Fixed points of retractible mappings with respect to the metric projection

Abstract

Authors

Mira-Cristiana Anisiu
Institutul de Calcul, Cluj-Napoca, Romania

Keywords

?

Paper coordinates

M.-C. Anisiu, Fixed points of retractible mappings with respect to the metric projection, Seminar on Mathematical Analysis (Cluj-Napoca, 1987-1988), 87-96, Preprint, 88-7, Univ. Babeş-Bolyai Cluj-Napoca, 1988 (pdf file here)

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

[1] F.E. Browder, Fixed points theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sc. 53(1965), 1272-1276.
[2] R.F.Brown, Retraction methods in Nielsin fixed point theory, Pacific J.Math. 115(1984), 277-316.
[3] D.J.Dowhing, W.O.Ray, Some remarks on set-valued mappings, Nonlinear  Analysis, T.M.A. 5(12)(1981), 1367-1377
[4] T.C.Lim, A fixed point theorm for multivalued nonexpresive mappings in a unformly convex Banach space, Bull. Amer. Math. Soc, 80(1974), 1123-1125.
[5] I.A. Rus, The fixed point structures and the retraction mappings principle, “Babes-Bolyai” Univ. Fac. of Math., Research Sem., Preprint nr.3, 1986, 175-184.
[6] R. Schoneberg, Some fixed point theorems for mappings of nonexpansive type, Comm. Math. Univ. Carolinae 17 (1976), 399-411.
[7] S.P.Singh, S. Massa, D. Roux, Approximation technique in fixed point theory, Rendiconti Sem. Math.Fis. Milano VIII(1983), 165-172.
[8] Gh.Siretchi, Analiză funcțională, Univ. din București, 1982 (mimeographed).

1988-Anisiu-FixedPointsOfRetractible
"GELS-EOLYRT" UNIVARSITY Dacilury of Dothesetics and Physics Research Seminars Senincr on Hathematical Analysis Preprint Hr. 7, 1988, PF • 87-96  "GELS-EOLYRT" UNIVARSITY   Dacilury of Dothesetics and Physics   Research Seminars   Senincr on Hathematical Analysis   Preprint Hr. 7, 1988, PF • 87-96  {:[" "GELS-EOLYRT" UNIVARSITY "],[" Dacilury of Dothesetics and Physics "],[" Research Seminars "],[" Senincr on Hathematical Analysis "],[" Preprint Hr. 7, 1988, PF • 87-96 "]:}\begin{aligned} & \text { "GELS-EOLYRT" UNIVARSITY } \\ & \text { Dacilury of Dothesetics and Physics } \\ & \text { Research Seminars } \\ & \text { Senincr on Hathematical Analysis } \\ & \text { Preprint Hr. 7, 1988, PF • 87-96 } \end{aligned} "GELS-EOLYRT" UNIVARSITY  Dacilury of Dothesetics and Physics  Research Seminars  Senincr on Hathematical Analysis  Preprint Hr. 7, 1988, PF • 87-96 
FEND POTHS OF RE FRACTIBLE SIAPETIGG VITH RESPECT TO ART JUARIC FROJLCTION Hira-Oristiana Inisiu  FEND POTHS OF RE FRACTIBLE SIAPETIGG VITH RESPECT TO   ART JUARIC FROJLCTION   Hira-Oristiana Inisiu  {:[" FEND POTHS OF RE FRACTIBLE SIAPETIGG VITH RESPECT TO "],[" ART JUARIC FROJLCTION "],[" Hira-Oristiana Inisiu "]:}\begin{aligned} & \text { FEND POTHS OF RE FRACTIBLE SIAPETIGG VITH RESPECT TO } \\ & \text { ART JUARIC FROJLCTION } \\ & \text { Hira-Oristiana Inisiu } \end{aligned} FEND POTHS OF RE FRACTIBLE SIAPETIGG VITH RESPECT TO  ART JUARIC FROJLCTION  Hira-Oristiana Inisiu 
In the paper one presents the notions of retract, retractible amotion ana some properties following the papers / 2 , 5 / / 2 , 5 / //2,5/// 2,5 //2,5/ in ordit to obtain generalizations of come fixed point theorens. The notrions are extended to potnt-to-set mapgings.
Let X X X!in O/X \notin \varnothingX a set and A X A X O/!in A in X\emptyset \notin A \in XAX. A A AAA function r r rrr iX rarr\rightarrow A is a ratect of X X XXX onto h h hhh if F | A = 1 d A F A = 1 d A F|_(A)=1d_(A)\left.F\right|_{A}=1 d_{A}F|A=1dA. A function f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX is retracEible onto 4 with respect to the retract r r rrr if Fix ror = F i x , 1 = F i x , 1 =Fix,1=F i x, 1=Fix,1, Where Fir f f fff denotes the set of the fixed points of f f fff.
Femary 1. It is obvious that Fix f f f subef \subseteqf Fix rof, because x = f ( x ) ∈∈ A x = f ( x ) ∈∈ A x=f(x)∈∈Ax=f(x) \in \in Ax=f(x)∈∈A implies x = F ( x ) x ( f ( x ) ) x = F ( x ) x ( f ( x ) ) x=F(x)in x(f(x))x=F(x) \in x(f(x))x=F(x)x(f(x)) i it follows that in the definition of the retractible function one may douand only Fix rof F 1 f F 1 f sube F1-f\subseteq F 1-fF1f.
R. F. Brown gives in / 2 / / 2 / //2/// 2 //2/ the following condition for f f fff to be retractible onto A A AAA with respect to the retract r r rrr;
(1) x r ( f ( A ) A ) x r ( f ( A ) A ) x in r(f(A)\\A)x \in r(f(A) \backslash A)xr(f(A)A) impliss f ( x ) = x f ( x ) = x f(x)=xf(x)=xf(x)=x or f ( x ) f 1 ( x ) f ( x ) f 1 ( x ) f(x)!inf^(-1)(x)f(x) \notin f^{-1}(x)f(x)f1(x).
Condition (1) way be reformulated as
(1') r ( f ( A ) A ) { x A : f ( x ) = x r ( f ( A ) A ) x A : f ( x ) = x quad r(f(A)\\A)sube{x in A:f(x)=x:}\quad r(f(A) \backslash A) \subseteq\left\{x \in A: f(x)=x\right.r(f(A)A){xA:f(x)=x or f ( x ) r 1 ( x ) } f ( x ) r 1 ( x ) {:f(x)!inr^(-1)(x)}\left.f(x) \notin r^{-1}(x)\right\}f(x)r1(x)}.
The next proposition is obvious.
Propogtring 1. The following sers are equal
M = { x A ; f ( x ) = x M = x A ; f ( x ) = x M={x in A;f(x)=x:}\mathbb{M}=\left\{x \in A ; f(x)=x\right.M={xA;f(x)=x or f ( x ) r 1 ( x ) } f ( x ) r 1 ( x ) {:f(x)!inr^(-1)(x)}\left.f(x) \notin r^{-1}(x)\right\}f(x)r1(x)}
N = { N A : x ˙ ( x ) I 1 ( x ) { x } } N = N A : x ˙ ( x ) I 1 ( x ) { x } N={N in A:x^(˙)^(')(x)!inI^(-1)(x)\\{x}}N=\left\{N \in A: \dot{x}^{\prime}(x) \notin I^{-1}(x) \backslash\{x\}\right\}N={NA:x˙(x)I1(x){x}}
P = P = P=P=P= Fix { C λ F i x C λ F i x {uuC_(lambda) vec(Fix):}\left\{\cup C_{\lambda} \overrightarrow{F i x}\right.{CλFix ror.
Proposition 2.Condivion(1)is equivalent to each of the fol- lowing
(2)Fix rof sube\subseteq Fiz
(3)Fixs rol P 1 ( A ) P 1 ( A ) subeP^(-1)(A)\subseteq \mathrm{P}^{-1}(A)P1(A)
Proof.(1) =>\Rightarrow(2).Let x F i = x F i = x in Fi=x \in F i=xFi= rofi,hence x A x A x in Ax \in AxA and x = r ( f ( x ) ) x = r ( f ( x ) ) x=r(f(x))x=r(f(x))x=r(f(x)) . If f ( x ) A f ( x ) A f(x)!=Af(x) \neq Af(x)A ,we have y = f ( x ) P ( A ) A y = f ( x ) P ( A ) A y=f(x)in P(A)\\Ay=f(x) \in P(A) \backslash Ay=f(x)P(A)A ,hence x = r ( y ) F i x f U C A F i x x = r ( y ) F i x f U C A F i x x=r(y)in FixfU uuuC_(A)Fixx=r(y) \in F i x f U \bigcup C_{A} F i xx=r(y)FixfUCAFix rof.It follows x F i x P x F i x P x in FixPx \in F i x PxFixP ,which contradicts f ( x ) A f ( x ) A f(x)!in Af(x) \notin Af(x)A .It remains that f ( x ) A f ( x ) A f(x)in Af(x) \in Af(x)A and x = f ( f ( x ) ) = f ( x ) x = f ( f ( x ) ) = f ( x ) x=f(f(x))=f(x)x=f(f(x))=f(x)x=f(f(x))=f(x) ,so x F ¯ i x f x F ¯ i x f x in bar(F)ixfx \in \bar{F} i x fxF¯ixf and(a) is proved.
(2) =>\Rightarrow(3)is obvious,since Fix f f 1 ( A ) f f 1 ( A ) f subef^(-1)(A)f \subseteq f^{-1}(A)ff1(A)
(3) ( 1 ) ( 1 ) =>(1)\Rightarrow(1)(1) ,in Inciv(3) ( A A =>(A sube:}\Rightarrow\left(A \subseteq\right.(A Fix i C i i C i i uuC_(i)i \cup C_{i}iCi Fix rcf).Let x A x A x in Ax \in AxA . Suppose that x d i C A x d i C A x(d)/(i)C_(A)x \frac{d}{i} C_{A}xdiCA Fix rof,nence x H i x x H i x x in Hixx \in H i xxHix ror x 1 ( A ) x 1 ( A ) -=x^(-1)(A)\equiv x^{-1}(A)x1(A) and x ( z ) = y x ( z ) = y x^(')(z)=y <=x^{\prime}(z)=y \leqslantx(z)=y A.Then x = r ( f ( x ) ) = f ( x ) A x = r ( f ( x ) ) = f ( x ) A x=r(f(x))=f(x)in Ax=r(f(x))=f(x) \in Ax=r(f(x))=f(x)A and x F i x f x F i x f x in Fixfx \in F i x fxFixf ,so A F i x f A F i x f A sube Fixf uuA \subseteq F i x f \cupAFixf UCAFix rof and(I)is proved.The last inclusion is in fact an equality,the reverse inclusion being obvious.
It follows that if a function if A X A X A longrightarrow XA \longrightarrow XAX admits a retract r r rrr and Fix rof !=O/\neq \varnothing ,then Fix f f f!=O/f \neq \varnothingf
In che following we give a general Iom of some fixed point theorems,using as a retract the acric projection.Wa recall some of the proporties of the metric projection in dilbert spaces which are mentioned and used in/6/to obtain fixed point theorems.
Let H H HHH be a Hilbert space and ϕ 0 H ϕ 0 H phi!=0sube H\phi \neq 0 \subseteq Hϕ0H a closed convex E ω E ω Eomega^(')E \omega^{\prime}Eω . Then for ach x ach x ach x\operatorname{ach} xachx in A A AAA there exists a unique y C y C y in Cy \in CyC such that
x y = d ( x , C ) = inf { x z ; z C } x y = d ( x , C ) = inf { x z ; z C } ||x-y||=d(x,C)=i n f{||x-z||;z in C}\|x-y\|=d(x, C)=\inf \{\|x-z\| ; z \in C\}xy=d(x,C)=inf{xz;zC}.
In this cass P = P C : H C , P ( x ) = v P = P C : H C , P ( x ) = v P=P_(C):H rarr C,P(x)=vP=P_{C}: H \rightarrow C, P(x)=vP=PC:HC,P(x)=v is a function named Metric projection.
The function P ; H C P ; H C P;H rarr CP ; H \rightarrow CP;HC is a retract o f H o f H ofHo f HofH on C C CCC ,because P | C == 1 d C P C == 1 d C P|_(C)==1d_(C)\left.P\right|_{C}= =1 d_{C}P|C==1dC f it satisfies the well-known relations
(4) se ( x i x , P x y ) 0 , x , y C se ( x i x , P x y ) 0 , x , y C se(x-ix,Px-y) >= 0,AA x,y in C\operatorname{se}(x-i x, P x-y) \geqslant 0, \forall x, y \in Cse(xix,Pxy)0,x,yC
(5) F x F y x y , x , y E F x F y x y , x , y E quad||Fx-Fy|| <= ||x-y||,AA x,y in E\quad\|F x-F y\| \leqslant\|x-y\|, \forall x, y \in EFxFyxy,x,yE P P PPP is nonexpansive).
Fropsition j.Let E E EEE be a Hilbert syace, ϕ C H ϕ C H phi!in C sube H\phi \notin C \subseteq HϕCH a closed conver set and f : C H f : C H f:C rarr Hf: C \rightarrow Hf:CH a given function.If for each x ∈∈ P ( f ( C ) C ) x ∈∈ P ( f ( C ) C ) x∈∈P(f(C)\\C)x \in \in P(f(C) \backslash C)x∈∈P(f(C)C) which is not a fixed point for I I III it follows that there exists y C y C y in Cy \in CyC such that
(6) Re ( f ( x ) x , x y ) < 0 Re ( f ( x ) x , x y ) < 0 Re(f(x)-x,x-y) < 0\operatorname{Re}(f(x)-x, x-y)<0Re(f(x)x,xy)<0
Then f f fff is retractible on C C CCC with respect to the retraction P P PPP
Proof.Lat x P ( x ( C ) C ) x P ( x ( C ) C ) x in P(x(C)\\C)x \in P(x(C) \backslash C)xP(x(C)C) and x i x f . I ¯ I P ( x ( x ) ) = x x i x f . I ¯ I P ( x ( x ) ) = x x!=ixf. bar(I) vec(I)P(x(x))=xx \neq i x f . \bar{I} \vec{I} P(x(x))=xxixf.I¯IP(x(x))=x ,then for each y C y C y in Cy \in CyC Re ( f ( x ) x , x y ) 0 ( f ( x ) x , x y ) 0 (f(x)-x,x-y) >= 0(f(x)-x, x-y) \geqslant 0(f(x)x,xy)0 ,contradiction.It follows f ( ± ) P 1 ( x ) f ( ± ) P 1 ( x ) f(+-)!inP^(-1)(x)f( \pm) \notin P^{-1}(x)f(±)P1(x) ,hence the condition(1)teres place and f f fff is retrac- tib2e onto C C CCC with respect to the retract P P PPP
how we can prove
敋联形 1.Lay A A AAA be A A AAA Hilbert space, A C E A C E A!in C sube EA \notin C \subseteq EACE a closed bounded conver set.Let f : c H f : c H f:c rarr Hf: c \rightarrow Hf:cH sixh that for each x P ( f ( c ) c ) , x q x P ( f ( c ) c ) , x q x in P(f(c)\\c),xqx \in P(f(c) \backslash c), x qxP(f(c)c),xq |Six f f fff inere exists y C y C y in Cy \in CyC such that Re ( f ( ± ) x , x y ) < 0 ( f ( ± ) x , x y ) < 0 (f(+-)-x,x-y) < 0(f( \pm)-x, x-y)<0(f(±)x,xy)<0 and Pof : C C C C C rarr CC \rightarrow CCC is nonezoansive.Then f f fff has in C C CCC at least a fixed peimt.
Eroof.Accordinaly to Enoposition z z zzz ,f is retractible on C C CCC with respect to the reiract F F FFF and Fix Fof = F i x 1 = F i x 1 =Fix^(1)=F i x{ }^{1}=Fix1 .But Pof being nonempansive,the wheorem of Browder/ 1 / 1 / 1//1 /1/ implies Fix Pof D D !in D\notin DD
Corollary 1 / 6 / 1 / 6 / 1//6//1 / 6 /1/6/ .Let H H HHH be a Hilbert space, C H C H O/!in C sube H\varnothing \notin C \subseteq HCH a closed bounded convex set.Lat f : C H f : C H f:C rarr Hf: C \rightarrow Hf:CH a nonexpansive mapping such that for each x J C x J C x in JCx \in J CxJC there exists y C y C y in Cy \in CyC such that
(7) f ( x ) y x y f ( x ) y x y quad||f(x)-y|| <= ||x-y||\quad\|f(x)-y\| \leq\|x-y\|f(x)yxy
Then f f fff has at least a fixed point.
Froof.Let x P ( P ( C ) C ) ⊆⊃ C , x x P ( P ( C ) C ) ⊆⊃ C , x x in P(P(C)uu C)⊆⊃C,x!inx \in P(P(C) \cup C) \subseteq \supset C, x \notinxP(P(C)C)⊆⊃C,x Fix f f fff .There exists y C y C y in Cy \in CyC such that(7)takes place and
0 f ( x ) y 2 x y 2 = ( f ( x ) x + x y , f ( x ) x + x y ) x y 2 = f ( x ) x 2 + 2 Re ( f ( x ) x , x y ) 0 f ( x ) y 2 x y 2 = ( f ( x ) x + x y , f ( x ) x + x y ) x y 2 = f ( x ) x 2 + 2 Re ( f ( x ) x , x y ) 0 >= ||f(x)-y||^(2)-||x-y||^(2)=(f(x)-x+x-y,f(x)-x+x--y)-||x-y||^(2)=||f(x)-x||^(2)+2Re(f(x)-x,x-y)0 \geq\|f(x)-y\|^{2}-\|x-y\|^{2}=(f(x)-x+x-y, f(x)-x+x- -y)-\|x-y\|^{2}=\|f(x)-x\|^{2}+2 \operatorname{Re}(f(x)-x, x-y)0f(x)y2xy2=(f(x)x+xy,f(x)x+xy)xy2=f(x)x2+2Re(f(x)x,xy),
fle hothetheses of Thecrem 1 are savisfied, since P P PPP and P P PPP are nonexpansive.
Ronsas 2. Fhere Gre functions f : C H f : C H f:C rarr Hf: C \rightarrow Hf:CH which are not nonexpansive and fulfil the condition is heroren 1 , out ouv vhowe in Corcllary 1.
Let f : [ 0 , 1 ) R f : [ 0 , 1 ) R f:[0,1)rarrR\mathrm{f}:[0,1) \rightarrow \mathrm{R}f:[0,1)R,
f ( x ) = { 4 x + 3 , x [ 0 , 1 / 2 ) 3 / 2 x , x [ 1 / 2 , 1 ] f ( x ) = 4 x + 3 ,      x [ 0 , 1 / 2 ) 3 / 2 x ,      x [ 1 / 2 , 1 ] f(x)={[-4x+3",",x in[0","1//2)],[3//2-x",",x in[1//2","1]]:}f(x)= \begin{cases}-4 x+3, & x \in[0,1 / 2) \\ 3 / 2-x, & x \in[1 / 2,1]\end{cases}f(x)={4x+3,x[0,1/2)3/2x,x[1/2,1]
a function which verifies the hypotheses of Ibeorem 1.
Let x = 0 J C x = 0 J C x=0in JCx=0 \in J Cx=0JC; if y y yyy varifies (7), it follows j y y j y y j-y <= yj-y \leqslant yjyy, hence y 3 / 2 y 3 / 2 y >= 3//2y \geqslant 3 / 2y3/2, contradiction to y C y C y in Cy \in CyC.
Applying Browder's theorem in uniformly convex soaces one obtains
THEOREM 2. Let X X XXX be a uniformly convez Engen spuce, G X G X O/!=G sube X\emptyset \neq G \subseteq XGX a closed bounded corvex set. If r : C X r : C X r:C rarr Xr: C \rightarrow Xr:CX is retractitle grivo C C CCC Pith raspect to the metric projection P = P C P = P C P=P_(C)P=P_{C}P=PC and For is noncyansive, then f f fff nes in C C CCC at lessi a fixed point.
Proof. Because f f fff is retractible onto C C CCC with respect to P P PPP, we have Fix f = f = f=f=f= Fix Pof. But Pof is nonexpansive, hence it has a fixed point by the Browder's theorem.
Remary 3. In the conditions of Meorem 2, f : 0 X f : 0 X f:0rarr Xf: 0 \rightarrow Xf:0X is retractible onto C C CCC with rospect to tho metric projection P P PPP if and only if for ouch x P ( f ( C ) C ) , f ( x ) x x P ( f ( C ) C ) , f ( x ) x x in P(f(C)\\C),f(x)!=xx \in P(f(C) \backslash C), f(x) \neq xxP(f(C)C),f(x)x there exists y C y C y in Cy \in CyC such that f ( x ) x > f ( x ) y f ( x ) x > f ( x ) y ||f(x)-x|| > ||f(x)-y||\|f(x)-x\|>\|f(x)-y\|f(x)x>f(x)y.
Indeed, let x P ( f ( C ) C ) C , f ( x ) x ; in this case we have f ( x ) P 1 ( x ) P ( f ( x ) ) x y C , f ( x ) x > f ( x ) y x P ( f ( C ) C ) C , f ( x ) x ; in this case we have  f ( x ) P 1 ( x ) P ( f ( x ) ) x y C , f ( x ) x > f ( x ) y x in P(f(C)\\C)sube C,f(x)!inx_("; in this case we have ")f(x)!inP^(-1)(x)<=>P(f(x))!=x<=>EE y in C,||f(x)-x|| > ||f(x)-y||x \in P(f(C) \backslash C) \subseteq C, f(x) \notin x_{\text {; in this case we have }} f(x) \notin P^{-1}(x) \Leftrightarrow P(f(x)) \neq x \Leftrightarrow \exists y \in C,\|f(x)-x\|>\|f(x)-y\|xP(f(C)C)C,f(x)x; in this case we have f(x)P1(x)P(f(x))xyC,f(x)x>f(x)y
iie obtain
Conollary 2. In the conditions of Theorem 2, if I : C K I : C K I:C rarr KI: C \rightarrow KI:CK has the property that for each x P ( f ( C ) C ) ⊆⊃ C , x f ( x ) x P ( f ( C ) C ) ⊆⊃ C , x f ( x ) x in P(f(C)\\C)⊆⊃C,x!=f(x)x \in P(f(C) \backslash C) \subseteq \supset C, x \neq f(x)xP(f(C)C)⊆⊃C,xf(x) there

exists y C y C y in Cy \in CyC such that

(8) f ( x ) x > f ( x ) y f ( x ) x > f ( x ) y ||f(x)-x|| > ||f(x)-y||\|f(x)-x\|>\|f(x)-y\|f(x)x>f(x)y
and P o f P o f PofP o fPof is monexpansive, then f f fff has in C C CCC at least a fixed point.
Using the condition (7) one obtains
Gorollazy 3. In the hypotheses of Theorem 2, if f : C X f : C X f:C longrightarrow Xf: C \longrightarrow Xf:CX has the property that for each x P ( f ( C ) C ) ⊆⊃ C x P ( f ( C ) C ) ⊆⊃ C x in P(f(C)\\C)⊆⊃Cx \in P(f(C) \backslash C) \subseteq \supset CxP(f(C)C)⊆⊃C there exists y C y C y in Cy \in CyC such that (7) takes place and Pof is nonerpansive, then f f fff has in c c ccc at least a firod point.
Proof. Let x P ( f ( C ) C ) x P ( f ( C ) C ) x in P(f(C)uu C)x \in P(f(C) \cup C)xP(f(C)C); if x f ( x ) x f ( x ) x**f(x)x * f(x)xf(x) the theorem is proved. If x f ( x ) x f ( x ) x dots f(x)x \ldots f(x)xf(x), it follows that there exists y C y C y in Cy \in CyC such that f ( x ) y ⩽≤ x y f ( x ) y ⩽≤ x y ||f(x)-y||⩽≤||x-y||\|f(x)-y\| \leqslant \leq\|x-y\|f(x)y⩽≤xy. If we suppose x = Pof ( x ) x = Pof ( x ) x=Pof(x)x=\operatorname{Pof}(x)x=Pof(x), then f ( x ) x == inf { f ( x ) y z C } inf { x y z , y C } = 0 f ( x ) x == inf { f ( x ) y z C } inf { x y z , y C } = 0 ||f(x)-x||==i n f{||f(x)-y||z in C} <= i n f{||x-y||z,y in C}=0\|f(x)-x\|= =\inf \{\|f(x)-y\| z \in C\} \leqslant \inf \{\|x-y\| z, y \in C\}=0f(x)x==inf{f(x)yzC}inf{xyz,yC}=0, which is a contradiction. It follows that f f fff is retractible onto C C CCC with respect to P P PPP, hence Fix F F F∤F \nmidF.
Now we shall generalize the notion of retractible function to point-to-set mappings (shortly, mappings).
Let X a X a X!in aX \notin aXa set, A X A X O/ in A sube X\emptyset \in A \subseteq XAX. A A AAA mapping R : X 2 A { } R : X 2 A { } R:X rarr2^(A)\\{O/}R: X \rightarrow 2^{A} \backslash\{\varnothing\}R:X2A{} is a retrest of X X XXX onto A A AAA if R | A = i d A R A = i d A R|_(A)=id_(A)\left.R\right|_{A}=i d_{A}R|A=idA. Therefore R R RRR restricted on the set A A AAA is a function which coincides to the identical function. A A AAA maping F : A 2 X { } F : A 2 X { } F:A rarr2^(X)\\{O/}F: A \rightarrow 2^{X} \backslash\{\emptyset\}F:A2X{} is retractible onto A A AAA with respect to the retract R R RRR if Fix RoF = = === Fix P P PPP, where Fix F = { x A ; x F ( x ) } F = { x A ; x F ( x ) } F={x in A;x in F(x)}F=\{x \in A ; x \in F(x)\}F={xA;xF(x)}.
The analogrus of condition (1) is
(9) x R ( F ( A ) A ) x R ( F ( A ) A ) x in R(F(A)\\A)x \in R(F(A) \backslash A)xR(F(A)A) implies x F ( x ) x F ( x ) x in F(x)x \in F(x)xF(x) or F ( x ) R 1 ( x ) = F ( x ) R 1 ( x ) = F(x)nnR^(-1)(x)=O/F(x) \cap R^{-1}(x)=\varnothingF(x)R1(x)=, where R 1 ( x ) = { z X : x R ( z ) } R 1 ( x ) = { z X : x R ( z ) } R^(-1)(x)={z in X:x in R(z)}R^{-1}(x)=\{z \in X: x \in R(z)\}R1(x)={zX:xR(z)}. The condition (9) aay be reformulate' as
(9') R ( F ( A ) A ) { x A : x F ( x ) R ( F ( A ) A ) x A : x F ( x ) quad R(F(A)\\A)sube{x inA:x in F(x):}\quad R(F(\mathbb{A}) \backslash A) \subseteq\left\{x \in \mathbb{A}: x \in F(x)\right.R(F(A)A){xA:xF(x) or F ( x ˙ ) R 1 ( x ) = } F ( x ˙ ) R 1 ( x ) = {:F((x^(˙)))nnR^(-1)(x)=O/}\left.F(\dot{x}) \cap R^{-1}(x)=\varnothing\right\}F(x˙)R1(x)=}.
We obtain some results analogous to those for functions.
Froposition 4. The next two sets are equal
U = { x A : x F ( x ) U = x A : x F ( x ) U={x in A:x in F(x):}U=\left\{x \in A: x \in F(x)\right.U={xA:xF(x) or F ( x ) R 1 ( x ) = } F ( x ) R 1 ( x ) = {:F(x)nnR^(-1)(x)=O/}\left.F(x) \cap R^{-1}(x)=\emptyset\right\}F(x)R1(x)=}
Procosition 5. The condition (9) is equivalent to (10) Fix RoF sube\subseteq Fix F F FFF.
Repark 4. It is obvious that Fix F F i x F F i x F <= FixF \leq F i xFFix Rof, since x F i x F x F i x F x in FixFx \in F i x FxFixF implies x F ( x ) x F ( x ) x in F(x)x \in F(x)xF(x) and x A x A x in Ax \in AxA, hence x = R ( x ) R ( F ( x ) ) x = R ( x ) R ( F ( x ) ) x=R(x)sube R(F(x))x=R(x) \subseteq R(F(x))x=R(x)R(F(x)) and x F i x x F i x x in Fixx \in F i xxFix RoF. In fact, (10) ueans that Fix RoF = F i x F = F i x F =FixF=F i x F=FixF.
Proof of Proposition 5.
(9') =>\Rightarrow (10). Let x x x inx \inx Fix RoF, so x RoF ( x ) x RoF ( x ) x in RoF(x)x \in \operatorname{RoF}(x)xRoF(x); there exists y F ( x ) y F ( x ) y in F(x)y \in F(x)yF(x) such that x R ( y ) x R ( y ) x in R(y)x \in R(y)xR(y). If y A , R ( y ) = { y } y A , R ( y ) = { y } y in A,R(y)={y}y \in A, R(y)=\{y\}yA,R(y)={y} and x = y x = y x=yx=yx=y, hence x F i x F x F i x F x in FixFx \in F i x FxFixF. If y A , x R ( y ) R ( F ( A ) A ) F i x F C A F i x y A , x R ( y ) R ( F ( A ) A ) F i x F C A F i x y!in A,x in R(y)sube R(F(A)\\A)sube FixF uuC_(A)Fixy \notin A, x \in R(y) \subseteq R(F(A) \backslash A) \subseteq F i x F \cup C_{A} F i xyA,xR(y)R(F(A)A)FixFCAFix RoF. But x RoF ( x ) x RoF ( x ) x in RoF(x)x \in \operatorname{RoF}(x)xRoF(x) and again x F i x P x F i x P x in FixPx \in F i x PxFixP.
Conversely, Wo show that (10) implies A F i x U C A A F i x U C A A sube Fix in UC_(A)A \subseteq F i x \in U C_{A}AFixUCA Fix Ror, the inclusion meaning in fact equality. Indeod, Fix RoF sube\subseteq Fix F F FFF implies C A F d x C A F d x C_(A)FdxC_{A} F d xCAFdx RoF C A F i x F C A F i x F supeC_(A)FixF\supseteq C_{A} F i x FCAFixF, hence A = F i x F C A F i x A = F i x F C A F i x A=FixF uuC_(A)FixA=F i x F \cup C_{A} F i xA=FixFCAFix Rof.
In the following we obtain for point-to-set mappings some results which are analogous to those in the first part of this paper. Wo shall use agatin as a retract tho metric projection on closed convex sets in uniformly convex spaces, which is in fact a function.
In uniformly convex spaces, the metric profection is no more a nonexpansive mapping, but it is a continuous one.
Indeed, let X X XXX be a uniformly convex Banach space, C X C X O/quad!in C sube X\emptyset \quad \notin C \subseteq XCX a closed conver : We prove that P C = P P C = P P_(C)=PP_{C}=PPC=P is continuous.
Let x n n x x n n x x_(n)rarr"n"xx_{n} \xrightarrow{n} xxnnx. He have
d ( x , C ) x P x n x x n + x n P x n = x x n + + d ( x n , C ) 2 x x n + d ( x , C ) d ( x , C ) x P x n x x n + x n P x n = x x n + + d x n , C 2 x x n + d ( x , C ) d(x,C) <= ||x-Px_(n)|| <= ||x-x_(n)||+||x_(n)-Px_(n)||=||x-x_(n)||++d(x_(n),C) <= 2||x-x_(n)||+d(x,C)d(x, C) \leq\left\|x-P x_{n}\right\| \leq\left\|x-x_{n}\right\|+\left\|x_{n}-P x_{n}\right\|=\left\|x-x_{n}\right\|+ +d\left(x_{n}, C\right) \leq 2\left\|x-x_{n}\right\|+d(x, C)d(x,C)xPxnxxn+xnPxn=xxn++d(xn,C)2xxn+d(x,C).
It follows that x P x n n d ( x , C ) x P x n n d ( x , C ) ||x-Px_(n)||rarr"n"d(x,C)\left\|x-P x_{n}\right\| \xrightarrow{n} d(x, C)xPxnnd(x,C), hence ( E x n ) n N E x n n N (Ex_(n))_(n in N)\left(E x_{n}\right)_{n \in N}(Exn)nN is a minimizing sequence. If x C x C x in Cx \in CxC x than means prectsely D x D x n n 0 D x D x n n 0 ||Dx-Dx_(n)||rarr"n"0\left\|D x-D x_{n}\right\| \xrightarrow{n} 0DxDxnn0 and the continuity of P P PPP is proved.
If x C x C x!in Cx \notin CxC, then d ( x , C ) > 0 d ( x , C ) > 0 d(x,C) > 0d(x, C)>0d(x,C)>0. The set C C CCC being convex it rollotys that ( P x n + P x a ) / 2 C P x n + P x a / 2 C (Px_(n)+Px_(a))//2in C\left(P x_{n}+P x_{a}\right) / 2 \in C(Pxn+Pxa)/2C and
2 a ( x 1 0 ) 2 h x ( P 2 + P 2 ) / 2 h x P n + x P n x n m x 2 d ( x , C ) 2 a x 1 0 2 h x P 2 + P 2 / 2 h x P n + x P n x n m x 2 d ( x , C ) 2a(x_(1)0) <= 2hx-(P_(2)+P_(2))//2h <= ||x-P_(n)||+||x-P_(n)||rarr"x_(n)"rarr"m_(x)"2d(x,C)2 a\left(x_{1} 0\right) \leq 2 h x-\left(P_{2}+P_{2}\right) / 2 h \leq\left\|x-P_{n}\right\|+\left\|x-P_{n}\right\| \xrightarrow{x_{n}} \xrightarrow{m_{x}} 2 d(x, C)2a(x10)2hx(P2+P2)/2hxPn+xPnxnmx2d(x,C), honce H ( P x y ) / d ( x , C ) + ( y P x m ) / d ( x , C ) m , n 2 H P x y / d ( x , C ) + y P x m / d ( x , C ) m , n 2 H(-Px_(y))//d(x,C)+(y-Px_(m))//d(x,C)||rarr"m,n"2H\left(-P x_{y}\right) / d(x, C)+\left(y-P x_{m}\right) / d(x, C) \| \xrightarrow{m, n} 2H(Pxy)/d(x,C)+(yPxm)/d(x,C)m,n2. Donoting z n = ( x P n ) / d ( x ; C ) z n = x P n / d ( x ; C ) z_(n)=(x-P_(n))//d(x;C)z_{n}=\left(x-\mathrm{P}_{n}\right) / \mathrm{d}(x ; \mathrm{C})zn=(xPn)/d(x;C), we have z n 1 z n 1 ||z_(n)||rarr"^^"1\left\|z_{n}\right\| \xrightarrow{\wedge} 1zn1, ( z n + z n ) / 2 m = 1 z n + z n / 2 m = 1 ||(z_(n)+z_(n))//2||^(m)=1\left\|\left(z_{n}+z_{n}\right) / 2\right\|^{m}=1(zn+zn)/2m=1 and using the uniformly converity of x x xxx it follows that ( z n ) n T z n n T (z_(n))_(n in T)\left(z_{n}\right)_{n \in T}(zn)nT is a Cauchy sequence / 8 / 8 //8/ 8/8, Lilo.2.2, p. 379 / 379 / 379//379 /379/ hence a convergent one. Let y = lim 2 Fx 2 y = lim 2 Fx 2 y=lim_(2)Fx_(2)y=\lim _{2} \mathrm{Fx}_{2}y=lim2Fx2.
USERE d ( x , C ) x P x n 2 x x n + d ( x , C ) d ( x , C ) x P x n 2 x x n + d ( x , C ) d(x,C) <= ||x-Px_(n)|| <= 2||x-x_(n)||+d(x,C)d(x, C) \leq\left\|x-P x_{n}\right\| \leq 2\left\|x-x_{n}\right\|+d(x, C)d(x,C)xPxn2xxn+d(x,C) we obtain x y = d ( x , C ) x y = d ( x , C ) ||x-y||=d(x,C)\|x-y\|=d(x, C)xy=d(x,C), hence y = P x y = P x y=Pxy=P xy=Px and the continuity of P P PPP is proved in this vaso too.
Nic: we prove a theorem which extends to mappings whose range is not nocossarily in C C CCC a theorem of Inm / 4 / Inm / 4 / Inm//4//\operatorname{Inm} / 4 /Inm/4/. We denote by ρ c ( C ) ρ c ( C ) rho_(c)(C)\rho_{c}(C)ρc(C) the samily of the compact nonvold subsets of C C CCC.
0 X 0 X !=0sube X\neq 0 \subseteq X0X a clange bourged conver set, F : C P c ( c ) F : C P c ( c ) F:C longrightarrowP_(c)(c)F: C \longrightarrow \mathcal{P}_{c}(c)F:CPc(c) a nonespan-立吅 provins ( tr ρ c ( c ) ρ c ( c ) rho_(c)(c)\rho_{c}(c)ρc(c) one considers the Hausdorff-Ponpeiu metric) 저술 서숭으 어서 x C x C x in Cx \in CxC surfy that x F ( x ) x F ( x ) x in F(x)x \in F(x)xF(x).
Enozal 4. Tot x x xxx be a pitamely conver Ranach space, C X C X O/!in C sube X\emptyset \notin C \subseteq XCX a glaca gopuled conver got, F : C c ( X ) F : C c ( X ) F:C longrightarrowuuu_(c)(X)F: C \longrightarrow \bigcup_{c}(X)F:Cc(X) a mapping which is
Juch text Pow is gonerganelve, Then the napping P P PPP has in C C ^(C){ }^{C}C at least a pinga point.
Hrgos. Because F ( I ) F ( I ) F(I)F(I)F(I) is a compact set for each x x xxx in C C CCC and P P PPP is a continuous function, we have For : c P c ( c ) c P c ( c ) c longrightarrowP_(c)(c)c \longrightarrow P_{c}(c)cPc(c). The mapping F F FFF being ratractible on C C CCC with respect to P P PPP, it follows F i x F = F i x F = FixF=F i x F=FixF= = Pix For and using Theorem 4 one obtains fix i ¯ c i ¯ c bar(i)!=c\bar{i} \neq ci¯c.
Ore remaiks that F F FFF is retractible onto C C CCC with respect to P P PPP if and only if for each x P ( F ( C ) C ) x P ( F ( C ) C ) x in P(F(C)\\C)x \in P(F(C) \backslash C)xP(F(C)C) which is not a fixed point for F F FFF and Por each z F ( = ) z F ( = ) z in F(=)z \in F(=)zF(=) thare exists z C z C z in Cz \in CzC such thet i z x > z y i z x > z y iz-x|| > ||z-y||i z-x\|>\| z-y \|izx>zy. Equivalenting, for each z Z ( x ) z Z ( x ) z in Z(x)z \in Z(x)zZ(x) we have z x > d ( z , 0 ) z x > d ( z , 0 ) ||z-x|| > d(z,0)\|z-x\|>d(z, 0)zx>d(z,0).
第 obtain
Corollarr 4. Let X X XXX and C C CCC bo as in Nheoren 4; if F : C S c ( X ) F : C S c ( X ) F:C rarrS_(c)(X)F: C \rightarrow S_{c}(X)F:CSc(X) has theoroperty that for each x P ( F ( C ) C ) x P ( F ( C ) C ) x in P(F(C)\\C)x \in P(F(C) \backslash C)xP(F(C)C) which is not a fired point for f f fff and for each z f ( x ) z f ( x ) z inf^(')(x)z \in f^{\prime}(x)zf(x) there axists y C y C y in Cy \in CyC such that z x >> z x >> ||z-x||>>||\|z-x\|> >\|zx>> 2-y ||\| and PoF is nonexpansive, then F F FFF has in C C CCC at last a fired point.
Theoren 3 is extended in several papers to mappings whose range is not contained in the convex set C C CCC, but F ( x ) S J 0 ( x ) = F ( x ) S J 0 ( x ) = F(x)SJ_(0)(x)=F(x) S J_{0}(x)=F(x)SJ0(x)=
x { ( 1 a ) x + a y : y C x { ( 1 a ) x + a y : y C x{(1-a)x+ay:y quad Cx\{(1-a) x+a y: y \quad Cx{(1a)x+ay:yC, Ro a > 1 / 2 } a > 1 / 2 } a > 1//2}a>1 / 2\}a>1/2} for each x x xxx in C C CCC.
Remark 5. If X X XXX is a real Banacin space, then J C ( x ) = J C ( x ) = J_(C)(x)=J_{C}(x)=JC(x)=
= ( 1 b ) x + b y = ( 1 b ) x + b y =quad(1-b)x+by=\quad(1-b) x+b y=(1b)x+by a y C , b 0 } y C , b 0 } y in C,b >= 0}y \in C, b \geqslant 0\}yC,b0} for x x xxx in C C CCC.
We obtain nom
Corollary 5. Let X X XXX and C C CCC be as in Theorem 4; if g : C ρ e ( X ) g : C ρ e ( X ) g:C rarrrho_(e)(X)g: C \rightarrow \rho_{e}(X)g:Cρe(X) has the property that F ( x ) J C ( x ) = { ( 1 a ) x + a y , y F ( x ) J C ( x ) = { ( 1 a ) x + a y , y F(x)subeJ_(C)(x)={(1-a)x+ay,yF(x) \subseteq J_{C}(x)=\{(1-a) x+a y, yF(x)JC(x)={(1a)x+ay,y C, Re a > 1 / 2 } a > 1 / 2 } a > 1//2}a>1 / 2\}a>1/2} for each x P ( F ( C ) C ) x P ( F ( C ) C ) x in P(F(C)\\C)x \in P(F(C) \backslash C)xP(F(C)C) which is not a fixed point for I I III and P o P P o P PoPP o PPoP is nongrpansite, than F i x i 0 F i x i 0 vec(Fix)i!=0\overrightarrow{F i x} i \neq 0Fixi0.
Eroof. Fet x F ( F ( C ) C ) , x T i x F x F ( F ( C ) C ) , x T i x F x in F(F(C)\\C),x!in TixFx \in F(F(C) \backslash C), x \notin T i x FxF(F(C)C),xTixF and z F ( x ) J C ( x ) z F ( x ) J C ( x ) z in F(x)subeJ_(C)(x)z \in F(x) \subseteq J_{C}(x)zF(x)JC(x). It follows that there exists y C y C y in Cy \in CyC and a C a C a in Ca \in CaC, R a a > 1 / 2 R a a > 1 / 2 R_(a)a > 1//2R_{a} a>1 / 2Raa>1/2 such that z == ( l a ) x + a y z == ( l a ) x + a y z==(l-a)x+ayz= =(l-a) x+a yz==(la)x+ay.
We have y x y x y!in xy \notin xyx, since y = x y = x y=xy=xy=x implias z = x , F ( x ) z = x , F ( x ) z=x,F(x)z=x, F(x)z=x,F(x), contradiction. men z x = | a | y x z x = | a | y x ||z-x||=|a|||y-x||\|z-x\|=|a|\|y-x\|zx=|a|yx and z y = | 1 a | y x z y = | 1 a | y x ||z-y||=|1-a|||y-x||\|z-y\|=|1-a|\|y-x\|zy=|1a|yx. But Re a >> 1 / 2 >> 1 / 2 >>1//2> >1 / 2>>1/2 implies | a | > | 1 a | | a | > | 1 a | |a| > |1-a||a|>|1-a||a|>|1a|, hence z x > z y z x > z y ||z-x|| > ||z-y||\|z-x\|>\|z-y\|zx>zy and Corollary 4 applies.
Theorem 4 has as a Corollary Theorem 2.3 / 3 / 2.3 / 3 / 2.3//3//2.3 / 3 /2.3/3/, wheme one imposes mother condition or inwardness than f ( z ) J C ( x ) f ( z ) J C ( x ) f(z)subeJ_(C)(x)f(z) \subseteq J_{C}(x)f(z)JC(x).
Corollary 6/3/. Let H ¨ H ¨ H^(¨)\ddot{H}H¨ be a rilbert space, C H C H O/!=C sube H\varnothing \neq C \subseteq HCH a closed hounded convex set, N : C P c ( H ) N : C P c ( H ) N:C rarrP_(c)(H)N: C \rightarrow P_{c}(H)N:CPc(H) nonerpansite and A : C [ 0 , 1 ) A : C [ 0 , 1 ) A:C rarr[0,1)A: C \rightarrow[0,1)A:C[0,1) an aroitrary function. In addition one suppose that for each x C x C x in Cx \in CxC and y H ¯ ( x ) y H ¯ ( x ) y in bar(H)(x)y \in \bar{H}(x)yH¯(x) one has
(11) lim inf n c v h 1 d ( ( 1 h ) x + h y , x ) A ( x ) d ( x , T x ) lim inf n c v h 1 d ( ( 1 h ) x + h y , x ) A ( x ) d ( x , T x ) quadl i m   i n f_(n rarrc_(v))h^(-1)d((1-h)x+hy,x) <= A(x)d(x,Tx)\quad \liminf _{n \rightarrow c_{v}} h^{-1} d((1-h) x+h y, x) \leqslant A(x) d(x, T x)lim infncvh1d((1h)x+hy,x)A(x)d(x,Tx). Gnen F F FFF has in C C CCC at least a fixed point.
TOOS. In the conditions of the corollary, Pos is nonexpaneive. :.\therefore Lure elso Fix Por sube\subseteq Fix F. Inderd; let x PoF ( x ) x PoF ( x ) x in PoF(x)x \in \operatorname{PoF}(x)xPoF(x), hence there exists y F ( x ) y F ( x ) y <= F(x)y \leq F(x)yF(x) such that x = P ( y ) x = P ( y ) x=P(y)x=P(y)x=P(y). Tie show that for h ( 0 , 1 ) h ( 0 , 1 ) h in(0,1)h \in(0,1)h(0,1) one has
(12) d ( ( 1 h ) x + h y , 0 ) = ( 1 n ) x + h y x d ( ( 1 h ) x + h y , 0 ) = ( 1 n ) x + h y x quad d((1-h)x+hy,0)=||(1-n)x+hy-x||\quad d((1-h) x+h y, 0)=\|(1-n) x+h y-x\|d((1h)x+hy,0)=(1n)x+hyx.
We suppose that these exists h ( 0 , 1 ) h ( 0 , 1 ) h in(0,1)h \in(0,1)h(0,1) such that z C , z x z C , z x z in C,z!in xz \in C, z \notin xzC,zx and
( 1 h ) x + h y z < ( 1 h ) x + h y x ( 1 h ) x + h y z < ( 1 h ) x + h y x ||(1-h)x+hy-z|| < ||(1-h)x+hy-x||\|(1-h) x+h y-z\|<\|(1-h) x+h y-x\|(1h)x+hyz<(1h)x+hyx.
But y z ( 1 n ) x + h y z + ( 2 h ) ( x y ) < y z ( 1 n ) x + h y z + ( 2 h ) ( x y ) < ||y-z|| <= ||(1-n)x+hy-z||+||(2-h)(x-y)|| <\|y-z\| \leq\|(1-n) x+h y-z\|+\|(2-h)(x-y)\|<yz(1n)x+hyz+(2h)(xy)<
< ( 1 h ) x + h y x + ( 1 h ) ( x y ) = x y , < ( 1 h ) x + h y x + ( 1 h ) ( x y ) = x y , < ||(1-h)x+hy-x||+||(1-h)(x-y)||=||x-y||,<\|(1-h) x+h y-x\|+\|(1-h)(x-y)\|=\|x-y\|,<(1h)x+hyx+(1h)(xy)=xy,
which contradicts x P ( y ) x P ( y ) x in P(y)x \in P(y)xP(y). It follows that the relaticn (12) nolds, and consequently,
d ( x , F ( x ) ) x y = limine h 1 a ( ( 1 h ) x + b y , 0 ) d ( x , F ( x ) ) x y = limine h 1 a ( ( 1 h ) x + b y , 0 ) d(x,F(x)) <= ||x-y||=limineh^(-1)a((1-h)x+by,0) <=d(x, F(x)) \leq\|x-y\|=\operatorname{limine} h^{-1} a((1-h) x+b y, 0) \leqd(x,F(x))xy=limineh1a((1h)x+by,0)
A ( x ) d ( x , F ( x ) ) A ( x ) d ( x , F ( x ) ) <= A(x)d(x,F(x))\leq A(x) d(x, F(x))A(x)d(x,F(x)).
But A ( x ) < 1 A ( x ) < 1 A(x) < 1A(x)<1A(x)<1, hence a ¯ ( x , F ( x ) ) = 0 a ¯ ( x , F ( x ) ) = 0 bar(a)(x,F(x))=0\bar{a}(x, F(x))=0a¯(x,F(x))=0 and x F ( x ) x F ( x ) x in F(x)x \in F(x)xF(x).
Applying insoren 4 one obtains the conclusion.

BDFERENCES*

  1. F. F. BROWDA, Fixed points theorems for noncompact mappings in Hilber' space, Froc. Nat. Acad. Sci. 53(1965); 1272-1276
  2. R.F.BROint, Retraction wethods in Nielsen fixed point theory, Pacific i. iath. 115(1984), 277-316
  3. D.J.DGHTHE, W.O.P:I, Some remarks on set-valued mappings, ronlinaar inalysis, T.i.i.A. 5(12)(1981), 1367-1377
  4. N.C.LM, i fixed point thecrem for aulttralued nonexpeneivo mappings in a uniformly corver Benact space, Bull. Amer. Math. Soc. Eg(1974), 1123-1126
    S. I.A.RUS, The fixed point structures and the netraction mappine principle, "Babes-Dెolyai" Juiv., Fac. of liatin, Research Sem., Preprint ar. 3, 1985, 175-184
  5. R. SCECNEBERG, Some fixed point theorens for mapings of nonexpansive type, Comm. Math. Univ. Carolinae II (1976), 399-411
  6. S.P.SINGE, S.ULSSA, D.ZOUX, Approximavion technique in fired point theory, Bendiconti Sem. Liath. Fis. Hilano VIII(1983), 165-172
  7. Gh.SIRETCHI, Analiză functional单, Univ. din Eucuresti, 1982 (manoagraphed)
Institutal ds Calcul
Oficiul Poştal 1
C.P. 68
3400 Cluj-Niapocs
ROMANIE
This paperis in final form and no version of it is or will be subaltted for publication olsewhere.
1988

Related Posts