## Abstract

Let \(a<c<b)\) real numbers, \((\mathbb{B},|\cdot|)\) a (real or complex) Banach space, \(H\in C([a,b]\times [a,c]\times\mathbb{B},\mathbb{B})\), \(K\in C([a,b]^{2}\times\mathbb{B},\mathbb{B})\), \(g\in C([a,b]),\mathbb{B}

,A:C([a,c],\mathbb{B})\rightarrow C([a,c],\mathbb{B})\) and \(B:C([a,b],\mathbb{B})\rightarrow C([a,b],\mathbb{B})\).

In this paper we study the following functional integral equation,

\[

x (t) =\int_a^c H( t,s,A) ( x) ( s)) ds \int_a^t K (t,s,B) (x) (s))ds g(t), \quad t\in [a,b]

\]

By a new variant of fibre contraction principle (A. Petrusel, I.A. Rus, M.A. Serban, *Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations*, Fixed Point Theory, 22 (2021), no. 2, 795-808) we give existence, uniqueness and convergence of successive approximations results for this equation.

In the case of ordered Banach space \(\mathbb{B}\), Gronwall-type and comparison-type results are also given.

## Authors

Veronica **Ilea**

Babes-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania

Diana **Otrocol****
**Technical University of Cluj-Napoca, Cluj-Napoca, Romania,

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Ioan A. **Rus
**Babes-Bolyai University, Faculty of Mathematics and Computer Science,Cluj-Napoca, Romania

Marcel-Adrian **Serban
**Babes-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania

## Keywords

Functional integral equation, Volterra operator, Picard operator, fibre contraction principle, Gronwall lemma, comparison lemma.

## Paper coordinates

*Applications of fibre contraction principle to some classes of functional integral equations,*Fixed Point Theory, 23 (2022) no. 1, 279-292, http://doi.org/10.24193/fpt-ro.2022.1.18

## About this paper

##### Journal

Fixed Point Theory

##### Publisher Name

Casa Cărţii de Ştiinţă Cluj-Napoca

(House of the Book of Science Cluj-Napoca)

##### Print ISSN

1583-5022

##### Online ISSN

2066-9208

google scholar link

[1] S. Andras, Fibre ϕ−contraction on generalized metric spaces and applications, Mathematica, 45(68)(2003), no. 1, 3-8.

[2] C. Avramescu, C. Vladimirescu, Fixed points for some non-obviously contractive operators defined in a space of continuous functions, Electronic J. Qualit. Th. Diff, Eq., 2004, no. 3, 1-7.

[3] C. Bacotiu, Fibre Picard operators on generalized metric spaces, Sem. Fixed Point Theory Cluj-Napoca, 1(2000), 5-8.

[4] D.D. Bainov, S. Hristova, Differential Equations with Maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.

[5] O.-M. Bolojan, Fixed Point Methods for Nonlinear Differential Systems with Nonlocal Conditions, Casa C˘art¸ii de S¸tiint¸˘a, Cluj-Napoca, 2013.

[6] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.

[7] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publ. New York, 2006.

[8] T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(2019), no. 1, 107-112.

[9] C. Corduneanu, Abstract Volterra equations: a survey, Math. and Computer Model, 32(11-13)(2000), 1503-1528.

[10] E. Egri, On First and Second Order Iterative Functional Differential Equations and Systems, Presa Univ. Clujeana, Cluj-Napoca, 2008.

[11] W.M. Hirsch, C.C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math., 14(1970), 133-163.

[12] V. Ilea, D. Otrocol, On the Burton method of progressive contractions for Volterra integral equations, Fixed Point Theory, 21(2020), no. 2, 585-594.

[13] V. Ilea, D. Otrocol, Functional differential equations with maxima, via step by step contraction principle, Carpathian J. Math., 37(2021), no. 2, 195-202.

[14] V. Muresan, Functional Integral Equations, Mediamira, Cluj-Napoca, 2003.

[15] D. Otrocol, I.A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), no. 1, 207-220.

[16] E. De Pascale, L. De Pascale, Fixed points for some norm-obviously contractive operators, Proc. Amer. Math. Soc., 130(2002), no. 11, 3249-3254.

[17] E. De Pascale, P.P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions, Fixed Point Theory, 5(2004), no. 1, 117-129.

[18] A. Petrusel, I.A. Rus, M.A. S¸erban, Fixed points for operators on generalized metric spaces, CUBO – A Mathematical Journal, 10(2008), no. 4, 45-66.

[19] A. Petrusel, I.A. Rus, M.A. S¸erban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22(2021), no. 2, 795-808.

[20] I.A. Rus, A fibre generalized contraction theorem and applications, Mathematica, 41(1999), no.1, 85-90.

[21] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japon., 58(2003), no. 1, 191-219.

[22] I.A. Rus, Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), no. 1, 293-307.

[23] I.A. Rus, Fibre Picard operators and applications, Stud. Univ. Babe¸s-Bolyai Math., 44(1999), 89-98.

[24] I.A. Rus, Fibre Picard operators on generalized metric spaces and applications, Scripta Sc. Math., 1(1999), 326-334.

[25] I.A. Rus, Generalized Contractions and Applications, Cluj University Press Cluj-Napoca, 2001.

[26] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.

[27] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babes-Bolyai Math., 61(2016), no. 3, 343-358.

[28] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3(2019) no. 3, 111-120.

[29] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, ClujNapoca, 2(2001), 41-58.

[30] I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.

[31] I.A. Rus, M.A. Serban, Operators on infinite dimensional Cartesian product, Analele Univ. Vest, Timisoara, Math.-Inf., 48(2010), 253-263.

[32] I.A. Rus, M.A. Serban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Ed. S¸t. Cobza¸s, Cluj University Press, 2008, 173-181.

[33] M.A. Serban, Fibre ϕ−contractions, Stud. Univ. Babes-Bolyai, Math., 44(1999), no. 3, 99-108.

[34] M.A. Serban, Fixed Point Theory for Operators on Cartesian Product, (in Romanian), Cluj University Press, Cluj-Napoca, 2002.

[35] M.A. Serban, I.A. Rus, A, Petrusel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Ineq. Appl., 13(2010), no. 2, 255-269.

[36] E.S. Zhukovskii, M.J. Alves, Abstract Volterra operators, Russian Mathematics (Iz. VUZ), 52(2008), no. 3, 1-14.