Differentiability with respect to delays for a Lotka-Volterra system

Abstract

Authors

D.Otrocol
Tiberiu Popoviciu In stitute of Numerical Analysis Romanian Academy

Keywords

?

Paper coordinates

D. Otrocol, Differentiability with respect to delays for a Lotka-Volterra systemCreative Math. and Inf., 2007, Vol. 16, pp. 36-41

PDF

About this paper

Print ISSN

1584 – 286X

Online ISSN

1843 – 441X

google scholar link

??

Paper (preprint) in HTML form

creative_2007_16_036_041

Differentiability with respect to delays for a Lotka-Volterra system*

Diana Otrocol

ABSTRACT. We study the differentiability with respect to delays using the weakly Picard operators technique.

1. Introduction

Consider the following Lotka-Volterra differential system with delays
(1.1) x i ( t ) = f i ( t , x 1 ( t ) , x 2 ( t ) , x 1 ( t τ 1 ) , x 2 ( t τ 2 ) ) , i = 1 , 2 , t [ t 0 , b ] (1.2) { x 1 ( t ) = φ ( t ) , t [ t 0 τ 1 , t 0 ] x 2 ( t ) = ψ ( t ) , t [ t 0 τ 2 , t 0 ] (1.1) x i ( t ) = f i t , x 1 ( t ) , x 2 ( t ) , x 1 t τ 1 , x 2 t τ 2 , i = 1 , 2 , t t 0 , b (1.2) x 1 ( t ) = φ ( t ) , t t 0 τ 1 , t 0 x 2 ( t ) = ψ ( t ) , t t 0 τ 2 , t 0 {:[(1.1)x_(i)^(')(t)=f_(i)(t,x_(1)(t),x_(2)(t),x_(1)(t-tau_(1)),x_(2)(t-tau_(2)))","i=1","2","t in[t_(0),b]],[(1.2){[x_(1)(t)=varphi(t)","t in[t_(0)-tau_(1),t_(0)]],[x_(2)(t)=psi(t)","t in[t_(0)-tau_(2),t_(0)]]:}]:}\begin{gather*} x_{i}^{\prime}(t)=f_{i}\left(t, x_{1}(t), x_{2}(t), x_{1}\left(t-\tau_{1}\right), x_{2}\left(t-\tau_{2}\right)\right), i=1,2, t \in\left[t_{0}, b\right] \tag{1.1}\\ \left\{\begin{array}{l} x_{1}(t)=\varphi(t), t \in\left[t_{0}-\tau_{1}, t_{0}\right] \\ x_{2}(t)=\psi(t), t \in\left[t_{0}-\tau_{2}, t_{0}\right] \end{array}\right. \tag{1.2} \end{gather*}(1.1)xi(t)=fi(t,x1(t),x2(t),x1(tτ1),x2(tτ2)),i=1,2,t[t0,b](1.2){x1(t)=φ(t),t[t0τ1,t0]x2(t)=ψ(t),t[t0τ2,t0]
Suppose that we have satisfied the following conditions:
( H 1 ) t 0 < b , τ , τ 1 , τ 2 > 0 , τ 1 < τ 2 < τ , τ 1 , τ 2 J , J = [ t 0 , τ ] H 1 t 0 < b , τ , τ 1 , τ 2 > 0 , τ 1 < τ 2 < τ , τ 1 , τ 2 J , J = t 0 , τ (H_(1))t_(0) < b,tau,tau_(1),tau_(2) > 0,tau_(1) < tau_(2) < tau,tau_(1),tau_(2)in J,J=[t_(0),tau]\left(\mathrm{H}_{1}\right) t_{0}<b, \tau, \tau_{1}, \tau_{2}>0, \tau_{1}<\tau_{2}<\tau, \tau_{1}, \tau_{2} \in J, J=\left[t_{0}, \tau\right](H1)t0<b,τ,τ1,τ2>0,τ1<τ2<τ,τ1,τ2J,J=[t0,τ] a compact interval;
( H 2 ) f i C 1 ( [ t 0 , b ] × R 4 , R ) , i = 1 , 2 H 2 f i C 1 t 0 , b × R 4 , R , i = 1 , 2 (H_(2))f_(i)inC^(1)([t_(0),b]xxR^(4),R),i=1,2\left(\mathrm{H}_{2}\right) f_{i} \in C^{1}\left(\left[t_{0}, b\right] \times \mathbb{R}^{4}, \mathbb{R}\right), i=1,2(H2)fiC1([t0,b]×R4,R),i=1,2;
( H 3 ) H 3 (H_(3))\left(\mathrm{H}_{3}\right)(H3) there exists L f > 0 L f > 0 L_(f) > 0L_{f}>0Lf>0 such that
f i u j ( t , u 1 , u 2 , u 3 , u 4 ) R L f f i u j t , u 1 , u 2 , u 3 , u 4 R L f ||(delf_(i))/(delu_(j))(t,u_(1),u_(2),u_(3),u_(4))||_(R) <= L_(f)\left\|\frac{\partial f_{i}}{\partial u_{j}}\left(t, u_{1}, u_{2}, u_{3}, u_{4}\right)\right\|_{\mathbb{R}} \leq L_{f}fiuj(t,u1,u2,u3,u4)RLf
for all t [ t 0 , b ] , u j R , j = 1 , 4 , i = 1 , 2 t t 0 , b , u j R , j = 1 , 4 ¯ , i = 1 , 2 t in[t_(0),b],u_(j)in R,j= bar(1,4),i=1,2t \in\left[t_{0}, b\right], u_{j} \in R, j=\overline{1,4}, i=1,2t[t0,b],ujR,j=1,4,i=1,2;
( H 4 ) φ C ( [ t 0 τ , t 0 ] , R ) , ψ C ( [ t 0 τ , t 0 ] , R ) ; H 4 φ C t 0 τ , t 0 , R , ψ C t 0 τ , t 0 , R ; (H_(4))varphi in C([t_(0)-tau,t_(0)],R),psi in C([t_(0)-tau,t_(0)],R);\left(\mathrm{H}_{4}\right) \varphi \in C\left(\left[t_{0}-\tau, t_{0}\right], \mathbb{R}\right), \psi \in C\left(\left[t_{0}-\tau, t_{0}\right], \mathbb{R}\right) ;(H4)φC([t0τ,t0],R),ψC([t0τ,t0],R);
In the above conditions, from the Theorem 1, in [4], we have that the problem (1.1)-(1.2) has a unique solution, ( x 1 ( t ) , x 2 ( t ) ) x 1 ( t ) , x 2 ( t ) (x_(1)(t),x_(2)(t))\left(x_{1}(t), x_{2}(t)\right)(x1(t),x2(t)).

2. Weakly Picard operators

In this paper we need some notions and results from the weakly Picard operator theory (for more details see I. A. Rus [9], [8], M. Şerban [14]).
Let ( X , d X , d X,dX, dX,d ) be a metric space and A : X X A : X X A:X rarr XA: X \rightarrow XA:XX an operator. We shall use the following notations:
F A := { x X A ( x ) = x } F A := { x X A ( x ) = x } F_(A):={x in X∣A(x)=x}F_{A}:=\{x \in X \mid A(x)=x\}FA:={xXA(x)=x} - the fixed point set of A A AAA;
I ( A ) := { Y P ( X ) A ( Y ) Y } I ( A ) := { Y P ( X ) A ( Y ) Y } I(A):={Y in P(X)∣A(Y)sub Y}I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}I(A):={YP(X)A(Y)Y} - the family of the nonempty invariant subset of A A AAA;
A n + 1 := A A n , A 0 = 1 X , A 1 = A , n N A n + 1 := A A n , A 0 = 1 X , A 1 = A , n N A^(n+1):=A@A^(n),A^(0)=1_(X),A^(1)=A,n inNA^{n+1}:=A \circ A^{n}, A^{0}=1_{X}, A^{1}=A, n \in \mathbb{N}An+1:=AAn,A0=1X,A1=A,nN - the iterant operators of A A AAA, where 1 X 1 X 1_(X)1_{X}1X is the identity operator;
P ( X ) := { Y X Y } P ( X ) := { Y X Y } P(X):={Y sub X∣Y!=O/}P(X):=\{Y \subset X \mid Y \neq \emptyset\}P(X):={YXY} - the set of the parts of X X XXX.
Definition 2.1. Let ( X , d X , d X,dX, dX,d ) be a metric space. An operator A : X X A : X X A:X rarr XA: X \rightarrow XA:XX is a Picard operator (PO) if there exists x X x X x^(**)in Xx^{*} \in XxX such that:
(i) F A = { x } F A = x F_(A)={x^(**)}F_{A}=\left\{x^{*}\right\}FA={x};
(ii) the sequence ( A n ( x 0 ) ) n N A n x 0 n N (A^(n)(x_(0)))_(n inN)\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}(An(x0))nN converges to x x x^(**)x^{*}x for all x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X.
Definition 2.2. Let ( X , d X , d X,dX, dX,d ) be a metric space. An operator A : X X A : X X A:X rarr XA: X \rightarrow XA:XX is a weakly Picard operator (WPO) if the sequence ( A n ( x ) ) n N A n ( x ) n N (A^(n)(x))_(n inN)\left(A^{n}(x)\right)_{n \in \mathbb{N}}(An(x))nN converges for all x X x X x in Xx \in XxX, and its limit ( which may depend on x x xxx ) is a fixed point of A A AAA.
Theorem 2.1. Let ( X , d X , d X,dX, dX,d ) be a metric space and A : X X A : X X A:X rarr XA: X \rightarrow XA:XX an operator. The operator A A AAA is WPO ( c c ccc-WPO) if and only if there exists a partition of X X XXX,
X = λ Λ X λ X = λ Λ X λ X=uu_(lambda in Lambda)X_(lambda)X=\cup_{\lambda \in \Lambda} X_{\lambda}X=λΛXλ
such that:
(a) X λ I ( A ) , λ Λ , I ( A ) X λ I ( A ) , λ Λ , I ( A ) X_(lambda)in I(A),lambda in Lambda,I(A)X_{\lambda} \in I(A), \lambda \in \Lambda, I(A)XλI(A),λΛ,I(A)-the family of nonempty invariant subsets of A A AAA;
(b) A | X λ : X λ X λ A X λ : X λ X λ A|_(X_(lambda)):X_(lambda)rarrX_(lambda)\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}A|Xλ:XλXλ is a Picard (c-Picard) operator for all λ Λ λ Λ lambda in Lambda\lambda \in \LambdaλΛ.
Theorem 2.2. (Fibre contraction principle). Let ( X , d X , d X,dX, dX,d ) and ( Y , ρ Y , ρ Y,rhoY, \rhoY,ρ ) be two metric spaces and A : X × X X × X , A = ( B , C ) , ( B : X X , C : X × Y Y ) A : X × X X × X , A = ( B , C ) , ( B : X X , C : X × Y Y ) A:X xx X rarr X xx X,A=(B,C),(B:X rarr X,C:X xx Y rarr Y)A: X \times X \rightarrow X \times X, A=(B, C),(B: X \rightarrow X, C: X \times Y \rightarrow Y)A:X×XX×X,A=(B,C),(B:XX,C:X×YY) a triangular operator. We suppose that
(i) ( Y , ρ ) ( Y , ρ ) (Y,rho)(Y, \rho)(Y,ρ) is a complete metric space;
(ii) the operator B B BBB is P O P O POP OPO;
(iii) there exists L [ 0 , 1 ) L [ 0 , 1 ) L in[0,1)L \in[0,1)L[0,1) such that C ( x , ) : Y Y C ( x , ) : Y Y C(x,*):Y rarr YC(x, \cdot): Y \rightarrow YC(x,):YY is a L L LLL-contraction, for all x X x X x in Xx \in XxX;
(iv) if ( x , y ) F A x , y F A (x^(**),y^(**))inF_(A)\left(x^{*}, y^{*}\right) \in F_{A}(x,y)FA, then C ( , y ) C , y C(*,y^(**))C\left(\cdot, y^{*}\right)C(,y) is continuous in x x x^(**)x^{*}x.
Then the operator A A AAA is P O P O POP OPO.

3. Main Result

Now we prove that
x i ( t , ) C 1 ( J ) , for all t [ t 0 τ , b ] , i = 1 , 2 . x i ( t , ) C 1 ( J ) ,  for all  t t 0 τ , b , i = 1 , 2 . x_(i)(t,*)inC^(1)(J)," for all "t in[t_(0)-tau,b],i=1,2.x_{i}(t, \cdot) \in C^{1}(J), \text { for all } t \in\left[t_{0}-\tau, b\right], i=1,2 .xi(t,)C1(J), for all t[t0τ,b],i=1,2.
For this we consider the system
(3.3) x i ( t ) = f i ( t , x 1 ( t ) , x 2 ( t ) , x 1 ( t τ 1 ) , x 2 ( t τ 2 ) ) , i = 1 , 2 (3.3) x i ( t ) = f i t , x 1 ( t ) , x 2 ( t ) , x 1 t τ 1 , x 2 t τ 2 , i = 1 , 2 {:(3.3)x_(i)^(')(t)=f_(i)(t,x_(1)(t),x_(2)(t),x_(1)(t-tau_(1)),x_(2)(t-tau_(2)))","i=1","2:}\begin{equation*} x_{i}^{\prime}(t)=f_{i}\left(t, x_{1}(t), x_{2}(t), x_{1}\left(t-\tau_{1}\right), x_{2}\left(t-\tau_{2}\right)\right), i=1,2 \tag{3.3} \end{equation*}(3.3)xi(t)=fi(t,x1(t),x2(t),x1(tτ1),x2(tτ2)),i=1,2
where t [ t 0 , b ] , x 1 C [ t 0 τ 1 , b ] C 1 [ t 0 , b ] , x 2 C [ t 0 τ 2 , b ] C 1 [ t 0 , b ] t t 0 , b , x 1 C t 0 τ 1 , b C 1 t 0 , b , x 2 C t 0 τ 2 , b C 1 t 0 , b t in[t_(0),b],x_(1)in C[t_(0)-tau_(1),b]nnC^(1)[t_(0),b],x_(2)in C[t_(0)-tau_(2),b]nnC^(1)[t_(0),b]t \in\left[t_{0}, b\right], x_{1} \in C\left[t_{0}-\tau_{1}, b\right] \cap C^{1}\left[t_{0}, b\right], x_{2} \in C\left[t_{0}-\tau_{2}, b\right] \cap C^{1}\left[t_{0}, b\right]t[t0,b],x1C[t0τ1,b]C1[t0,b],x2C[t0τ2,b]C1[t0,b].
From the above considerations, we can formulate the following theorem
Theorem 3.3. Consider the problem (3.3)-(1.2), in the conditions ( H 1 ) ( H 4 ) H 1 H 4 (H_(1))-(H_(4))\left(H_{1}\right)-\left(H_{4}\right)(H1)(H4). Then the problem (3.3)-(1.2) has a unique solution ( x 1 , x 2 ) , x 1 C [ t 0 τ 1 , b ] C 1 [ t 0 , b ] , x 2 C [ t 0 τ 2 , b ] C 1 [ t 0 , b ] x 1 , x 2 , x 1 C t 0 τ 1 , b C 1 t 0 , b , x 2 C t 0 τ 2 , b C 1 t 0 , b (x_(1)^(**),x_(2)^(**)),x_(1)^(**)in C[t_(0)-tau_(1),b]nnC^(1)[t_(0),b],x_(2)^(**)in C[t_(0)-tau_(2),b]nnC^(1)[t_(0),b]\left(x_{1}^{*}, x_{2}^{*}\right), x_{1}^{*} \in C\left[t_{0}-\tau_{1}, b\right] \cap C^{1}\left[t_{0}, b\right], x_{2}^{*} \in C\left[t_{0}-\tau_{2}, b\right] \cap C^{1}\left[t_{0}, b\right](x1,x2),x1C[t0τ1,b]C1[t0,b],x2C[t0τ2,b]C1[t0,b] and the solution is differentiable on τ 1 τ 1 tau_(1)\tau_{1}τ1 and τ 2 τ 2 tau_(2)\tau_{2}τ2.
Proof. In what follows we consider the following integral equations:
x 1 ( t , τ 1 , τ 2 ) = = { φ ( t ) , t [ t 0 τ 1 , t 0 ] φ ( t 0 ) + t 0 t f 1 ( s , x 1 ( s , τ 1 , τ 2 ) , x 2 ( s , τ 1 , τ 2 ) , x 1 ( s τ 1 , τ 1 , τ 2 ) , x 2 ( s τ 2 , τ 1 , τ 2 ) ) d s , t [ t 0 , b ] x 2 ( t , τ 1 , τ 2 ) = (3.4) = { ψ ( t ) , t [ t 0 τ 2 , t 0 ] ψ ( t 0 ) + t 0 t f 2 ( s , x 1 ( s , τ 1 , τ 2 ) , x 2 ( s , τ 1 , τ 2 ) , x 1 ( s τ 1 , τ 1 , τ 2 ) , x 2 ( s τ 2 , τ 1 , τ 2 ) ) d s , t [ t 0 , b ] x 1 t , τ 1 , τ 2 = = φ ( t ) , t t 0 τ 1 , t 0 φ t 0 + t 0 t f 1 s , x 1 s , τ 1 , τ 2 , x 2 s , τ 1 , τ 2 , x 1 s τ 1 , τ 1 , τ 2 , x 2 s τ 2 , τ 1 , τ 2 d s , t t 0 , b x 2 t , τ 1 , τ 2 = (3.4) = ψ ( t ) , t t 0 τ 2 , t 0 ψ t 0 + t 0 t f 2 s , x 1 s , τ 1 , τ 2 , x 2 s , τ 1 , τ 2 , x 1 s τ 1 , τ 1 , τ 2 , x 2 s τ 2 , τ 1 , τ 2 d s , t t 0 , b {:[x_(1)(t,tau_(1),tau_(2))=],[={[varphi(t)","t in[t_(0)-tau_(1),t_(0)]],[varphi(t_(0))+int_(t_(0))^(t)f_(1)(s,x_(1)(s,tau_(1),tau_(2)),x_(2)(s,tau_(1),tau_(2)),x_(1)(s-tau_(1),tau_(1),tau_(2)),x_(2)(s-tau_(2),tau_(1),tau_(2)))ds","t in[t_(0),b]]:}],[x_(2)(t,tau_(1),tau_(2))=],[(3.4)={[psi(t)","t in[t_(0)-tau_(2),t_(0)]],[psi(t_(0))+int_(t_(0))^(t)f_(2)(s,x_(1)(s,tau_(1),tau_(2)),x_(2)(s,tau_(1),tau_(2)),x_(1)(s-tau_(1),tau_(1),tau_(2)),x_(2)(s-tau_(2),tau_(1),tau_(2)))ds","t in[t_(0),b]]:}]:}\begin{align*} & x_{1}\left(t, \tau_{1}, \tau_{2}\right)= \\ & =\left\{\begin{array}{l} \varphi(t), t \in\left[t_{0}-\tau_{1}, t_{0}\right] \\ \varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{1}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right), x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right] \end{array}\right. \\ & x_{2}\left(t, \tau_{1}, \tau_{2}\right)= \\ & =\left\{\begin{array}{l} \psi(t), t \in\left[t_{0}-\tau_{2}, t_{0}\right] \\ \psi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{2}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right), x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right] \end{array}\right. \tag{3.4} \end{align*}x1(t,τ1,τ2)=={φ(t),t[t0τ1,t0]φ(t0)+t0tf1(s,x1(s,τ1,τ2),x2(s,τ1,τ2),x1(sτ1,τ1,τ2),x2(sτ2,τ1,τ2))ds,t[t0,b]x2(t,τ1,τ2)=(3.4)={ψ(t),t[t0τ2,t0]ψ(t0)+t0tf2(s,x1(s,τ1,τ2),x2(s,τ1,τ2),x1(sτ1,τ1,τ2),x2(sτ2,τ1,τ2))ds,t[t0,b]
Now, let take the operator
A f : C [ t 0 τ 1 , b ] × C [ t 0 τ 2 , b ] C [ t 0 τ 1 , b ] × C [ t 0 τ 2 , b ] A f : C t 0 τ 1 , b × C t 0 τ 2 , b C t 0 τ 1 , b × C t 0 τ 2 , b A_(f):C[t_(0)-tau_(1),b]xx C[t_(0)-tau_(2),b]rarr C[t_(0)-tau_(1),b]xx C[t_(0)-tau_(2),b]A_{f}: C\left[t_{0}-\tau_{1}, b\right] \times C\left[t_{0}-\tau_{2}, b\right] \rightarrow C\left[t_{0}-\tau_{1}, b\right] \times C\left[t_{0}-\tau_{2}, b\right]Af:C[t0τ1,b]×C[t0τ2,b]C[t0τ1,b]×C[t0τ2,b]
given by the relation
A f ( x 1 , x 2 ) = ( A f 1 ( x 1 , x 2 ) , A f 2 ( x 1 , x 2 ) ) A f x 1 , x 2 = A f 1 x 1 , x 2 , A f 2 x 1 , x 2 A_(f)(x_(1),x_(2))=(A_(f_(1))(x_(1),x_(2)),A_(f_(2))(x_(1),x_(2)))A_{f}\left(x_{1}, x_{2}\right)=\left(A_{f_{1}}\left(x_{1}, x_{2}\right), A_{f_{2}}\left(x_{1}, x_{2}\right)\right)Af(x1,x2)=(Af1(x1,x2),Af2(x1,x2))
where
A f 1 ( x 1 , x 2 ) ( t , τ 1 , τ 2 ) = { φ ( t ) , t [ t 0 τ 1 , t 0 ] φ ( t 0 ) + t 0 t f 1 ( s , x 1 ( s , τ 1 , τ 2 ) , x 2 ( s , τ 1 , τ 2 ) x 1 ( s τ 1 , τ 1 , τ 2 ) , x 2 ( s τ 2 , τ 1 , τ 2 ) ) d s , t [ t 0 , b ] A f 2 ( x 1 , x 2 ) ( t , τ 1 , τ 2 ) = { ψ ( t ) , t [ t 0 τ 2 , t 0 ] ψ ( t 0 ) + t 0 t f 2 ( s , x 1 ( s , τ 1 , τ 2 ) , x 2 ( s , τ 1 , τ 2 ) x 1 ( s τ 1 , τ 1 , τ 2 ) , x 2 ( s τ 2 , τ 1 , τ 2 ) ) d s , t [ t 0 , b ] A f 1 x 1 , x 2 t , τ 1 , τ 2 = φ ( t ) , t t 0 τ 1 , t 0 φ t 0 + t 0 t f 1 s , x 1 s , τ 1 , τ 2 , x 2 s , τ 1 , τ 2 x 1 s τ 1 , τ 1 , τ 2 , x 2 s τ 2 , τ 1 , τ 2 d s , t t 0 , b A f 2 x 1 , x 2 t , τ 1 , τ 2 = ψ ( t ) , t t 0 τ 2 , t 0 ψ t 0 + t 0 t f 2 s , x 1 s , τ 1 , τ 2 , x 2 s , τ 1 , τ 2 x 1 s τ 1 , τ 1 , τ 2 , x 2 s τ 2 , τ 1 , τ 2 d s , t t 0 , b {:[A_(f_(1))(x_(1),x_(2))(t,tau_(1),tau_(2))={[varphi(t)","t in[t_(0)-tau_(1),t_(0)]],[varphi(t_(0))+int_(t_(0))^(t)f_(1)(s,x_(1)(s,tau_(1),tau_(2)),x_(2)(s,tau_(1),tau_(2)):}],[{:x_(1)(s-tau_(1),tau_(1),tau_(2)),x_(2)(s-tau_(2),tau_(1),tau_(2)))ds","t in[t_(0),b]]:}],[A_(f_(2))(x_(1),x_(2))(t,tau_(1),tau_(2))={[psi(t)","t in[t_(0)-tau_(2),t_(0)]],[psi(t_(0))+int_(t_(0))^(t)f_(2)(s,x_(1)(s,tau_(1),tau_(2)),x_(2)(s,tau_(1),tau_(2)):}],[{:x_(1)(s-tau_(1),tau_(1),tau_(2)),x_(2)(s-tau_(2),tau_(1),tau_(2)))ds","t in[t_(0),b]]:}]:}\begin{aligned} & A_{f_{1}}\left(x_{1}, x_{2}\right)\left(t, \tau_{1}, \tau_{2}\right)=\left\{\begin{array}{l} \varphi(t), t \in\left[t_{0}-\tau_{1}, t_{0}\right] \\ \varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{1}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right)\right. \\ \left.x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right] \end{array}\right. \\ & A_{f_{2}}\left(x_{1}, x_{2}\right)\left(t, \tau_{1}, \tau_{2}\right)=\left\{\begin{array}{l} \psi(t), t \in\left[t_{0}-\tau_{2}, t_{0}\right] \\ \psi\left(t_{0}\right)+\int_{t_{0}}^{t} f_{2}\left(s, x_{1}\left(s, \tau_{1}, \tau_{2}\right), x_{2}\left(s, \tau_{1}, \tau_{2}\right)\right. \\ \left.x_{1}\left(s-\tau_{1}, \tau_{1}, \tau_{2}\right), x_{2}\left(s-\tau_{2}, \tau_{1}, \tau_{2}\right)\right) d s, t \in\left[t_{0}, b\right] \end{array}\right. \end{aligned}Af1(x1,x2)(t,τ1,τ2)={φ(t),t[t0τ1,t0]φ(t0)+t0tf1(s,x1(s,τ1,τ2),x2(s,τ1,τ2)x1(sτ1,τ1,τ2),x2(sτ2,τ1,τ2))ds,t[t0,b]Af2(x1,x2)(t,τ1,τ2)={ψ(t),t[t0τ2,t0]ψ(t0)+t0tf2(s,x1(s,τ1,τ2),x2(s,τ1,τ2)x1(sτ1,τ1,τ2),x2(sτ2,τ1,τ2))ds,t[t0,b]
Let X := C [ t 0 τ 1 , b ] × C [ t 0 τ 2 , b ] X := C t 0 τ 1 , b × C t 0 τ 2 , b X:=C[t_(0)-tau_(1),b]xx C[t_(0)-tau_(2),b]X:=C\left[t_{0}-\tau_{1}, b\right] \times C\left[t_{0}-\tau_{2}, b\right]X:=C[t0τ1,b]×C[t0τ2,b] and C C ||*||_(C)\|\cdot\|_{C}C, the Chebyshev norm on X X XXX. It is clear, from the proof of the Theorem 1 ([4]), that in the conditions ( H 1 ) ( H 4 ) H 1 H 4 (H_(1))-(H_(4))\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)(H1)(H4), the operator A f A f A_(f)A_{f}Af is a Picard operator.
Let ( x 1 , x 2 x 1 , x 2 x_(1)^(**),x_(2)^(**)x_{1}^{*}, x_{2}^{*}x1,x2 ) the only fixed point of A f A f A_(f)A_{f}Af.
We consider the subset X 1 X X 1 X X_(1)sub XX_{1} \subset XX1X,
X 1 = { ( x 1 , x 2 ) X | x i t C [ t 0 τ , b ] , i = 1 , 2 } X 1 = x 1 , x 2 X x i t C t 0 τ , b , i = 1 , 2 X_(1)={(x_(1),x_(2))in X|(delx_(i))/(del t)in C[t_(0)-tau,b],i=1,2}X_{1}=\left\{\left(x_{1}, x_{2}\right) \in X \left\lvert\, \frac{\partial x_{i}}{\partial t} \in C\left[t_{0}-\tau, b\right]\right., i=1,2\right\}X1={(x1,x2)X|xitC[t0τ,b],i=1,2}
We remark that ( x 1 , x 2 ) X 1 , A ( X 1 ) X 1 , A : ( X 1 , C ) ( X 1 , C ) x 1 , x 2 X 1 , A X 1 X 1 , A : X 1 , C X 1 , C (x_(1)^(**),x_(2)^(**))inX_(1),A(X_(1))subX_(1),A:(X_(1),||*||_(C))rarr(X_(1),||*||_(C))\left(x_{1}^{*}, x_{2}^{*}\right) \in X_{1}, A\left(X_{1}\right) \subset X_{1}, A:\left(X_{1},\|\cdot\|_{C}\right) \rightarrow\left(X_{1},\|\cdot\|_{C}\right)(x1,x2)X1,A(X1)X1,A:(X1,C)(X1,C) is PO.
We suppose that there exists x i τ 1 , x i τ 2 , i = 1 , 2 x i τ 1 , x i τ 2 , i = 1 , 2 (delx_(i)^(**))/(deltau_(1)),(delx_(i)^(**))/(deltau_(2)),i=1,2\frac{\partial x_{i}^{*}}{\partial \tau_{1}}, \frac{\partial x_{i}^{*}}{\partial \tau_{2}}, i=1,2xiτ1,xiτ2,i=1,2.
Then, from (3.4) we have that:
x i ( t , τ 1 ) τ 1 = = t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 1 x 1 ( s , τ 1 ) τ 1 d s + + t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 2 x 2 ( s , τ 1 ) τ 1 d s + + t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 3 + [ x 1 ( s τ 1 , τ 1 ) t ( 1 ) + x 1 ( s τ 1 , τ 1 ) τ 1 ] d s + + t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 4 x 2 ( s τ 2 , τ 1 ) τ 1 d s x i t , τ 1 τ 1 = = t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 1 x 1 s , τ 1 τ 1 d s + + t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 2 x 2 s , τ 1 τ 1 d s + + t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 3 + x 1 s τ 1 , τ 1 t ( 1 ) + x 1 s τ 1 , τ 1 τ 1 d s + + t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 4 x 2 s τ 2 , τ 1 τ 1 d s {:[(delx_(i)^(**)(t,tau_(1)))/(deltau_(1))=],[=int_(t_(0))^(t)(delf_(i)(s,x_(1)^(**)(s,tau_(1)),x_(2)^(**)(s,tau_(1)),x_(1)^(**)(s-tau_(1),tau_(1)),x_(2)^(**)(s-tau_(2),tau_(1))))/(delu_(1))*(delx_(1)^(**)(s,tau_(1)))/(deltau_(1))ds+],[+int_(t_(0))^(t)(delf_(i)(s,x_(1)^(**)(s,tau_(1)),x_(2)^(**)(s,tau_(1)),x_(1)^(**)(s-tau_(1),tau_(1)),x_(2)^(**)(s-tau_(2),tau_(1))))/(delu_(2))*(delx_(2)^(**)(s,tau_(1)))/(deltau_(1))ds+],[+int_(t_(0))^(t)(delf_(i)(s,x_(1)^(**)(s,tau_(1)),x_(2)^(**)(s,tau_(1)),x_(1)^(**)(s-tau_(1),tau_(1)),x_(2)^(**)(s-tau_(2),tau_(1))))/(delu_(3))],[+[(delx_(1)^(**)(s-tau_(1),tau_(1)))/(del t)(-1)+(delx_(1)^(**)(s-tau_(1),tau_(1)))/(deltau_(1))]ds+],[+int_(t_(0))^(t)(delf_(i)(s,x_(1)^(**)(s,tau_(1)),x_(2)^(**)(s,tau_(1)),x_(1)^(**)(s-tau_(1),tau_(1)),x_(2)^(**)(s-tau_(2),tau_(1))))/(delu_(4))*(delx_(2)^(**)(s-tau_(2),tau_(1)))/(deltau_(1))ds]:}\begin{aligned} & \frac{\partial x_{i}^{*}\left(t, \tau_{1}\right)}{\partial \tau_{1}}= \\ & =\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{1}} \cdot \frac{\partial x_{1}^{*}\left(s, \tau_{1}\right)}{\partial \tau_{1}} d s+ \\ & +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{2}} \cdot \frac{\partial x_{2}^{*}\left(s, \tau_{1}\right)}{\partial \tau_{1}} d s+ \\ & +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{3}} \\ & +\left[\frac{\partial x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right)}{\partial t}(-1)+\frac{\partial x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right)}{\partial \tau_{1}}\right] d s+ \\ & +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}^{*}\left(s, \tau_{1}\right), x_{2}^{*}\left(s, \tau_{1}\right), x_{1}^{*}\left(s-\tau_{1}, \tau_{1}\right), x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{4}} \cdot \frac{\partial x_{2}^{*}\left(s-\tau_{2}, \tau_{1}\right)}{\partial \tau_{1}} d s \end{aligned}xi(t,τ1)τ1==t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u1x1(s,τ1)τ1ds++t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u2x2(s,τ1)τ1ds++t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u3+[x1(sτ1,τ1)t(1)+x1(sτ1,τ1)τ1]ds++t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u4x2(sτ2,τ1)τ1ds
where t [ t 0 , b ] , i = 1 , 2 t t 0 , b , i = 1 , 2 t in[t_(0),b],i=1,2t \in\left[t_{0}, b\right], i=1,2t[t0,b],i=1,2.
This relation suggests us to consider the following operator
C f : X × X X C f : X × X X C_(f):X xx X rarr XC_{f}: X \times X \rightarrow XCf:X×XX
where
C f ( x 1 , x 2 , u , v ) ( t , τ 1 ) = 0 , for all t [ t 0 τ 2 , t 0 ] C f ( x 1 , x 2 , u , v ) ( t , τ 1 ) = 0 , for all t [ t 0 τ 1 , t 0 ] C f x 1 , x 2 , u , v t , τ 1 = 0 ,  for all  t t 0 τ 2 , t 0 C f x 1 , x 2 , u , v t , τ 1 = 0 ,  for all  t t 0 τ 1 , t 0 {:[C_(f)(x_(1),x_(2),u,v)(t,tau_(1))=0","" for all "t in[t_(0)-tau_(2),t_(0)]],[C_(f)(x_(1),x_(2),u,v)(t,tau_(1))=0","" for all "t in[t_(0)-tau_(1),t_(0)]]:}\begin{aligned} & C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right)=0, \text { for all } t \in\left[t_{0}-\tau_{2}, t_{0}\right] \\ & C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right)=0, \text { for all } t \in\left[t_{0}-\tau_{1}, t_{0}\right] \end{aligned}Cf(x1,x2,u,v)(t,τ1)=0, for all t[t0τ2,t0]Cf(x1,x2,u,v)(t,τ1)=0, for all t[t0τ1,t0]
and
C f ( x 1 , x 2 , u , v ) ( t , τ 1 ) := = t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 1 u ( s , τ 1 ) d s + + t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 2 v ( s , τ 1 ) d s + + t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 3 [ u ¯ ( s τ 1 , τ 1 ) ( 1 ) u ( s τ 1 , τ 1 ) ] d s + + t 0 t f i ( s , x 1 ( s , τ 1 ) , x 2 ( s , τ 1 ) , x 1 ( s τ 1 , τ 1 ) , x 2 ( s τ 2 , τ 1 ) ) u 4 v ( s τ 2 , τ 1 ) d s C f x 1 , x 2 , u , v t , τ 1 := = t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 1 u s , τ 1 d s + + t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 2 v s , τ 1 d s + + t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 3 u ¯ s τ 1 , τ 1 ( 1 ) u s τ 1 , τ 1 d s + + t 0 t f i s , x 1 s , τ 1 , x 2 s , τ 1 , x 1 s τ 1 , τ 1 , x 2 s τ 2 , τ 1 u 4 v s τ 2 , τ 1 d s {:[C_(f)(x_(1),x_(2),u,v)(t,tau_(1)):=],[=int_(t_(0))^(t)(delf_(i)(s,x_(1)(s,tau_(1)),x_(2)(s,tau_(1)),x_(1)(s-tau_(1),tau_(1)),x_(2)(s-tau_(2),tau_(1))))/(delu_(1))u(s,tau_(1))ds+],[+int_(t_(0))^(t)(delf_(i)(s,x_(1)(s,tau_(1)),x_(2)(s,tau_(1)),x_(1)(s-tau_(1),tau_(1)),x_(2)(s-tau_(2),tau_(1))))/(delu_(2))v(s,tau_(1))ds+],[+int_(t_(0))^(t)(delf_(i)(s,x_(1)(s,tau_(1)),x_(2)(s,tau_(1)),x_(1)(s-tau_(1),tau_(1)),x_(2)(s-tau_(2),tau_(1))))/(delu_(3))],[*[( bar(u))(s-tau_(1),tau_(1))*(-1)-u(s-tau_(1),tau_(1))]ds+],[+int_(t_(0))^(t)(delf_(i)(s,x_(1)(s,tau_(1)),x_(2)(s,tau_(1)),x_(1)(s-tau_(1),tau_(1)),x_(2)(s-tau_(2),tau_(1))))/(delu_(4))v(s-tau_(2),tau_(1))ds]:}\begin{aligned} & C_{f}\left(x_{1}, x_{2}, u, v\right)\left(t, \tau_{1}\right):= \\ & =\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{1}} u\left(s, \tau_{1}\right) d s+ \\ & +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{2}} v\left(s, \tau_{1}\right) d s+ \\ & +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{3}} \\ & \cdot\left[\bar{u}\left(s-\tau_{1}, \tau_{1}\right) \cdot(-1)-u\left(s-\tau_{1}, \tau_{1}\right)\right] d s+ \\ & +\int_{t_{0}}^{t} \frac{\partial f_{i}\left(s, x_{1}\left(s, \tau_{1}\right), x_{2}\left(s, \tau_{1}\right), x_{1}\left(s-\tau_{1}, \tau_{1}\right), x_{2}\left(s-\tau_{2}, \tau_{1}\right)\right)}{\partial u_{4}} v\left(s-\tau_{2}, \tau_{1}\right) d s \end{aligned}Cf(x1,x2,u,v)(t,τ1):==t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u1u(s,τ1)ds++t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u2v(s,τ1)ds++t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u3[u¯(sτ1,τ1)(1)u(sτ1,τ1)]ds++t0tfi(s,x1(s,τ1),x2(s,τ1),x1(sτ1,τ1),x2(sτ2,τ1))u4v(sτ2,τ1)ds
for all t [ t 0 , b ] t t 0 , b t in[t_(0),b]t \in\left[t_{0}, b\right]t[t0,b].
We denoted here
u ( t ) = x 1 ( t ) τ 1 , v ( t ) = x 2 ( t ) τ 1 , u ¯ ( t τ 1 ) = x 1 ( t τ 1 ) t , u ( t τ 1 ) = x 1 ( t τ 1 ) τ 1 , v ( t τ 2 ) = x 2 ( t τ 2 ) τ 1 . u ( t ) = x 1 ( t ) τ 1 , v ( t ) = x 2 ( t ) τ 1 , u ¯ t τ 1 = x 1 t τ 1 t , u t τ 1 = x 1 t τ 1 τ 1 , v t τ 2 = x 2 t τ 2 τ 1 . {:[u(t)=(delx_(1)(t))/(deltau_(1))","v(t)=(delx_(2)(t))/(deltau_(1))"," bar(u)(t-tau_(1))=(delx_(1)(t-tau_(1)))/(del t)","],[u(t-tau_(1))=(delx_(1)(t-tau_(1)))/(deltau_(1))","v(t-tau_(2))=(delx_(2)(t-tau_(2)))/(deltau_(1)).]:}\begin{aligned} u(t) & =\frac{\partial x_{1}(t)}{\partial \tau_{1}}, v(t)=\frac{\partial x_{2}(t)}{\partial \tau_{1}}, \bar{u}\left(t-\tau_{1}\right)=\frac{\partial x_{1}\left(t-\tau_{1}\right)}{\partial t}, \\ u\left(t-\tau_{1}\right) & =\frac{\partial x_{1}\left(t-\tau_{1}\right)}{\partial \tau_{1}}, v\left(t-\tau_{2}\right)=\frac{\partial x_{2}\left(t-\tau_{2}\right)}{\partial \tau_{1}} . \end{aligned}u(t)=x1(t)τ1,v(t)=x2(t)τ1,u¯(tτ1)=x1(tτ1)t,u(tτ1)=x1(tτ1)τ1,v(tτ2)=x2(tτ2)τ1.
In this way we have the triangular operator
D : X × X X × X ( x 1 , x 2 , u , v ) ( A f ( x 1 , x 2 ) , C f ( x 1 , x 2 , u , v ) ) D : X × X X × X x 1 , x 2 , u , v A f x 1 , x 2 , C f x 1 , x 2 , u , v {:[D:X xx X rarr X xx X],[(x_(1),x_(2),u,v) rarr(A_(f)(x_(1),x_(2)),C_(f)(x_(1),x_(2),u,v))]:}\begin{aligned} D & : X \times X \rightarrow X \times X \\ \left(x_{1}, x_{2}, u, v\right) & \rightarrow\left(A_{f}\left(x_{1}, x_{2}\right), C_{f}\left(x_{1}, x_{2}, u, v\right)\right) \end{aligned}D:X×XX×X(x1,x2,u,v)(Af(x1,x2),Cf(x1,x2,u,v))
where A f A f A_(f)A_{f}Af is a Picard operator and C f ( x 1 , x 2 , , ) : X X C f x 1 , x 2 , , : X X C_(f)(x_(1),x_(2),*,*):X rarr XC_{f}\left(x_{1}, x_{2}, \cdot, \cdot\right): X \rightarrow XCf(x1,x2,,):XX is an L L LLL-contraction, with L = 4 L f ρ L = 4 L f ρ L=(4L_(f))/(rho)L=\frac{4 L_{f}}{\rho}L=4Lfρ, where ρ ρ rho\rhoρ is the Bielecki constant we use in [4].
From the fibre contraction theorem we have that the operator D D DDD is Picard operator and F D = ( x 1 , x 2 , u , v ) F D = x 1 , x 2 , u , v F_(D)=(x_(1)^(**),x_(2)^(**),u^(**),v^(**))F_{D}=\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right)FD=(x1,x2,u,v).
Let ( x 1 , x 2 , u , v ) x 1 , x 2 , u , v (x_(1)^(**),x_(2)^(**),u^(**),v^(**))\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right)(x1,x2,u,v) the only fixed point of the operator D D DDD. Then the sequences
( x 1 , n + 1 , x 2 , n + 1 ) := A ( x 1 , n , x 2 , n ) , n N , ( u n + 1 , v n + 1 ) := C ( x 1 , n , x 2 , n , u n , v n ) , n N , x 1 , n + 1 , x 2 , n + 1 := A x 1 , n , x 2 , n , n N , u n + 1 , v n + 1 := C x 1 , n , x 2 , n , u n , v n , n N , {:[(x_(1,n+1),x_(2,n+1)):=A(x_(1,n),x_(2,n))","n inN","],[(u_(n+1),v_(n+1)):=C(x_(1,n),x_(2,n),u_(n),v_(n))","n inN","]:}\begin{aligned} & \left(x_{1, n+1}, x_{2, n+1}\right):=A\left(x_{1, n}, x_{2, n}\right), n \in \mathbb{N}, \\ & \left(u_{n+1}, v_{n+1}\right):=C\left(x_{1, n}, x_{2, n}, u_{n}, v_{n}\right), n \in \mathbb{N}, \end{aligned}(x1,n+1,x2,n+1):=A(x1,n,x2,n),nN,(un+1,vn+1):=C(x1,n,x2,n,un,vn),nN,
converge uniformly (with respect to t X t X t in Xt \in XtX ) to ( x 1 , x 2 , u , v ) F D x 1 , x 2 , u , v F D (x_(1)^(**),x_(2)^(**),u^(**),v^(**))inF_(D)\left(x_{1}^{*}, x_{2}^{*}, u^{*}, v^{*}\right) \in F_{D}(x1,x2,u,v)FD, for all x 1 , 0 , x 2 , 0 , u 0 , v 0 X x 1 , 0 , x 2 , 0 , u 0 , v 0 X x_(1,0),x_(2,0),u_(0),v_(0)in Xx_{1,0}, x_{2,0}, u_{0}, v_{0} \in Xx1,0,x2,0,u0,v0X.
If we take
x 1 , 0 = 0 , x 2 , 0 = 0 u 0 = x 1 , 0 τ 1 = 0 , v 0 = x 2 , 0 τ 1 = 0 , x 1 , 0 = 0 , x 2 , 0 = 0 u 0 = x 1 , 0 τ 1 = 0 , v 0 = x 2 , 0 τ 1 = 0 , {:[x_(1,0)=0","x_(2,0)=0],[u_(0)=(delx_(1,0))/(deltau_(1))=0","v_(0)=(delx_(2,0))/(deltau_(1))=0","]:}\begin{aligned} x_{1,0} & =0, x_{2,0}=0 \\ u_{0} & =\frac{\partial x_{1,0}}{\partial \tau_{1}}=0, v_{0}=\frac{\partial x_{2,0}}{\partial \tau_{1}}=0, \end{aligned}x1,0=0,x2,0=0u0=x1,0τ1=0,v0=x2,0τ1=0,
then
u 1 = x 1 , 1 τ 1 v 1 = x 2 , 1 τ 1 u 1 = x 1 , 1 τ 1 v 1 = x 2 , 1 τ 1 {:[u_(1)=(delx_(1,1))/(deltau_(1))],[v_(1)=(delx_(2,1))/(deltau_(1))]:}\begin{aligned} u_{1} & =\frac{\partial x_{1,1}}{\partial \tau_{1}} \\ v_{1} & =\frac{\partial x_{2,1}}{\partial \tau_{1}} \end{aligned}u1=x1,1τ1v1=x2,1τ1
By induction, we obtain that
u n = x 1 , n τ 1 , n N , v n = x 2 , n τ 1 , n N . u n = x 1 , n τ 1 , n N , v n = x 2 , n τ 1 , n N . {:[u_(n)=(delx_(1,n))/(deltau_(1))","AA n inN","],[v_(n)=(delx_(2,n))/(deltau_(1))","AA n inN.]:}\begin{aligned} u_{n} & =\frac{\partial x_{1, n}}{\partial \tau_{1}}, \forall n \in \mathbb{N}, \\ v_{n} & =\frac{\partial x_{2, n}}{\partial \tau_{1}}, \forall n \in \mathbb{N} . \end{aligned}un=x1,nτ1,nN,vn=x2,nτ1,nN.
So
x 1 , n unif x 1 as n , x 2 , n unif x 2 as n , x 1 , n τ 1 unif u as n , x 2 , n τ 1 unif v as n . x 1 , n  unif  x 1  as  n , x 2 , n  unif  x 2  as  n , x 1 , n τ 1  unif  u  as  n , x 2 , n τ 1  unif  v  as  n . {:[x_(1,n)rarr"" unif ""x_(1)^(**)" as "n rarr oo","],[x_(2,n)rarr"" unif ""x_(2)^(**)" as "n rarr oo","],[(delx_(1,n))/(deltau_(1))rarr"" unif ""u^(**)" as "n rarr oo","],[(delx_(2,n))/(deltau_(1))rarr"" unif ""v^(**)" as "n rarr oo.]:}\begin{gathered} x_{1, n} \xrightarrow{\text { unif }} x_{1}^{*} \text { as } n \rightarrow \infty, \\ x_{2, n} \xrightarrow{\text { unif }} x_{2}^{*} \text { as } n \rightarrow \infty, \\ \frac{\partial x_{1, n}}{\partial \tau_{1}} \xrightarrow{\text { unif }} u^{*} \text { as } n \rightarrow \infty, \\ \frac{\partial x_{2, n}}{\partial \tau_{1}} \xrightarrow{\text { unif }} v^{*} \text { as } n \rightarrow \infty . \end{gathered}x1,n unif x1 as n,x2,n unif x2 as n,x1,nτ1 unif u as n,x2,nτ1 unif v as n.
From the above consideration we have that there exist x i τ 1 , i = 1 , 2 x i τ 1 , i = 1 , 2 (delx_(i)^(**))/(deltau_(1)),i=1,2\frac{\partial x_{i}^{*}}{\partial \tau_{1}}, i=1,2xiτ1,i=1,2 and
x 1 τ 1 = u , x 2 τ 1 = v x 1 τ 1 = u , x 2 τ 1 = v (delx_(1)^(**))/(deltau_(1))=u^(**),quad(delx_(2)^(**))/(deltau_(1))=v^(**)\frac{\partial x_{1}^{*}}{\partial \tau_{1}}=u^{*}, \quad \frac{\partial x_{2}^{*}}{\partial \tau_{1}}=v^{*}x1τ1=u,x2τ1=v
Analogously we can prove the differentiability with respect to τ 2 τ 2 tau_(2)\tau_{2}τ2.

References

[1] Berinde V., Generalized Contractions and Applications (in Romanian), Ph. D. Thesis, Univ. "BabeşBolyai" Cluj-Napoca, 1993.
[2] Buică A., Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory, Cluj-Napoca, 1995, 1-14.
[3] Mureşan V., Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.
[4] Otrocol D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), No. 1 (2006), 61-68.
[5] Otrocol D., Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear Analysis Forum, 10 (2) (2005), 193-199.
[6] Rus I. A., Principles and applications of the fixed point theory (in Romanian), Editura Dacia, ClujNapoca, 1979.
[7] Rus I. A., Generalized contractions, Seminar on Fixed Point Theory, "Babeş-Bolyai" University, 1983, pp. 1-130.
[8] Rus I. A., Weakly Picard mappings, Comment. Math. Univ. Caroline, 34 (1993), 769-773.
[9] Rus I. A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar of Fixed Point Theory, Cluj-Napoca, Vol. 3, 2002, 335-346.
[10] Rus I. A., Generalized Contractions and Applications, Cluj University Press, 2001.
[11] Rus I. A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, Vol. 2 (2001), 41-58.
[12] Rus I. A. and Egri E., Boundary value problems for iterative functional-differential equations, Studia Univ. "Babeş-Bolyai", Matematica, Vol. LI, No. 2, 2006, pp. 109-126.
[13] Saito Y., Hara T. and Ma W., Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236 (1999), 534-556.
[14] Şerban M. A., Fiber φ φ varphi\varphiφ-contractions, Studia Univ. "Babeş-Bolyai", Mathematica, 44 (1999), No. 3, 99-108.
"Tiberiu Popoviciu" Institute of Numerical Analysis
P.O. Box 68-1
400110 Cluj-Napoca, Romania
E-mail address: dotrocol@ictp.acad.ro
E-mail address: diana.otrocol@gmail.com

  1. Received: 20.09.2006. In revised form: 20.02.2007.
    2000 Mathematics Subject Classification. 34L05, 47H10.
    Key words and phrases. Lotka-Volterra system, weakly Picard operator, delay, differentiability.
    • This work has been supported by MEdc under Grant 2-CEx06-11-96.
2007

Related Posts