernstein power series. Mathematica, vol. 8 (31), 1966, no.2, 287-296.
[12] A. Lupas, Some properties of the linear operators (I). Mathematica 9(32), 1967, f.1, 77-83.
[13] A. Lupas, M.W. Muller, Approximation properties of the M_{n}-operators. Aequationes Math., 5 (1970), 19-37.
[14] G. Mastroianni. Su una classe di operatori liniari e positivi. Rend. Accad. Scien. M.F.N., Serie IV, vol. 48(1980), Anno CXX.
[15] T. Popoviciu, Sur le prolongement des fonctions convexes d’ordre superieur. Bulletin Math. Soc. Roumaine des Sc., 36(1934), 75-1-0.
[16] T. Popoviciu, Notes sur les fonctions convexes d’ordre superieur (VII). Bulletin Sec. Sc. Acad. Roumaine, 22 (1939), 29-33.
[17] T. Popoviciu, Les Fonctions Convexes. Actualites Scientifiques et Industrielles, 992, (Publies sous la direction de Paul Montel), XVII, Herman & C^{ie}, Editeurs, Paris, 1944.
[18] D.D. Stancu, The remainder of certain approximation formulas in two variables. J.SIAM., Numer. anal. 1 (1964), 137-163.
[19] D.D. Stancu, On the monotonicity of the sequence formed by the first order derivatives of the Bernstein polynomials.I Math. Z., 98 (1967), 46-51.
[20] D.D. Stancu,Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures et Appl., Tome 13(1968), no.8, 1173-1194.
[21] D.D. Stancu, Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernstein polynomials. Calcolo, 16 (1979), f.IV, 431-445.